説明

積層造形方法及び積層造形装置

【課題】
簡易かつ迅速に高強度の立体を造形することができる積層造形方法及び積層造形装置を提供する。
【解決手段】
外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧して形成した複数枚の平板状材料部材711〜71Nを準備した後、ベース板43と透明部材80とにより形成される閉空間内において、減圧用排気を行いつつ、平板状材料部材における設計断面形状に応じた領域に照射光(レーザ光)Lを照射し、溶融させた後に凝固させて断面要素を形成させるとともに、既に造形された部分と一体化させる。そして、閉空間の形成を解除した後、当初断面要素の表面を平坦化する。かかる平板状材料部材の積層、積層断面要素形成及び積層表面平坦化を順次繰り返す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、積層造形方法及び積層造形装置に係り、より詳しくは、粉末を材料として目的とする立体形状を造形する積層造形方法、及び、当該積層造形方法を使用する積層造形装置に関する。
【背景技術】
【0002】
従来から、CAD(Computer Aided Design)で図面を作成した立体形状をラピッドプロトタイピング(Rapid Prototyping;以下、「RP」と略す)システムにより実体化することが、様々な分野で行われている。特に、積層造形方法を使用したRPシステムはマシニングセンタ等に比べて簡単な装置でありながら加工の自由度が高い。こうした長所を有する積層造形方法は、樹脂や紙を材料とするものに多く適用されてきたが、強度や経時・経年変化等の面で問題がある。このため、金属等を材料とする積層造形方法による立体造形の研究が盛んに進められている。
【0003】
こうした金属等を材料とする立体の積層造形のうち、高強度の造形品を目指すものとして、(a)金属等の材料粉末の表面に樹脂を塗布した後、レーザ照射により加熱して溶融させた樹脂部を接着剤として機能させて断面要素を順次積層し、立体を造形する方法や、(b)金属等の材料粉末を1種類のレーザ照射により直接加熱して溶融し、連続体を形成する方法が提案されている。こうした方法では、レーザ照射による所定領域の溶融及びその溶融部で凝固が起こる。しかし、こうした溶融及び凝固のみでは、造形された立体内部に空洞や樹脂が残留し、十分な強度が得られない。そこで、高温雰囲気中における残留樹脂成分の揮発や材料粒子の局所的な結合を促進させて焼結状態としたり、使用した金属等の材料よりも低融点材料を溶解して空洞部に浸透させたりする後処理が必要であり、こうした後処理により強度の向上を図っていた。
【0004】
これに対し、焼結や低融点材料といった後処理を必要とせずに高強度を達成できるとともに、造形の簡易性及び迅速性を目指した積層造形技術が提案されている(特許文献1参照;以下、「従来例」と呼ぶ)。この従来例の積層造形方法では、材料粉末を押圧して形成した複数枚の平板状材料部材を準備した後、最初の平板状材料部材における設計断面形状に応じた領域に照射光(レーザ光)を照射し、溶融させた後に凝固させて当初断面要素を形成する。そして、当初断面要素の表面を平坦化する。次に、平坦化された鉛直上方側表面を有する既に造形された部分の表面上に次の平板状材料部材が配置される。引き続き、新たな平板状材料部材の積層位置の設計断面形状に応じた新たな平板状材料部材の領域に照明光を照射し、溶融させた後に凝固させることにより、積層断面要素が形成されるとともに、既に造形された部分と一体化させる。そして、積層断面要素の表面を平坦化する。以後、平板状材料部材の積層、積層断面要素形成及び積層表面平坦化を順次繰り返すようになっている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】WO 2005/056221 A1 号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記の従来例の積層造形方法は、高強度の立体を容易にかつ迅速に造形する観点からは、非常に優れたものである。しかしながら、従来例においては、平板状材料部材内の空隙は空気等の気体で満たされているので、溶融凝固後の断面要素内に空洞が生じる可能性を孕んでいた。
【0007】
かかる可能性を減少させるためには、従来例の技術では、照射光のエネルギ密度及び走査速度を、材料の種類ごとにきめ細かく調整することが必要であった。このため、従来例の技術における造形の迅速性を維持しつつ、従来例の技術のような微調整を行わずに、強固な立体を造形することができる技術が待望されている。
【0008】
本発明は、上記の事情を鑑みてなされたものであり、簡易かつ迅速に高強度の立体を造形することができる新たな積層造形方法及び積層造形装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明は、第1の観点からすると、物体を載置するためのステージ面を有するステージ部材と;前記ステージ面に被せることにより前記ステージ面とともに閉空間を形成し、前記閉空間の形成時における鉛直上方部分が光学窓部となっている透明部材と;前記閉空間内の気体を排出する排気機構と;を備える積層造形装置において使用され、粉末を材料として、目的とする立体形状を造形する積層造形方法であって、外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧し、平板状材料部材を複数枚準備する平板状材料部材準備工程と;前記閉空間が形成されていない状態で、前記平板状材料部材の最初の1枚を、前記閉空間が形成された場合に前記閉空間の内部となるべき前記ステージ面上の位置に載置する当初材料部材載置工程と;前記閉空間が形成された状態で、前記排気機構により前記閉空間内の気体を排出しつつ、前記平板状材料部材の最初の1枚における設計断面形状に応じた前記平板状材料部材の領域に、鉛直上方から、前記透明部材の光学窓部を介してレーザ光を照射し、局所的に加熱して溶融させた後に凝固させて当初断面要素を形成する当初断面要素形成工程と;前記閉空間の形成状態が解除された状態で、前記当初断面要素の鉛直上方側の表面を平坦化する当初表面平坦化工程と;を実行した後に、前記閉空間が形成されていない状態で、前記平板状材料部材を、前記ステージ面上に載置され、既に造形された部分の鉛直上方側であって、前記閉空間が形成された場合に前記閉空間の内部となるべき位置に配置する積層材料部材載置工程と;前記閉空間が形成された状態で、前記排気機構により前記閉空間内の気体を排出しつつ、前記目的とする立体形状における前記平板状材料部材の積層位置の設計断面形状に応じた前記平板状材料部材の領域に、鉛直上方から、前記透明部材の光学窓部を介してレーザ光を照射し、局所的に加熱して溶融させた後に凝固させて積層断面要素を形成するとともに、前記鉛直上方側とは反対側において既に造形された部分と一体化させる積層断面要素形成工程と;前記閉空間の形成状態が解除された状態で、前記積層断面要素の鉛直上方側の表面を平坦化する積層表面平坦化工程と;を繰り返し、前記目的とする立体形状を造形する、ことを特徴とする積層造形方法である。
【0010】
この積層造形方法では、まず、平板状材料部材準備工程において、外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧して形成した平板状材料部材を複数枚準備する。こうして準備された平板状材料部材は、その内部に空隙が存在していても、空隙内の空気量が低減されたものとなっている。なお、平板状材料部材は、自重やロボットアームなどによるステージ面上へのロードによって崩れたりせず、かつ、当初断面要素形成工程や積層断面要素形成工程におけるレーザ光照射によって材料粉末が飛散しない程度に材料粉末が圧縮されている。
【0011】
引き続き、当初材料部材載置工程において、ステージ面上に透明部材を搭載しない状態、すなわち、ステージ面上に閉空間が形成されていない状態で、平板状材料部材の最初の1枚を、閉空間が形成された場合に当該閉空間の内部となるべきステージ面上の位置に載置する。この後、ステージ面上に透明部材を搭載して閉空間を形成し、排気機構による閉空間内の気体の排出動作を開始する。
【0012】
次に、当初断面要素形成工程において、排気機構により当該閉空間内の気体を排出しつつ、平板状材料部材の最初の1枚における設計断面形状に応じた平板状材料部材の領域に、鉛直上方から、透明部材の光学窓部を介してレーザ光を照射し、局所的に加熱して溶融させた後に凝固させて当初断面要素を形成する。こうして形成された当初断面要素の鉛直上方側は、表面張力等により平坦とはなっていない。このため、引き続き、当初表面平坦化工程において、ステージ面上から透明部材を取り外し、すなわち、ステージ面上の閉空間の形成状態が解除した後、当初断面要素の鉛直上方側の表面を平坦化する。こうして、最初の平板状材料部材の積層位置における部分の造形が行われる。
【0013】
次いで、積層材料部材載置工程において、ステージ面上に閉空間が形成されていない状態で、既に造形された部分の鉛直上方側であって、閉空間が形成された場合に当該閉空間の内部となるべき位置に次の平板状材料部材が配置される。この結果、既に造形された部分の鉛直上方側表面上にほぼ密着した状態で、新たな平板状材料部材が載置される。この後、ステージ面上に透明部材を搭載して閉空間を形成し、排気機構による閉空間内の気体の排出動作を開始する。
【0014】
引き続き、積層断面要素形成工程において、排気機構により閉空間内の気体を排出しつつ、目的とする立体形状における新たな平板状材料部材の積層位置の設計断面形状に応じた当該新たな平板状材料部材の領域に、鉛直上方から、透明部材の光学窓部を介してレーザ光を照射する。この結果、レーザ光が照射された領域が、局所的に加熱されて溶融する。この後、レーザ光の照射を停止すると、溶融部分が凝固して積層断面要素が形成されるとともに、当該積層断面要素が、鉛直上方側とは反対側において既に造形された部分と一体化する。
【0015】
こうして形成された積層断面要素の鉛直上方側は、上述した当初断面要素の場合と同様に表面張力等により平坦とはなっていない。このため、積層表面平坦化工程において、ステージ面上から透明部材を取り外し、すなわち、ステージ面上の閉空間の形成状態が解除した後、積層断面要素の鉛直上方側の表面を平坦化する。
【0016】
以後、上述した積層材料部材載置工程、積層断面要素形成工程及び積層表面平坦化工程を順次繰り返すことにより、目的とする立体形状が高強度に造形される。
【0017】
すなわち、本発明の積層造形方法では、レーザ光照射前の平板状材料部材が、外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧して形成されたものであるので、その内部に空隙が存在していても、空隙内の空気量が低減されたものとなっている。そして、ステージ面上に形成された閉空間内に平板状材料部材を収納した後、排気機構により当該閉空間内の気体を排出しつつ、目的とする立体形状の位置に対応した位置の材料を溶融凝固させる。このため、照射レーザ光のエネルギ密度及び走査速度をきめ細かく制御しなくとも、強固な立体を造形することができる。
【0018】
また、本発明の積層造形方法では、各層の断面要素の作成のために、既に積層造形された部分上に材料粉末層を形成することが必要ではなくなるため、レーザ照射用に使用するステージ装置が大きな外力に耐えられるものとする必要がなくなる。また、レーザ照射用のステージから既に積層造形された部分を取り外した後に材料粉末層を形成して、再度レーザ照射用のステージに戻したりする必要もなくなる。さらに、材料粉末の圧縮とレーザ照射という工程を混在させて実行する必要もなくなる。
【0019】
したがって、本発明の積層造形方法によれば、簡易かつ迅速に高強度の立体を造形することができる。
【0020】
本発明の積層造形方法では、前記平板状材料部材における空隙率を50%未満とすることができる。この場合には、平板状材料部材を自重やロボットアームなどによるステージ面上へのロードによって崩れたりせず、かつ、当初断面要素形成工程や積層断面要素形成工程におけるレーザ光照射によって材料粉末が飛散しない程度に材料粉末が圧縮されたものとすることができる。なお、例えば、材料粉末が、平均粒径が約100μmの純鉄粉である場合には、100MPa以上で押圧することにより、材料粉末が占める割合を50%以上とすることができる。
【0021】
本発明の積層造形方法では、前記材料粉末として、鉄(Fe)、チタン(Ti)、ニッケル(Ni)等の金属の粉末、ニッケル−モリブデン(Ni−Mo)合金鋼等の合金の粉末を使用することができる。これらの中でも、後述するNi−Mo系の合金を使用すると、高強度で耐磨耗性に優れた造形品を得ることができる。なお、これら以外の金属又は合金であっても、溶融凝固過程を経る金属又は合金であれば材料として採用することができる。また、ナイロンその他のポリアミド系のプラスチック;ソーダガラスその他のガラス;ジルコニアその他のセラミックスであっても、レーザを吸収し溶融凝固過程を経るものであれば、材料として採用することができる。
【0022】
また、本発明の積層造形方法では、前記平板状材料部材それぞれの材料を、前記平板状材料部材それぞれの積層位置に応じて定めることができる。この場合には、積層造形体における積層方向の位置に応じた所望の強度等を有する積層造形体を製作することができる。
【0023】
また、本発明の積層造形方法では、前記閉空間の形成状態が解除された状態で、前記当初断面要素形成工程と前記当初表面平坦化工程との間に行われ、前記平板状材料部材の最初の1枚における前記当初断面要素以外の部分を除去する当初余剰材料除去工程と;前記閉空間の形成状態が解除された状態で、前記積層断面要素形成工程と前記積層表面平坦化工程との間に行われ、前記積層された平板状材料部材における前記積層断面要素以外の部分を除去する積層余剰材料除去工程と;を更に備えることとすることができる。この場合には、断面要素の平坦化に先立って、断面要素以外の材料部分、すなわち圧縮粉体部分を除去するので、平坦化後の表面に圧縮粉体の切りくずが残ってしまうことを防止することができる。この結果、平坦化表面上に次の平板状材料部材を隙間無く配置することができ、断面要素同士をむらなく一体化することができる。
【0024】
また、本発明の積層造形方法では、前記閉空間の形成状態が解除された状態で、前記当初表面平坦化工程の直前又は直後、及び、前記積層表面平坦化工程の直前又は直後に、最新に形成された断面要素部分の側面を整形する側面整形工程を更に備えることとすることができる。この場合には、各断面要素が形成された後、次の断面要素が形成される前に形成された断面要素の形状を設計断面形状に精度良く一致させることができる。このため、滑らかな形状を有する立体形状であっても、精度良く造形することができる。
【0025】
本発明は、第2の観点からすると、外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧して形成された複数枚の平板状材料部材を出発材として、目的とする立体形状を造形する積層造形装置であって、前記平板状材料部材を載置するステージ面を有し、前記ステージ面を3次元的に移動可能なステージ装置と;前記ステージ面に被せることにより前記ステージ面とともに閉空間を形成し、前記閉空間の形成時における鉛直上方部分が光学窓部となっている透明部材と;前記閉空間内の気体を排出する排気機構と;前記平板状材料部材を前記ステージ面へ向けて搬送する材料部材搬送手段と;前記閉空間が形成された状態で、前記排気機構により前記閉空間内の気体を排出しつつ、前記平板状材料部材の所定領域に、鉛直上方から、前記透明部材の光学窓部を介して、局所的に加熱して溶融させるためのレーザ光を照射するレーザ光照射手段と;前記閉空間の形成状態が解除された状態で、前記レーザ光の照射後に凝固して形成された断面要素の鉛直上方側の表面を平坦化させる表面平坦化手段と;を備えることを特徴とする積層造形装置である。
【0026】
この積層造形装置では、外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧して形成された複数枚の平板状材料部材を出発材として、まず、材料部材搬送手段が、最初の平板状材料部材をステージ装置のステージ上に載置する。引き続き、ステージ面上に透明部材を搭載し、ステージ面上に閉空間が形成され、排気機構により閉空間内の気体を排出している状態とする。この排気状態で、ステージを動かしながら、レーザ光照射手段から射出され、透明部材の光学窓部を介したレーザ光により、平板状材料部材の最初の1枚における設計断面形状に応じた平板状材料部材の領域に鉛直上方側からレーザ光を照射し、局所的に加熱して溶融させた後に凝固させて当初断面要素を形成する。そして、ステージ面上の閉空間の形成が解除された後、表面平坦化手段が、当初断面要素の鉛直上方側の表面を平坦化する。こうして、最初の平板状材料部材の積層位置における部分の造形が行われる。
【0027】
次に、材料部材搬送手段が、ステージ面上の閉空間の形成の解除状態で、平坦化された鉛直上方側表面を有する既に造形された部分の鉛直上方側表面上に次の平板状材料部材を配置する。引き続き、ステージ面上の閉空間が形成され、排気機構により閉空間内の気体を排出している状態とする。この排気状態で、ステージを動かしながら、レーザ光照射手段から射出され、透明部材の光学窓部を介したレーザ光により、目的とする立体形状における新たな平板状材料部材の積層位置の設計断面形状に応じた当該新たな平板状材料部材の領域に鉛直上方側から照射する。この結果、レーザ光が照射された領域が、局所的に加熱されて溶融する。この後、溶融部分を凝固させることにより、積層断面要素が形成されるとともに、当該積層断面要素が、鉛直上方側とは反対側において既に造形された部分と一体化される。そして、ステージ面上の閉空間の形成が解除された後、表面平坦化手段が、積層断面要素の鉛直上方側の表面を平坦化する。
【0028】
以後、上述した平板状材料部材の積層、積層断面要素の形成及び積層断面要素を有する平板上材料部材の鉛直上方側表面の平坦化を順次繰り返すことにより、目的とする立体形状が高強度に造形される。
【0029】
すなわち、本発明の積層造形装置では、上述した本発明の積層造形方法を使用して、目的とする立体を造形することができる。したがって、本発明の積層造形装置によれば、簡易かつ迅速に高強度の立体を造形することができる。
【0030】
本発明の積層造形装置では、前記閉空間を形成するときには、前記透明部材を前記ステージ面に被せて固定し、前記閉空間の形成状態を解除するときには、前記透明部材を前記ステージ面上から取り外す透明部材搬送手段を更に備える構成とすることができる。この場合には、人手を利用せずに、ステージ面に閉空間を形成したり、当該閉空間の形成状態を解除したりすることができる。
【0031】
本発明の積層造形装置では、前記閉空間の形成状態が解除された状態で、前記断面要素以外の余剰材料部分を除去する余剰材料除去手段を更に備える構成とすることができる。この場合には、表面平坦化手段による断面要素の鉛直上方側表面の平坦化に先立って、断面要素以外の材料部分を、余剰材料除去手段を用いて除去することにより、平坦化後の表面に圧縮粉体の切りくずが残ってしまうことを防止することができる。
【0032】
また、本発明の積層造形装置では、前記閉空間の形成状態が解除された状態で、前記鉛直上方側表面が平坦化された断面要素の側面を整形する側面整形手段を更に備える構成とすることができる。この場合には、側面整形手段を用いることにより、各断面要素が形成された後、次の断面要素が形成される前に形成された断面要素の形状を設計断面形状に精度良く一致させることができる。このため、滑らかな形状を有する立体形状であっても、精度良く造形することができる。
【発明の効果】
【0033】
以上説明したように、本発明の積層造形方法によれば、簡易にかつ迅速に高強度の立体を造形することができるという顕著な効果がある。
【0034】
また、本発明の積層造形装置によれば、簡易にかつ迅速に高強度の立体を造形することができるという顕著な効果がある。
【図面の簡単な説明】
【0035】
【図1】本発明の一実施形態に係る積層造形方法を使用するための積層造形装置の構成を概略的に示す図である。
【図2】本発明の一実施形態において、造形目的とする立体の形状を説明するための図である。
【図3】図1のベース板の構造を説明するための図である。
【図4】図1の透明部材の構造を説明するための図である。
【図5】ベース板と透明部材とを使用した閉空間の形成を説明するための図である。
【図6A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その1)である。
【図6B】図6Aの平板状材料部材711の断面を示す図である。
【図7A】照射光の照射方法を説明するための図である。
【図7B】図7Aにおける照射スポットのオーバラップ率を説明するための図である。
【図8A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その2)である。
【図8B】図8Aの平板状材料部材711及び断面要素751の断面を示す図である。
【図9A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その3)である。
【図9B】図9Aの断面要素761の断面を示す図である。
【図10A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その4)である。
【図10B】図10Aの断面要素771の断面を示す図である。
【図11A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その5)である。
【図11B】図11Aの断面要素771及び平板状材料部材712の断面を示す図である。
【図12A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その6)である。
【図12B】図12Aの断面要素771、平板状材料部材712及び断面要素752の断面を示す図である。
【図13A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その7)である。
【図13B】図13Aの断面要素771及び断面要素762の断面を示す図である。
【図14A】本発明の一実施形態に係る積層造形方法における工程を説明するための図(その8)である。
【図14B】図14Aの断面要素771及び断面要素772の断面を示す図である。
【図15A】第1の変形例を説明するための図である。
【図15B】第2の変形例を説明するための図である。
【発明を実施するための最良の形態】
【0036】
以下、本発明の一実施形態を、図1〜図14Bを参照して説明する。
【0037】
[構成]
図1には、本発明の一実施形態に係る積層造形装置10の概略的な構成が示されている。図1に示されるように、この積層造形装置10は、(a)目的とする立体形状を設計するとともに、設計データを格納する計算機システム20と、(b)計算機システム20の制御のもとで、レーザ光を発生するレーザ装置31と、(c)レーザ装置31から射出され、光ファイバ32を介したレーザ光を、後述するステージ41上に載置された平板状材料部材71j(j=1〜N)に照射するための照射光学系33と、(d)計算機システム20の制御のもとで、X軸方向、Y軸方向及びZ軸方向の3軸方向に移動可能なステージ41を有するステージ装置40と、を備えている。
【0038】
ここで、計算機システム20は、(i)立体形状の設計プログラム等の様々なプログラムを実行するとともに、積層造形装置10全体を制御する処理装置21と、(ii)処理装置21の指令に応じて、図形や文字等を表示する表示装置22と、(iii)オペレータが処理装置21に対して指令や文字データを入力するキーボード等のストロークデバイス23と、(iv)オペレータが処理装置21に対して表示装置22の表示領域における位置を指定するマウス等のポインティングデバイス24と、(v)設計された立体形状のデータ等を格納する記憶装置25とを備えている。
【0039】
また、レーザ装置31としては、例えば、材料粉末が平均粒径100μmの純鉄の粉体である場合には、0.5mmの平板状材料部材に対し、ピークパワー2kW、パルス幅約10msのレーザの出力が可能なYAGレーザ発振機を、好適に採用することができる。
【0040】
また、照射光学系33は、計算機システム20の制御により、フォーカス位置のZ軸方向に沿って変化させることができるようになっている。
【0041】
また、ステージ装置40は、(i)上述したステージ41と、(ii)計算機システム20(より詳細には処理装置21)からの指令STCに応じて、ステージ41をXYZの3軸方向に駆動する駆動装置42とを備えている。また、ステージ41上には、十分な耐熱性を有するベース板43が固定的に載置されている。
【0042】
ベース板43は、図3に示されるように、略4角柱状であり、+Z方向側(鉛直上方側)の上面には、円形状の凸部43Mが形成されている。かかる凸部43M上に、後述する透明部材80が載置されるようになっている。
【0043】
また、ベース板43の−X方向側側面には、後述する配管66が接続される給排気部43Aが配設されている。そして、ベース板43の内部には、給排気部43Aから+Z方向側の底面の中央部まで延びる連通穴43Oが形成されている。このため、給排気部43Aに接続された配管66を介して、ベース板43の上部の空間への給気、及び、ベース板43の上部の空間からの排気を行うことができるようになっている。
【0044】
また、積層造形装置10は、(e)計算機システム20の制御のもとで、ステージ41に載置された溶融凝固部分の+Z方向側表面をXY面と平行となるように平坦化するための砥石等の平坦化加工器51と、(f)計算機システム20の制御のもとで、ステージ41に載置された溶融凝固部分の側面を磨砕し、積層段差よりも細かい精度で整形するためのボールエンドミル等の磨砕加工器52と、(g)計算機システム20の制御のもとで、ステージ41上の余剰物を除去するためのワイヤブラシ等の内部余剰物除去器53とを備えている。また、積層造形装置10は、(h)ベース板43における凸部43M及びその近傍部分を清掃するための刷毛等の清掃器54と、(j)後述する透明部材80を移動させるためのロボットアーム55を備えている。これらの平坦化加工器51、磨砕加工器52及び内部余剰物除去器53、清掃器54及びロボットアーム55、並びに上述した照射光学系33は、基台部材57に取り付けられている。
【0045】
そして、計算機システム20の制御により、平坦化加工器51、磨砕加工器52、内部余剰物除去器53及び清掃器54は、それぞれが独立に、Z軸方向に移動可能となっている。また、計算機システム20の制御により、ロボットアーム55は、X,Y,Z軸方向に移動可能となっている。
【0046】
なお、本明細書においては、「磨砕」の用語を、切削をも含む意味で用いるものとする。
【0047】
また、積層造形装置10は、(k)ロボットアーム56を有する搬送装置58を備えている。このロボットアーム56は、計算機システム20の制御により、XYZの3軸方向及びZ軸回りの回転が可能となっている。そして、計算機システム20の制御により、ロボットアーム56が、材料部材収納器59に収納された平板状材料部材711,712,…,71Nを順次ステージ41にロードするようになっている。
【0048】
さらに、積層造形装置10は、(m)ベース板43の+Z方向側に載置された平板状材料部材71jへのレーザ光Lの照射時に、平板状材料部材71jを収納するための閉空間をベース板43とともに形成するための透明部材80を備えている。この透明部材80は、図4に示されるように、略円柱状となっており、平行平板状の上面部(以下、「光学窓部」と呼ぶ)81と、側面部82とを備えている。透明部材80では、光学窓部81の−X方向側に、−X方向へ延びるツバ部83Lが配設される。また、透明部材80では、光学窓部81の+X方向側に、+X方向へ延びるツバ部83Rが配設されている。これらのツバ部83L,83Rを利用することにより、上述したロボットアーム55により、透明部材80を移動したり、ベース板43へ押し付けたりすることができるようになっている。
【0049】
また、透明部材80では、側面部82に、後述する配管67が接続される排気部84が配設されている。この排気部84を介して、透明部材80の内部空間と、外部とが連通している。このため、排気部84に接続された配管67を介して、透明部材80の内部空間からの排気を行うことができるようになっている。
【0050】
また、透明部材80では、側面部82の−Z方向端部には、ゴム等の柔軟部材85が接続されている。この柔軟部材85が、上述したベース板43の凸部43Mと接触することにより、ベース板43の+Z方向側に気密性の閉空間が形成される。かかる気密性の閉空間が形成された様子が図5に示されている。
【0051】
図5に示されるような閉空間は、平板状材料部材71jへのレーザ光Lの照射に際して形成されるようになっている。なお、図面の表示を簡易化するため、レーザ光Lの照射の様子を示す、後述する図8A及び図12Aにおいては、透明部材80を省略している。
【0052】
また、積層造形装置10は、給排気装置65を備えている。この給排気装置65は、計算機システム20による制御のもとで、配管66及び/又は配管67を介した給気動作又は排気動作を行うようになっている。ここで、配管66及び配管67は、柔軟性を有する材料からなり、コイル状に形成された部分を含んでいる。このコイル状の部分が伸縮することにより、配管66,67がステージ41のX軸方向及びY軸方向への移動に追従可能であるとともに、配管67が、ロボットアーム56を利用した透明部材80のX軸方向、Y軸方向及びZ軸方向の移動に追従可能となっている。
【0053】
また、積層造形装置10は、吸引器68を備えており、配管69を介してステージ41の余剰物を吸引できるようになっている。ここで、吸引器68による吸引動作は、計算機システム20により制御可能となっている。
【0054】
なお、平板状材料部材711,712,…,71Nは、外部との圧力差が0.05MPa以上となるように減圧用排気を行っている環境で、材料の粉末を高圧で圧縮されて形成される。ここで、平板状材料部材711,712,…,71Nそれぞれは、自重やロボットアーム56によるステージ41上へのロードによって崩れたりせず、かつ、レーザ光Lの照射によって材料粉末が飛散しない程度に材料粉末が圧縮されている。例えば、材料粉末が平均粒径が約100μmの純鉄粉である場合には、100MPa以上で押圧し、平板状材料部材711,712,…,71Nそれぞれにおいて材料粉末自体が占める割合を50%以上とすることにより、自重やロボットアーム56によるステージ41上へのロードによって崩れたりせず、かつ、レーザ光Lの照射によって材料粉末が飛散しないものとなる。さらに、平板状材料部材711,712,…,71Nそれぞれの内部における空隙内の空気量は、常圧(1気圧程度)環境で材料の粉末を高圧で圧縮されて形成された場合と比べて大きく低減されたものとなっている。
【0055】
平板状材料部材71j(j=1〜N)の厚さは材料粉末の種類、並びにレーザ光Lのパワーに応じて適切な値が定まるものである。レーザ光Lのパワーに応じた平板状材料部材71jの厚さの適切な値は、事前の実験等により定められる。
【0056】
[動作]
次に、上記のように構成された積層造形システムによる積層造形の動作について説明する。
【0057】
前提として、平板状材料部材711,712,…,71Nは、既に作成され、材料部材収納器59に収納されているものとする。また、平板状材料部材711,712,…,71Nが収納された材料部材収納器59が、所定位置に置かれているものとする。また、ベース板43における凸部43M及びその近傍部分は、清掃されているものとする。
【0058】
まず、設計者が、計算機システム20を使用して、目的とする立体形状を設計する。かかる設計作業は、処理装置により3次元CADプログラムを実行させた状態で、設計者が、表示装置22における表示を参照しながら、ストロークデバイス23及びポインティングデバイス24を操作することにより行われる。こうして設計された立体形状のデータ、及び当該立体を水平面(XY平面と並行な面)で所定の垂直方向(Z方向)の厚さでスライスした場合における、各スライス部の断面形状のデータは、記憶装置25に格納される。なお、本実施形態では、設計された立体は、図2に示されるように、Z方向に沿って、XY断面形状である正方形枠の一辺の長さが変化している立体OBJであるものとする。
【0059】
以上のようにして、CAD設計が終了すると、計算機システム20が駆動装置42を制御して、ベース板43上に閉空間が形成されていない状態(すなわち、透明部材80がベース板43から離隔されている状態)で、ステージ41が搬送装置58のロボットアーム56の可動範囲内となるように、ステージ41を移動させる。引き続き、計算機システム20が搬送装置58を制御して、平板状材料部材711を材料部材収納器59から取り出して、ステージ41の表面のベース板43上にロードする(図6A参照)。この状態における平板状材料部材711は、図6Bに示されるXZ断面で代表的に示されるように、全体として平坦となっている。
【0060】
次に、計算機システム20が駆動装置42を制御して、ステージ41がロボットアーム55の可動範囲の−Z方向側となるように、ステージ41を移動させる。引き続き、計算機システム20がロボットアーム55を制御して、ベース板43と透明部材80とにより形成される閉空間内に平板状材料部材711が収納されるように、透明部材80をベース板43の凸部43M上に載置する。
【0061】
次に、計算機システム20が給排気装置65を制御して、上述のようにして形成された閉空間内の気圧が外部よりも低く(本実施形態では、圧力差が0.05MPa以上)なるように、当該閉空間内からの排気動作を行わせる。この段階では、ベース板43と平板状材料部材711との間には、隙間等が殆ど無いことから、計算機システム20は、配管67を介した排気動作のみを、給排気装置65に実行させる。
【0062】
なお、排気動作の開始時には、計算機システム20がロボットアーム55を制御して、透明部材80のツバ部83L、83Rを+Z方向側から、−Z方向へ押すことにより、透明部材80をベース板43へ押し付ける。そして、当該閉空間内の気圧が減少し、閉空間の内部と外部との圧力差による透明部材80をベース板43へ押し付ける力が十分な大きさとなると、計算機システム20が、ロボットアーム55を制御して、透明部材80から離隔させるようになっている。
【0063】
次いで、計算機システム20が駆動装置42を制御して、ステージ41が、照射光学系33の−Z方向側となるように、ステージ41を移動させる。引き続き、計算機システム20が駆動装置42を制御して平板状材料部材711の+Z方向側表面のZ軸位置が照射光学系33から射出される照射光Lの焦点面近傍となるように、ステージ41をZ軸方向に移動させる。なお、ステージ41のZ軸方向の移動に際しては、平板状材料部材711の+Z方向側表面が照射光Lに対して所定のデフォーカス量を有するように移動させる。この所定のデフォーカス量は、事前の実験等により定められる。
【0064】
次いで、給排気装置65による排気動作を継続させつつ、計算機システム20が駆動装置42を制御して、ステージ41をXY平面と平行に移動させながら、レーザ装置31を制御して、平板状材料部材711における設計断面形状に応じた領域に照射光Lを、+Z方向側(鉛直上方)から透明部材80の光学窓部81を介して照射して局所的な加熱を行う。この加熱は、減圧用排気動作が行われている環境でなされるので、材料の酸化等による変質が抑制され、さらに、溶融部表面が波立つことによる空気等の雰囲気ガスの混入が抑制される。
【0065】
照射光Lの照射による局所的な加熱は、図7Aに示されるように、平板状材料部材711の+Z方向側表面における照射光(パルス光)Lによるスポット状の照射領域SPT1,SPT2,…それぞれが、次の照射領域SPT2,SPT3,…とオーバラップするように、パルス間隔とステージの移動速度との調整を図りつつ行われる。なお、図7Bに示される照射領域SPTjと次の照射領域SPT(j+1)とのオーバラップ面積Sj,j+1を、照射領域SPTjの面積(=Sj+Sj,j+1)の50%以上とすることが、強度の高い造形物を形成する上で好ましい。このようにすることにより、従来の2ステップレーザ光照射と同様の強度で、強度の高い造形物を形成することができる。
【0066】
こうした照射光Lの照射の結果、第1層目の断面要素751が形成される(図8A参照)。なお、第1層目の断面要素751の形成に際しては、ベース板43に第1層目の断面要素751が仮止め固定される。こうした仮止め固定は、後述する第2層目以降の断面要素の形成時と比べて照射光Lのパワーを少々弱めることにより達成される。
【0067】
こうして形成された断面要素751のY軸方向に沿って延びる部分における平板状材料部材711のXZ断面を図8Bに示す。この図8Bで代表的に示されるように、断面要素751は、照射光Lが照射された領域と照射されなかった領域との境界部が三日月の端部のような形状となる。また、断面要素751の中央部の+Z方向側表面のZ軸方向位置が、照射前の平板状材料部材711の+Z方向側表面のZ軸方向位置よりも−Z方向にずれる。
【0068】
次に、計算機システム20が駆動装置42を制御して、ステージ41が、ロボットアーム55の可動範囲の−Z方向側となるように、ステージ41を移動させる。引き続き、計算機システム20が給排気装置65を制御して、ベース板43と透明部材80とにより形成されている閉空間への給気を行って、閉空間内外の気圧差を解消させる。引き続き、計算機システム20がロボットアーム55を制御して、透明部材80をベース板43から離隔させる。
【0069】
次いで、平板状材料部材711における断面要素751以外の余剰材料部分を除去する。かかる余剰材料部分の除去に際しては、計算機システム20が、ステージ41を適宜移動させつつ、平坦化加工器51や内部余剰物除去器53を用いて当該余剰材料部分を機械的に除去したり、吸引器68により吸引除去したりする。かかる余剰材料部分の除去作業中には、連通穴43Oへの余剰材料の落下を防止するために、計算機システム20が給排気装置65を制御して、配管66を介した給気動作を行わせる。
【0070】
なお、機械的な除去を行う場合には、断面要素751が形成する閉領域内については内部余剰物除去器53を用いて余剰材料の部分を掻き出す。
【0071】
次に、計算機システム20が駆動装置42を制御して、ステージ41が平坦化加工器51の−Z方向側となるように、ステージ41を移動させる。引き続き、計算機システム20が駆動装置42又は平坦化加工器51を制御して、断面要素751の+Z方向側表面が、平坦化加工器51の磨砕用部材の近傍に位置するようにする。
【0072】
この後、計算機システム20が駆動装置42及び平坦化加工器51を制御して、断面要素751の+Z方向側表面を平坦化する。この結果、断面要素751が、+Z方向側表面が平坦化された断面要素761に加工される(図9A参照)。かかる断面要素751の平坦化作業中にも、連通穴43Oへの平坦化の際に発生した削り屑の落下を防止するために、計算機システム20が給排気装置65を制御して、配管66を介した給気動作を行わせる。こうして形成された断面要素761がY軸方向に沿って延びる部分のXZ断面を図9Bに示す。
【0073】
次いで、計算機システム20が駆動装置42を制御して、ステージ41が磨砕加工器52の−Z方向側となるように、ステージ41を移動させる。引き続き、計算機システム20が駆動装置42又は平坦化加工器51を制御して、断面要素761の+Z方向側表面が、磨砕加工器52の磨砕用部材の近傍に位置するようにする。
【0074】
この後、計算機システム20が駆動装置42及び磨砕加工器52を制御して、断面要素761の側面を磨砕して設計形状と精度良く一致するように整形する。この結果、断面要素761を整形した整形断面要素771が形成される(図10A参照)。かかる整形断面要素771の形成作業中にも、連通穴43Oへの磨砕屑の落下を防止するために、計算機システム20が給排気装置65を制御して、配管66を介した給気動作を行わせる。形成された整形断面要素771がY軸方向に沿って延びる部分におけるXZ断面を図10Bに示す。こうして形成された整形断面要素771が、この段階における造形体となる。
【0075】
次に、計算機システム20が、駆動装置42を制御して、ステージ41が搬送装置58のロボットアーム56の可動範囲内となるように、ステージ41を移動させる。引き続き、計算機システム20が搬送装置58を制御して、平板状材料部材712を材料部材収納器59から取り出して、ベース板43に載置されている整形断面要素771上にロードする(図11A参照)。この状態における整形断面要素771がY軸方向に延びる部分のXZ断面を図11Bに示す。この図11Bに示されるように、整形断面要素771の+Z方向側表面と、平板状材料部材712の−Z方向側表面とが密着するように、平板状材料部材712が、整形断面要素771の+Z方向側表面上に載置される。
【0076】
次いで、平板状材料部材711の場合と同様にして、計算機システム20が駆動装置42を制御して、ロボットアーム55の可動範囲の−Z方向側となるように、ステージ41を移動させる。引き続き、計算機システム20がロボットアーム55を制御して、ベース板43と透明部材80とにより形成される閉空間内に平板状材料部材712が収納されるように、透明部材80をベース板43の凸部43M上に載置する。引き続き、計算機システム20が給排気装置65を制御して、平板状材料部材711の場合と同様にして、当該閉空間内からの排気動作を行わせる。この段階において、ベース板43の中央部における連通穴43Oの開口周辺を含む表面領域と、整形断面要素771と、平板状材料部材712とにより閉空間が形成される場合には、計算機システム20は、配管67を介した排気動作に加えて、配管66を介した排気動作を、給排気装置65に実行させる。
【0077】
次に、計算機システム20が駆動装置42を制御して、ステージ41が照射光学系33の−Z方向側となるように、ステージ41を移動させた後、平板状材料部材712の+Z方向側表面のZ軸位置が照射光学系33から射出される照射光Lの焦点面近傍となるように、ステージ41をZ軸方向に移動させる。そして、平板状材料部材711の場合と同様にして、計算機システム20が駆動装置42を制御して、ステージ41をXY平面と平行に移動させながら、給排気装置65による排気動作を継続させつつ、レーザ装置31を制御して、平板状材料部材711の場合と同様にして、平板状材料部材712における設計断面形状に応じた領域に十分なパワーの照射光Lを照射して局所的な加熱を行う。この結果、整形断面要素771と一体化した第2層目の断面要素752が形成される(図12A参照)。こうして形成された断面要素752のY軸方向に沿って延びる部分における整形断面要素771、断面要素752及び平板状材料部材712のXZ断面を図12Bに示す。この図12Bで代表的に示されるように、断面要素752は、上述した断面要素751と同様に、照射光Lが照射された領域と照射されなかった領域との境界部が三日月の端部のような形状となる。また、断面要素752の中央部の+Z方向側表面のZ軸方向位置が、照射前の平板状材料部材712の+Z方向側表面のZ軸方向位置よりも−Z方向にずれる。
【0078】
次いで、平板状材料部材711の場合と同様にして、計算機システム20が駆動装置42を制御して、ステージ41が、ロボットアーム55の可動範囲の−Z方向側となるように、ステージ41を移動させる。引き続き、計算機システム20が給排気装置65を制御して、ベース板43と透明部材80とにより形成されている閉空間への給気を行って、閉空間内外の気圧差を解消させる。引き続き、計算機システム20がロボットアーム55を制御して、透明部材80をベース板43から離隔させる。
【0079】
次に、平板状材料部材712における断面要素752以外の余剰材料部分を除去する。かかる余剰材料部分の除去に際しては、計算機システム20が、ステージ41を適宜移動させつつ、平坦化加工器51や内部余剰物除去器53を用いて当該余剰材料部分を機械的に打ち落とす等する。そして、吸引器68により吸引除去する。引き続き、断面要素751の場合と同様にして、計算機システム20が駆動装置42を制御して、ステージ41が平坦化加工器51の−Z方向側となるように、ステージ41を移動させた後、計算機システム20が駆動装置42又は平坦化加工器51を制御して、断面要素752の+Z方向側表面が、平坦化加工器51の磨砕用部材の近傍に位置するようにする。
【0080】
そして、断面要素751の場合と同様にして、計算機システム20が駆動装置42及び平坦化加工器51を制御して、断面要素752の+Z方向側表面を平坦化する。この結果、断面要素752が、+Z方向側表面が平坦化された断面要素762に加工される(図13A参照)。こうして形成された断面要素762がY軸方向に沿って延びる部分のXZ断面を図13Bに示す。
【0081】
次いで、平板状材料部材711の場合と同様にして、計算機システム20が駆動装置42を制御して、ステージ41が磨砕加工器52の−Z方向側となるように、ステージ41を移動させた後、計算機システム20が駆動装置42又は平坦化加工器51を制御して、断面要素762の+Z方向側表面が、磨砕加工器52の磨砕用部材の近傍に位置するようにする。そして、平板状材料部材711の場合と同様にして、計算機システム20が駆動装置42及び磨砕加工器52を制御して、断面要素762の側面を磨砕して設計形状と精度良く一致するように整形する。この結果、断面要素762を整形した整形断面要素772に形成される(図14A参照)。形成された整形断面要素772がY軸方向に沿って延びる部分のXZ断面を図14Bに示す。こうして形成された整形断面要素771及び整形断面要素772が一体化したものが、この段階における造形体となる。
【0082】
なお、上述した平板状材料部材712における断面要素752以外の余剰材料部分の除去作業、断面要素752の+Z方向側表面の平坦化作業、及び、整形断面要素772の形成作業に際しても、平板状材料部材711における断面要素751以外の余剰材料部分の除去作業、断面要素751の+Z方向側表面の平坦化作業、及び、整形断面要素771の形成作業の場合と同様に、連通穴43Oへの屑の落下を防止するために、計算機システム20が給排気装置65を制御して、配管66を介した給気動作を行わせる。
【0083】
以後、上記の第2層目における積層造形と同様にして、第3層目以降の積層造形が行われる。そして、最終的に、目的とする立体OBJが高強度かつ高精度で造形される。
【0084】
以上説明したように、本実施形態では、外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧して形成した複数枚の平板状材料部材711〜71Nを準備した後、ベース板43上に透明部材80を搭載しない状態、すなわち、ベース板43上に閉空間が形成されていない状態で、最初の平板状材料部材711を、閉空間が形成された場合に当該閉空間の内部となるべきベース板43上の位置に載置する。この後、ベース板43上に透明部材80を搭載して閉空間を形成し、給排気装置65による閉空間内の排気動作を開始する。
【0085】
次に、給排気装置65による当該閉空間内の気体の排出動作を継続しつつ、最初の平板状材料部材711における設計断面形状に応じた領域に照射光(レーザ光)Lを、鉛直上方から、透明部材80の光学窓部81を介して照射し、局所的に加熱して溶融させた後に凝固させて当初断面要素751を形成する。引き続き、当該閉空間の形成状態を解除した後、当初断面要素751の表面を平坦化する。
【0086】
次に、閉空間が形成された場合に当該閉空間の内部となるべき位置であって、平坦化された鉛直上方側表面を有する既に造形された部分の表面上に次の平板状材料部材71k(k=2〜N)が配置される。この結果、既に造形された部分の表面上にほぼ密着した状態で、新たな平板状材料部材が載置される。この後、ベース板43上に透明部材80を搭載して閉空間を形成し、給排気装置65による閉空間内の排気動作を開始する。
【0087】
次いで、給排気装置65による当該閉空間内の気体の排出動作を継続しつつ、新たな平板状材料部材71kの積層位置の設計断面形状に応じた新たな平板状材料部材71kの領域に照明光Lを、鉛直上方から、透明部材80の光学窓部81を介して照射し、局所的に加熱されて溶融させた後に凝固させることにより、積層断面要素75kが形成されるとともに、既に造形された部分と一体化する。引き続き、当該閉空間の形成状態を解除した後、積層断面要素71kの表面を平坦化する。
【0088】
以後、平板状材料部材の積層、積層断面要素形成及び積層表面平坦化を順次繰り返すことにより、目的とする立体形状が高強度に造形される。
【0089】
したがって、本実施形態によれば、簡易かつ迅速に、内部における空隙の発生が抑制された高強度の立体を造形することができる。
【0090】
また、本実施形態では、平板状材料部材711〜71Nにおいて、材料が占める体積が、空間が占める体積よりも大きい、すなわち、材料粉末が占める割合を50%以上としている。このため、平板状材料部材711〜71Nが自重やロボットアームなどによるステージ上へのロードによって崩れたりせず、かつ、照射光(レーザ光)の照射によって材料粉末が飛散しない程度に材料粉末が圧縮されたものとすることができる。
【0091】
また、本実施形態では、断面要素75j(j=1〜N)の形成後、平板状材料部材71jにおける断面要素75j以外の部分を除去した後、断面要素75jの表面を平坦化する。このため、平坦化後の表面に圧縮粉体の切りくずが残ってしまうことを防止することができる。この結果、平坦化表面上に次の平板状材料部材を確実に隙間無く配置することができる。
【0092】
また、本実施形態では、最新に形成された断面要素75,752,…それぞれが形成される度に側面も整形するので、造形結果を設計形状に精度良く一致させることができる。
【0093】
[実施形態の変形]
本発明は、上記の実施形態に限定されるものではなく、様々な変形が可能である。
【0094】
例えば、平板状材料部材の材料としては、上述した純鉄の粉末の他、チタン等の金属の粉末;Ni−Mo合金鋼(例えば、川崎製鉄(社)製 KIPシグマロイ415(商品名))その他の合金の粉末;ナイロンその他のポリアミド系のプラスチックの粉末;ジルコニアその他のセラミックスの粉末;又はソーダガラスその他のガラスの粉末等を材料として使用し、同様に積層造形を行うこともできる。
【0095】
ここで、使用する材料に応じて加熱用のレーザの種類を適宜選択することが必要となる。例えば、材料が純鉄の粉末以外であっても、金属又は合金の粉末であれば、YAGレーザを採用することができる。また、材料が純鉄等の金属又は合金の粉末であっても、レーザとして、炭酸ガスレーザ、半導体レーザ等を採用することもできる。また、上述した各種の樹脂又はガラスに対しては炭酸ガスレーザ、上述したセラミックスに対してはYAGレーザ又は炭酸ガスレーザ等を採用することができる。また、樹脂にカーボンなどの吸収剤を混入しておくことにより、半導体レーザやYAGレーザを使用することもできる。
【0096】
また、上記の実施形態では、柔軟部材を除いた透明部材のほぼ全てを透明としたが、光学窓部が透明でありさえすれば、他の部分が透明であるか否かを問わない。
【0097】
また、上記の実施形態では、平板状材料部材と焦点面とのZ軸方向の位置関係の調整を、ステージ41をZ軸方向に移動させることにより行うこととした。これに対して、照射光学系33を移動したり、照射光学系33の焦点位置を調整したりしてもよい。
【0098】
また、上記の実施形態では、全ての平板状材料部材711〜71Nの材料を同一としたが、平板状材料部材それぞれの材料を、平板状材料部材それぞれの積層位置に応じて定めることができる。この場合には、積層造形体における積層方向に位置に応じて所望の強度等を有する材質として、積層造形体を製作することができる。
【0099】
また、上記の実施形態では、全ての平板状材料部材711〜71Nの形状を円形としたが、図15Aに示されるような矩形状の平板状材料部材71’を用いてもよい。さらに、図15Bに示されるように、平板状材料部材71’を複数個配列したものを一層分の材料部材とすることにより、大きなものを積層造形することができる。
【0100】
また、上記の実施形態では、レーザ光Lの照射時における閉空間内の圧力を、平板状材料部材711〜71Nの形成時の場合と同様に、外部との圧力差を0.05MPa以下とする排気動作を行うようにしたが、これよりも圧力差を低くする排気動作を行うようにしてもよい。
【0101】
また、上記の実施形態では吸引器68を用いたが、エアブロアを用い余剰材料部分を吹き飛ばすようにしてもよい。
【0102】
また、上記の実施形態では、断面要素の表面の平坦化に先立って、断面要素の側面の整形を行うようにすることもできる。
【0103】
また、上記の実施形態では、減圧された空気雰囲気下でレーザ光照射を行うようにした。これに対し、閉空間形成後における減圧動作に際しては、閉空間形成時点における閉空間内の雰囲気の空気からアルゴン(Ar)ガス等の酸化防止ガスへの置換作業を行った後、又は、当該置換作業を行いつつ、排気による減圧を行うようにしてもよい。
【0104】
また、積層造形の対象となる立体形状は、上記の実施形態における立体OBJの形状に限定されるものではなく、任意の立体形状とすることができる。
【産業上の利用可能性】
【0105】
以上説明したように、本発明の積層造形方法及び積層造形装置は、粉末を材料として、目的とする立体形状を造形する積層造形に適用することができる。
【符号の説明】
【0106】
10 … 積層造形装置
20 … 計算機システム
31 … レーザ装置(レーザ光照射手段の一部)
32 … 光ファイバ(レーザ光照射手段の一部)
33 … 照射光学系(レーザ光照射手段の一部)
40 … ステージ装置
41 … ステージ
42 … 駆動装置
43 … ベース板
51 … 平坦化加工器(表面平坦化手段)
52 … 磨砕加工器(側面整形手段)
53 … 内部余剰物除去器(余剰材料除去手段)
54 … 清掃器
55 … ロボットアーム(透明部材搬送手段)
56 … ロボットアーム
58 … 搬送装置(材料部材搬送手段)
65 … 給排気装置(排気機構)
68 … 吸引器(余剰材料除去手段)
71 … 平板状材料部材
80 … 透明部材
81 … 光学窓部

【特許請求の範囲】
【請求項1】
物体を載置するためのステージ面を有するステージ部材と;前記ステージ面に被せることにより前記ステージ面とともに閉空間を形成し、前記閉空間の形成時における鉛直上方部分が光学窓部となっている透明部材と;前記閉空間内の気体を排出する排気機構と;を備える積層造形装置において使用され、粉末を材料として、目的とする立体形状を造形する積層造形方法であって、
外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧し、平板状材料部材を複数枚準備する平板状材料部材準備工程と;
前記閉空間が形成されていない状態で、前記平板状材料部材の最初の1枚を、前記閉空間が形成された場合に前記閉空間の内部となるべき前記ステージ面上の位置に載置する当初材料部材載置工程と;
前記閉空間が形成された状態で、前記排気機構により前記閉空間内の気体を排出しつつ、前記平板状材料部材の最初の1枚における設計断面形状に応じた前記平板状材料部材の領域に、鉛直上方から、前記透明部材の光学窓部を介してレーザ光を照射し、局所的に加熱して溶融させた後に凝固させて当初断面要素を形成する当初断面要素形成工程と;
前記閉空間の形成状態が解除された状態で、前記当初断面要素の鉛直上方側の表面を平坦化する当初表面平坦化工程と;を実行した後に、
前記閉空間が形成されていない状態で、前記平板状材料部材を、前記ステージ面上に載置され、既に造形された部分の鉛直上方側であって、前記閉空間が形成された場合に前記閉空間の内部となるべき位置に配置する積層材料部材載置工程と;
前記閉空間が形成された状態で、前記排気機構により前記閉空間内の気体を排出しつつ、前記目的とする立体形状における前記平板状材料部材の積層位置の設計断面形状に応じた前記平板状材料部材の領域に、鉛直上方から、前記透明部材の光学窓部を介してレーザ光を照射し、局所的に加熱して溶融させた後に凝固させて積層断面要素を形成するとともに、前記鉛直上方側とは反対側において既に造形された部分と一体化させる積層断面要素形成工程と;
前記閉空間の形成状態が解除された状態で、前記積層断面要素の鉛直上方側の表面を平坦化する積層表面平坦化工程と;を繰り返し、前記目的とする立体形状を造形する、
ことを特徴とする積層造形方法。
【請求項2】
前記平板状材料部材における空隙率が50%未満である、ことを特徴とする請求項1に記載の積層造形方法。
【請求項3】
前記材料粉末は金属又は合金の粉末である、ことを特徴とする請求項1に記載の積層造形方法。
【請求項4】
前記平板状材料部材それぞれの材料は、前記平板状材料部材それぞれの積層位置に応じて定められる、ことを特徴とする請求項1に記載の積層造形方法。
【請求項5】
前記閉空間の形成状態が解除された状態で、前記当初断面要素形成工程と前記当初表面平坦化工程との間に行われ、前記平板状材料部材の最初の1枚における前記当初断面要素以外の部分を除去する当初余剰材料除去工程と;
前記閉空間の形成状態が解除された状態で、前記積層断面要素形成工程と前記積層表面平坦化工程との間に行われ、前記積層された平板状材料部材における前記積層断面要素以外の部分を除去する積層余剰材料除去工程と;を更に備えることを特徴とする請求項1に記載の積層造形方法。
【請求項6】
前記閉空間の形成状態が解除された状態で、前記当初表面平坦化工程の直前又は直後、及び、前記積層表面平坦化工程の直前又は直後に、最新に形成された断面要素部分の側面を整形する側面整形工程を更に備える、ことを特徴とする請求項1に記載の積層造形方法。
【請求項7】
外部との圧力差が0.05MPa以上となるように減圧用排気を行いつつ材料粉末を押圧して形成された複数枚の平板状材料部材を出発材として、目的とする立体形状を造形する積層造形装置であって、
前記平板状材料部材を載置するステージ面を有し、前記ステージ面を3次元的に移動可能なステージ装置と;
前記ステージ面に被せることにより前記ステージ面とともに閉空間を形成し、前記閉空間の形成時における鉛直上方部分が光学窓部となっている透明部材と;
前記閉空間内の気体を排出する排気機構と;
前記平板状材料部材を前記ステージ面へ向けて搬送する材料部材搬送手段と;
前記閉空間が形成された状態で、前記排気機構により前記閉空間内の気体を排出しつつ、前記平板状材料部材の所定領域に、鉛直上方から、前記透明部材の光学窓部を介して、局所的に加熱して溶融させるためのレーザ光を照射するレーザ光照射手段と;
前記閉空間の形成状態が解除された状態で、前記レーザ光の照射後に凝固して形成された断面要素の鉛直上方側の表面を平坦化させる表面平坦化手段と;
を備えることを特徴とする積層造形装置。
【請求項8】
前記閉空間を形成するときには、前記透明部材を前記ステージ面に被せて固定し、前記閉空間の形成状態を解除するときには、前記透明部材を前記ステージ面上から取り外す透明部材搬送手段を更に備える、ことを特徴とする請求項7に記載の積層造形装置。
【請求項9】
前記閉空間の形成状態が解除された状態で、前記断面要素以外の余剰材料部分を除去する余剰材料除去手段を更に備える、ことを特徴とする請求項7に記載の積層造形装置。
【請求項10】
前記閉空間の形成状態が解除された状態で、前記鉛直上方側の表面が平坦化された断面要素の側面を整形する側面整形手段を更に備える、ことを特徴とする請求項7に記載の積層造形装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15A】
image rotate

【図15B】
image rotate


【公開番号】特開2011−241450(P2011−241450A)
【公開日】平成23年12月1日(2011.12.1)
【国際特許分類】
【出願番号】特願2010−114944(P2010−114944)
【出願日】平成22年5月19日(2010.5.19)
【出願人】(502265286)
【出願人】(503043469)
【Fターム(参考)】