説明

磁性粒子を成型するための成型装置及び磁石の製造方法

【課題】圧縮成型時のスラリーから効率的に溶媒を除去することができる、磁性粒子を成型するための成型装置、及び磁石の製造方法を提供すること。
【解決手段】本発明に係る成型装置2は、貫通孔16が形成された臼14と、貫通孔16の一端を塞ぐように配置されたときに貫通孔16に対面する型面12aを有する上型12と、を含む型10と、貫通孔16に嵌合する形状を有し、貫通孔16に摺動自在に挿入される下パンチ8と、型10に磁場を印加する磁場発生部6と、を備える。臼14が、貫通孔16の内壁を構成し上型12が配置される側の貫通孔16の一端まで延在する多孔質部14aを有している。上型12が貫通孔16の一端を塞ぐように配置されたときに多孔質部14aに面する位置の型面12aに形成された開口部18aから型10の外部へ導通する排液路18が形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁性粒子を成型するための成型装置及び磁石の製造方法に関する。
【背景技術】
【0002】
従来、磁性粉末を焼結して得られる焼結磁石の製造方法としては、特許文献1に示すように、磁石の原料となる磁性粉末を油等の溶媒と混合して得られたスラリーを金型内で圧縮成型した後、焼結するという湿式成型のプロセスを経る方法が知られている。
【0003】
また、Si等のセラミックスの湿式成型法として、特許文献2に示すように、セラミックス粉末を含むスラリーを、上型またはパンチに多孔質体を有する金型で加圧鋳込みし、多孔質体を通じてスラリー中の溶媒を排出する方法が知られている。特許文献2には、このような湿式成型法によって、高密度で、表面が平滑なセラミックスの成型体を得ることができるとの記載がある。
【特許文献1】特開平9−289127号公報
【特許文献2】特開平6−262612号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、上記特許文献2のような方法を磁石の湿式成型に適用した場合、スラリーが上型またはパンチと接触している部分のみから溶媒が排出されるため、多孔質体を通じてスラリー中の溶媒を排出する効率が必ずしも十分でないという問題があった。特に、縦に深い型を用いて縦長の成型体を形成する場合、溶媒排出の効率を高めることが困難であった。さらに、型の深さ方向、すなわち成型体の縦方向における溶媒の抜き斑が大きくなりやすいという問題もあった。磁性粒子の成型の場合、溶媒の抜き斑があると磁性粒子の配向の乱れが生じて、得られる磁石の磁気特性が著しく低下したり、成型体に密度バラツキが生じ焼結時に変形したりする場合があるため、溶媒の抜き斑を出来るだけ小さく抑制することが重要である。また、磁性粉末によって多孔質体の細孔が目詰まりし易いという問題もあった。
【0005】
そこで、本発明は、湿式成型による磁石の製造において、磁性粒子の圧縮成型の際に、溶媒の抜き斑を十分に小さく抑制しながら従来よりも効率的にスラリーから溶媒を除去することを目的とする。
【課題を解決するための手段】
【0006】
一つの側面において、本発明は磁性粒子を成型するための成型装置に関する。本発明に係る成型装置は、貫通孔が形成された臼と、貫通孔の一端を塞ぐように配置されたときに貫通孔に対面する型面を有する上型と、を含む型と、貫通孔に嵌合する形状を有し貫通孔に摺動自在に挿入される下パンチと、型に磁場を印加する磁場発生部と、を備える。臼は、貫通孔の内壁を構成し上型の型面が配置される側の貫通孔の一端まで延在する多孔質部を有する。上型が貫通孔の一端を塞ぐように配置されたときに多孔質部に面する位置の型面に形成された開口部から型の外部へ導通する排液路が上型に形成されている。
【0007】
別の側面において、本発明は磁石の製造方法に関する。本発明に係る磁石の製造方法は、貫通孔が形成された臼と、貫通孔の一端を塞ぐように配置され貫通孔に対面する型面を有する上型と、から構成される型の内部に充填され、磁性粒子と溶媒とを含むスラリーを、型に磁場を印加するとともに貫通孔に挿入された下パンチを上型に向けて移動させることによって溶媒を除去しながら圧縮成型して、磁性粒子の成型体を形成する工程と、成型体を焼成して磁石を形成する工程と、を備える。臼は、貫通孔の内壁を構成し上型の型面が配置される側の貫通孔の一端まで延在する多孔質部を有する。多孔質部に面する位置の型面に形成された開口部から型の外部へ導通する排液路が上型に形成されている。溶媒は、多孔質部と排液路とを経由して型の外部に排出される。
【0008】
上記本発明では、型を構成する貫通孔の内壁が多孔質部で構成されているため、従来のように上型または下パンチの表面が多孔質部で構成される場合に比べて、多孔質部とスラリーとの接触面積を大きくすることが可能である。よって、本発明によれば、従来に比べてより効率的に多孔質部を通じてスラリー中の溶媒を型の外部へ除去できる。また、縦に深い臼を用いて縦長の成型体を形成する場合であっても、貫通孔の内壁を構成する多孔質部とスラリー又は成型体との接触面積をその縦方向に広く確保することが可能であるため、成型体全体から均一に溶媒を除去でき、成型体における溶媒の縦方向の抜き斑を十分に小さくできる。また、本発明では、圧縮成型時に強い圧力が加わる上型の型面またはパンチに多孔質部を設ける場合と比較して、磁性粒子によって多孔質部の細孔が目詰まりし難い。このように、本発明によれば、磁性粒子の圧縮成型の際に、特に磁性粒子の成型体の縦方向における溶媒の抜き斑を十分に小さく抑制しながら、従来に比べてスラリーから溶媒を効率的に除去できる。
【0009】
上記多孔質部は、貫通孔の中間部から上型の型面が配置される側の貫通孔の一端まで延在することが好ましい。
【0010】
この場合、貫通孔の中間部から下パンチが挿入される側の一端までの部分には多孔質部が設けられない。これにより型の内部の気密性が向上し、例えば圧縮成型時に上型の排液路から型の内部の溶媒を吸引するような場合、溶媒が型の外部へ更に効率よく排出される。
【0011】
上記磁場発生部は、貫通孔の内壁に対して略垂直な磁場を型に印加することが好ましい。また、貫通孔の内壁に対して略垂直な磁場を型に印加しながらスラリーを圧縮成型することが好ましい。
【0012】
圧縮成型の際、スラリーに含まれる溶媒は、貫通孔の内壁に対して略垂直に移動し、多孔質部に染み込む。よって、圧縮成型の際、貫通孔の内壁に対して略垂直な配向磁場を型に印加すると、型の内部における溶媒の移動方向と、磁性粒子の磁場配向方向とがほぼ揃い、磁性粒子の磁場配向性が向上する。
【発明の効果】
【0013】
本発明によれば、湿式成型による磁石の製造において、磁性粒子の圧縮成型の際に、溶媒の抜き斑を十分に小さく抑制しながら従来よりも効率的にスラリーから溶媒を除去することが可能である。溶媒が効率的に除去されるとともに溶媒の抜き斑が抑制されることにより、成型体の強度が向上し、また、成型体の密度バラツキが生じにくくなり焼結時の変形が防止できる。更に、成型体に含まれる磁性粒子の磁場配向性が向上する。その結果、残留磁束密度Brが大きい優れた磁気特性を有する磁石が得られる。
【0014】
更には、交換の必要性の少ない多孔質部を通して溶媒を除去するため、頻繁に交換が必要とされる布製又は紙製のフィルターを通じてスラリーから溶媒を除去する方法と比較して、交換に伴うコスト上昇や生産効率の低下を抑制することが可能であるという点でも本発明は優れている。
【発明を実施するための最良の形態】
【0015】
以下、図面を適宜参照しながら、本発明の好適な一実施形態である、湿式成型による希土類磁石の製造方法ついて詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
【0016】
本実施形態に係る製造方法は、磁性粒子と溶媒とを含むスラリーを準備する工程と、型の内部に充填されたスラリーを型の内部で溶媒を除去しながら圧縮成型して磁性粒子の成型体を形成する工程と、成型体に残存した溶媒を除去する工程と、成型体を焼成して磁石を形成する工程とを備える。
【0017】
スラリーに用いる磁性粒子は、例えば、所望の組成を有する希土類磁石が得られるような合金を粉砕する方法により得られる。合金は、例えば、希土類磁石の組成に対応する元素を含む金属や化合物等を、真空又はアルゴン等の不活性ガス雰囲気下で溶解した後、これを用いて鋳造法やストリップキャスト法等の合金製造プロセスを行うことによって作製する。
【0018】
希土類磁石の種類は特に限定されないが、例えば、希土類元素として主にNdやSmを含むものが挙げられる。希土類元素と、希土類元素以外の遷移元素とを組み合わせた組成を有するものが好適である。具体的には、希土類元素(「R」で表す)として、Nd、Pr及びDyのうちの少なくとも1種を含み、Bを1〜12原子%含み、且つ残部がFeであるR−Fe−B系磁石が例示される。このような希土類磁石は、必要に応じて、Co、Ni、Mn、Al、Nb、Zr、Ti、W、Mo、V、Ga、Zn及びSi等の元素を更に含有してもよい。R−Fe−B系磁石以外の希土類磁石としては、R−Co系磁石(RはSm等)が例示される。
【0019】
合金を粗粉砕して数百μm程度の粒径を有する磁性粗粉を形成し、更に磁性粗粉を微粉砕して磁性粒子を形成する。得られる磁性粒子の平均粒径は、特に限定されないが、通常、1〜10μm程度である。
【0020】
合金を粗粉砕する方法としては、例えば、ジョークラッシャー、ブラウンミル、スタンプミル等の粗粉砕機を用いる方法、または、合金に水素を吸蔵させた後、異なる相間の水素吸蔵量の相違に基づく自己崩壊的な粉砕を生じさせる方法(水素吸蔵粉砕法)が挙げられる。磁性粗粉を微粉砕する方法としては、例えば、磁性粗粉を、粉砕時間等の条件を適宜調整しながら、ジェットミル、ボールミル、振動ミル、湿式アトライター等の微粉砕機を用いて粉砕する方法が挙げられる。
【0021】
スラリーは、磁性粒子と溶媒とを混合した混合物を混練し、必要により更に分散処理を施して調製される。混錬は、例えば、加圧ニーダ、オープンニーダ、2軸押出機、プラネタリーミキサー等の方法によって行うことができる。溶媒としては、磁石の湿式成型に常用される溶媒等から適宜選択される。例えば、鉱物油、合成油、植物油等の油や、アセトン、アルコールといった有機溶媒が用いられる。スラリー中での磁性粒子の分散性を良好に保つ観点からは、溶媒としては油を用いることが好ましく、鉱物油を用いることがより好ましい。また、実質的に有機溶媒を含まない油を用いることが更に好ましい。
【0022】
磁性粒子と溶媒との混合においては、溶媒以外に、所望の特性が得られる他の添加剤を更に加えることもできる。添加剤としては、例えば、磁性粒子の分散を促進することができる分散剤が挙げられる。
【0023】
スラリーの分散処理は、ボールミル、超音波拡散、ホモジナイザー、アルティマイザー等を用いることによって行うことができる。
【0024】
図1〜6は、スラリーを圧縮成型する工程の一実施形態を示す模式図である。本実施形態では、図1に示す成型装置を用いて、上述のようにして得られたスラリーを圧縮成型し、磁性粒子の成型体を形成する。
【0025】
図1に示す成型装置2は、主として、圧縮成型部4と、磁場発生部6とから構成される。圧縮成型部4は、主として、貫通孔16が形成された筒状の臼14及びこれの一端面に対して固定可能な上型12を有する型10と、貫通孔16に挿入された下パンチ8とから構成される。貫通孔16の断面は矩形であり、貫通孔16の内壁はそれぞれ対向する2組の平坦面から構成されている。貫通孔16は成型体の形状に対応した形状を有する。上型12は、臼14に対して上下自在に移動させることができ、上型12の型面12aを貫通孔16の一端に対面させ、貫通孔16を塞ぐことができる。下パンチ8は貫通孔16に嵌合する形状を有しており、貫通孔16内を上下自在に摺動させることができる。上型12および下パンチ8は、通常、金属等の緻密な部材から構成されている。
【0026】
臼14は、貫通孔16の内壁の一部を構成する多孔質部14aを有している。臼14のうち多孔質部14aを除く部分は、金属等の緻密な部材から構成されている。多孔質部14aは、貫通孔16の内壁の周の一部又は全体を囲んで設けられる。本実施形態の場合、貫通孔16の内壁を構成する4つの平坦面において多孔質部が設けられていてもよい。これに代えて、貫通孔16の内壁を構成する4つの平坦面のうち、対向する1組の平坦面に多孔質部14aが設けられていてもよい。
【0027】
多孔質部14aは、貫通孔16の中間部から、上型12の型面12aが配置される側の貫通孔16の一端まで延在している。多孔質部14aは、貫通孔16の内壁のうち、下パンチ8の上型12側の面(以下「パンチ面」という)8aが圧縮成型の過程で移動する範囲、すなわち圧縮成型部4の有効部の部分を含むように設けられていることが好ましい。言い換えると、多孔質部14aは、スラリーが充填される時にパンチ面8aが配置される位置から、上型12が配置される側の貫通孔16の一端まで延在していることが好ましい。これにより、多孔質部が貫通孔の下パンチが挿入される側の一端まで延在している場合と比較して貫通孔の気密性が高められ、溶媒排出の効率向上の効果がより顕著に得られる。また、多孔質部が圧縮成型部の有効部のうち一部のみの内壁に設けられている場合と比較して、溶媒排出の効率向上や溶媒の抜き斑の抑制の効果がより顕著に得られる。
【0028】
多孔質部14aは、例えば、金属、セラミックス及び樹脂から選ばれる材料から構成される多孔質材料からなる。多孔質部14aを構成する材料は、好ましくは超硬合金から選ばれる。
【0029】
多孔質部14aの細孔の孔径は、磁石の製造に用いる磁性粒子の粒径より小さいことが好ましい。このような多孔質部14aを用いることによって、磁性粒子が多孔質部14aの細孔に詰まることを防止でき、多孔質部14aを通じてスラリー中の溶媒のみを型10の外部へ除去できる。多孔質部14aの気孔率は、10〜40%であることが好ましい。気孔率が小さいと多孔質部14aを経由して溶媒を型10の外部へ除去し難くなって溶媒排出の効率向上の効果が小さくなる傾向がある。また、気孔率が大きいと多孔質部14aの機械強度が弱くなり、後述の圧縮成型工程の際の加圧によって多孔質部14aが破損し易くなる傾向がある。
【0030】
上型12においては、開口部18aから型10の外部へ導通する排液路18が形成されている。開口部18aは、上型12が貫通孔16の一端を塞ぐように配置されたとき(図1の状態のとき)に多孔質部14aに面する位置の型面12aに形成されている。このように排液路18が形成されていることにより、スラリーから除去されて多孔質部14a内に入った溶媒が、効率的に型10の外部に排出される。より効率的に溶媒を排出するために、排液路18から溶媒を吸引することが好ましい。
【0031】
磁場発生部6は、臼14の周囲に配置され、圧縮成型部4に磁場を印加することができる。磁場発生部6としては、磁性粒子の成型において、必要とされる磁場の強度等に応じて適宜磁界を発生するものである。
【0032】
図2、3はスラリーを型10の内部に充填する工程を示す。まず、図2に示すように、上型12を臼14の上方に移動させるとともに、搬送装置22によって、スラリー充填装置24を貫通孔16の上方へ移動、配置させる。次いで、図3に示すように、スラリー充填装置24から上述のスラリー26を貫通孔16へ所定量供給し、貫通孔16をスラリー26で充填する。
【0033】
スラリー充填装置24を臼14の上方から除去させた後、図4に示すように、上型12を下降させて臼14の上部に固定し、貫通孔16の一端を塞ぐ。続いて、磁場発生部6によって圧縮成型部4の内部に位置するスラリー26に磁場Mを印加する。その結果、スラリー26に含まれる磁性粒子が磁場配向する。磁場Mの方向は、後述する圧縮成型時の加圧方向に対して垂直、すなわち、多孔質部14aで構成される貫通孔16の内壁に対して略垂直であることが好ましい。このような磁場をスラリー26に印加することによって、磁性粒子の磁場配向性が向上し、特に優れた磁気特性を有する磁石が得られる。なお、磁場Mの強度は、特に限定されないが、通常10〜20kOe(約790〜約1580kA/m)程度である。
【0034】
磁場Mを印加した状態で、図5に示すように、下パンチ8を上型12に向けて移動させることによって、スラリー26を圧縮成型する。圧縮成型の際、スラリー26に含まれる溶媒が多孔質部14aへ染み込んで、多孔質部14aおよび排液路18を経由して型10の外部に除去される。溶媒の排出とともにスラリー26の全体が圧縮されて、所定の配向度を有する磁性粒子の成型体26a(図6参照)が形成される。
【0035】
圧縮成型後、図6に示すように、上型12を臼14から上方へ向かって移動させ、下パンチ8を臼14の上部に更に移動させることによって、得られた成型体26aが型10の外部へ取り出される。成型体26aはパンチ面8aから引き剥がされて次の工程に供される。
【0036】
成型体26aの形状は、特に限定されず、柱状、平板状、瓦状、リング状等、所望とする希土類磁石の形状に応じて変更することができる。
【0037】
圧縮成型においてスラリー26(成型体26a)に加わる圧力は、特に限定されないが、通常、約29.4〜約294MPa程度である。また、圧縮成型の所要時間は、数秒〜数十秒とすることが好ましい。このような条件下で圧縮成型を行うことにより、特に良好な磁気特性を有する希土類磁石が得られる。
【0038】
圧縮成型では、溶媒の含有量が、得られる成型体26a全体に対して4〜15質量%となるまで、スラリー26から溶媒を除去することが好ましい。成型体26a全体に対する溶媒の含有量を上記範囲内とすることによって、成型体26aの強度が更に向上し、また、成型体の密度バラツキが生じにくくなり焼結時の変形が防止できる。更に、成型体26aに含まれる磁性粒子の磁場配向性も更に向上する。その結果、より良好な機械強度を有するとともに、より高い残留磁束密度Brを有する磁石を形成することができる。
【0039】
得られた成型体26aに対し、例えば真空加熱を行うことにより、成型体26aに残存した溶媒や添加剤が除去される(脱バインダー処理)。なお、脱バインダー処理では、通常は成型体26aの焼結は進行しないが、焼結が部分的に進行してもよい。
【0040】
脱バインダー処理後の成型体26aを焼成して、焼結体である希土類磁石を得る。焼成は、例えば、真空中又は不活性ガスの雰囲気下、成型体26aを、1000〜1200℃で、1〜10時間加熱した後、急冷することによって行うことができる。
【0041】
得られた焼結体は、好ましくは、その磁気特性を向上させるために焼成時よりも低い温度で加熱する時効処理が施される。時効処理は、例えば、700〜900℃で1〜3時間、更に500〜700℃で1〜3時間加熱する2段階加熱や、600℃付近で1〜3時間加熱する1段階加熱によって行う。
【0042】
時効処理後の焼結体(希土類磁石)は、通常、表面を平滑化する処理が施される。また、焼結体を所望のサイズに切断してもよい、得られた希土類磁石の表面に防錆するための保護層を更に形成させてもよい。
【0043】
以上、本発明に係る磁石の製造方法の好適な実施形態として、希土類磁石の製造方法について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。例えば、多孔質部14の貫通孔側の表面の一部又は全部を覆う金属製のメッシュを配置させてもよい。成型装置が配置される向きも特に限定はなく、上型が下側、下パンチが上側に位置するような向きで成型装置が配置されていてもよい。
【0044】
また、磁性粒子としてフェライト磁石等を用いてもよい。具体的なフェライト磁石としては、特に限定されないが、SrO・6Fe(M型フェライト)、SrO・2(FeO)・n(Fe)(W型フェライト)が例示される。
【図面の簡単な説明】
【0045】
【図1】成型装置の一実施形態を示す概略図である。
【図2】磁性粒子の成型体を形成する工程の一部を示す概略図である。
【図3】磁性粒子の成型体を形成する工程の一部を示す概略図である。
【図4】磁性粒子の成型体を形成する工程の一部を示す概略図である。
【図5】磁性粒子の成型体を形成する工程の一部を示す概略図である。
【図6】磁性粒子の成型体を形成する工程の一部を示す概略図である。
【符号の説明】
【0046】
2…成型装置、4…圧縮成型部、6…磁場発生部、8…下パンチ、8a…パンチ面、10…型、12…上型、12a…型面、14…臼、14a…多孔質部、16…貫通孔、18…排液路、18a…開口部、26…スラリー、26a…成型体。

【特許請求の範囲】
【請求項1】
貫通孔が形成された臼と、前記貫通孔の一端を塞ぐように配置されたときに前記貫通孔に対面する型面を有する上型と、を含む型と、
前記貫通孔に嵌合する形状を有し前記貫通孔に摺動自在に挿入される下パンチと、
前記型に磁場を印加する磁場発生部と、を備え、
前記臼が、前記貫通孔の内壁を構成し前記上型が配置される側の前記貫通孔の一端まで延在する多孔質部を有し、
前記上型が前記貫通孔の一端を塞ぐように配置されたときに前記多孔質部に面する位置の前記型面に形成された開口部から前記型の外部へ導通する排液路が前記上型に形成されている、磁性粒子を成型するための成型装置。
【請求項2】
前記多孔質部が、前記貫通孔の中間部から前記上型の前記型面が配置される側の前記貫通孔の一端まで延在する、請求項1に記載の成型装置。
【請求項3】
前記磁場発生部が、前記貫通孔の内壁に対して略垂直な磁場を前記型に印加する、請求項1または2に記載の成型装置。
【請求項4】
貫通孔が形成された臼と、前記貫通孔の一端を塞ぐように配置され前記貫通孔に対面する型面を有する上型と、から構成される型の内部に充填され、磁性粒子と溶媒とを含むスラリーを、前記型に磁場を印加するとともに前記貫通孔に挿入された下パンチを前記上型に向けて移動させることによって前記溶媒を除去しながら圧縮成型して、前記磁性粒子の成型体を形成する工程と、
前記成型体を焼成して磁石を形成する工程と、を備え、
前記臼が、前記貫通孔の内壁を構成し前記上型が配置される側の前記貫通孔の一端まで延在する多孔質部を有し、
前記多孔質部に面する位置の前記型面に形成された開口部から前記型の外部へ導通する排液路が前記上型に形成されており、
前記溶媒が、前記多孔質部と前記排液路とを経由して前記型の外部に排出される、磁石の製造方法。
【請求項5】
前記多孔質部が、前記貫通孔の中間部から前記上型の前記型面が配置される側の前記貫通孔の一端まで延在する、請求項4に記載の磁石の製造方法。
【請求項6】
前記貫通孔の内壁に対して略垂直な磁場を前記型に印加しながら、前記スラリーを圧縮成型する、請求項4または5に記載の磁石の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−244154(P2008−244154A)
【公開日】平成20年10月9日(2008.10.9)
【国際特許分類】
【出願番号】特願2007−82666(P2007−82666)
【出願日】平成19年3月27日(2007.3.27)
【出願人】(000003067)TDK株式会社 (7,238)
【Fターム(参考)】