説明

膜の溶媒浸透性の決定方法

【課題】かなり薄い膜やコーティングの溶媒浸透性を決定できる方法およびシステムを提供する。
【解決手段】溶媒(水など)について膜またはコーティングの浸透性を決定する方法が開示される。最初に、好ましくは多孔性材料からなる吸収層またはコンテナ層を含む基板が用意される。水の浸透性を調査するために、多孔性材料は親水性である。コーティングは、多孔性材料の上部に成膜される。吸収層またはコンテナ層の上部に膜またはコーティングを備えた基板は、加圧室に投入され、続いて、溶媒のガス状物質(水蒸気など)で充満される。加圧室の蒸気圧をゼロと溶媒の平衡蒸気圧の間に増加/減少させることによって、膜またはコーティングを通した溶媒の浸透性は決定できる。膜またはコーティングを浸透できる溶媒の量は、偏光解析法、質量分析法などで測定できる。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、米国仮出願番号第60/753449号(2005年12月22日出願)の優先権を主張するものであり、その開示は参照によって全体で明確にここに組み込まれ、明確に本願の一部となる。
【0002】
本発明は、分析測定の分野に関し、より詳しくは、膜(film)またはコーティング、特に1μm未満の厚さを持つ膜またはコーティングの溶媒浸透性の決定方法に関する。
【背景技術】
【0003】
気相または液相から分子が、シート状の材料、例えば、箔(foil)、隔膜(membrane)、布、織物などを通して拡散するレートは、多くの実用的な応用で相当な重要性を有し、その結果、いわゆる浸透プロセスに関する定量的情報を提供できる測定機器について強い要求が存在している。先行技術には、かなり厚い膜、即ち、1μmおよびそれ以上のオーダーの厚さを持ち、成膜されたキャリアまたは基板から容易に分離可能であり、基板またはキャリア無しで取り扱いが可能な膜の浸透性を測定できる多くのテクニックが存在している。
【0004】
光音響(photoacoustic)技術による隔膜および箔の浸透性の測定は、かなり厚い膜、例えば、隔膜および箔などの浸透性を測定可能な技術の1つである。光音響隔膜浸透性測定システムの主要部は、隔膜がセルを、2つの分離した体積、即ち、サンプル体積と測定体積に分割するようにして挿入される測定セルである。浸透レートが測定される成分は、バッファガス中で濃度が良好に制御されたガス状態あるいは液体状態で、サンプル体積の中に注入される。測定体積は、最初に、測定すべき成分の既知(低いかゼロ)の濃度を有するガスを用いてパージされる。測定体積は、完全に閉鎖した体積が得られるように、ガス配管を通じて隔膜ポンプおよび光音響セルと連結される。ポンプは、規則的に切り替わるように制御され、測定される成分が測定する光音響セルに入るように、ガスがガス配管を通じて混合される。既知の受け入れ体積の支援とともに、光音響信号を時間の関数としてプロットすることによって、浸透レートを計算することができる。
【0005】
隔膜及び/又は膜の浸透性を計算するために、多くの類似したテクニックが最新技術で利用可能であるが、これらの代替案は全て、1μmおよびそれ以上のオーダーの厚さを持ち、取り扱いが容易であるかなり厚い膜に制限されている。基板上に成膜され、基板から分離したり隔離したりできない(分離した物理的実体として取り扱うことができないことを意味する)数nmのオーダーの厚さを有する薄膜または(上部)コーティングについては、これらの測定はより複雑になる。これらの膜に吸収される溶媒、例えば、水の量を計算する分析ツールが記載されており、大部分が質量変化または溶媒吸尽をベースとしているが、一定の溶媒についてのこれらの薄膜またはコーティングの浸透性を予測するために利用可能なテクニックは不足している。薄膜またはコーティングを通した溶媒の拡散レートに関する情報は、例えば、基板への成分の腐食や溶脱(leaching)を避けるために極めて重大となり得る。
【0006】
膜を通した溶媒分子の浸透性が重要な役割を担う幾つかの領域がある。可能な例の1つは、半導体産業で応用され、既存の光学ツールを拡張するのに重要な方策として用いられる浸漬リソグラフである。分解能を向上させるために、水などの液体がレンズと感光層との間に置かれる。フォトレジスト膜と接触した液体の役割は、成分の溶脱および汚染だけでなく、光酸発生剤(photoacid generator)の反応および拡散に対する可能性ある水の影響のため、重要である。薄い上部コーティングが、通常、感光層上に成膜されて、これら感光層への水の移動(migration)を制限している(以下「レジスト」とも称する)。これらの上部コーティングは、溶脱に対するバリアとしての効率、低い欠陥の量および193nmでの透明性を含む多様な要件を満足しなければならない。さらに、これらは、フォトレジストと混ざり合ったり、レジストプロファイルに影響を及ぼしたり、ドライリソグラフより劣るレジスト性能にしてはならない。
【0007】
論文では、浸漬リソグラフに関して評価すべき上部コーティングの水の相互作用を予測する幾つかの試みが行われている。論文「"Metrology, Inspection, and Process Control for Microlithography XIX.", Edited by Silver, Richard M. Proceedings of the SPIE, Volume 5753, pp. 508-518 (2005)」では、露光時の水中の浸漬がリソグラフ材料の膜の機能的性質にどれぐらい影響を与えるかについて改善した理解を目的とした研究の成果が示されている。例えば、水晶微量天秤(Quartz Crystal Microbalance:QCM)、薄膜の反射率分析、追跡有機分析などの分析テクニックが、この研究に適用されている。QCMでは、質量/熱流量センサが用いられる。
【0008】
【非特許文献1】"Metrology, Inspection, and Process Control for Microlithography XIX.", Edited by Silver, Richard M. Proceedings of the SPIE, Volume 5753, pp. 508-518 (2005)
【非特許文献2】"The Optics Source Book", Editor Sybil P. Parker, 1988, McGraw-Hill
【発明の開示】
【発明が解決しようとする課題】
【0009】
上述した方法および、上部コーティングとの溶媒、例えば、水の相互作用の測定のための他の現行の方法は、水吸尽の量に関する情報に制限されている。これらは、質量変化を反映するだけであり、真の浸透速度論に関する情報を何ら提供しない。さらに、1より多いコーティングが存在していると、どの層が吸収しているかが明確にならない。さらに、利用可能な現行の方法は、初期(即ち、接触の最初の数秒間)の溶媒の吸尽、換言すると、溶媒吸尽レートについての速度論を提供せず、これは重要な情報となり得るものである。こうして、成膜されたキャリアまたは基板から分離できない薄膜またはコーティングでの溶媒の浸透性を決定するための現行の方法は、不具合及び/又は短所を有する。薄膜またはコーティングを通した溶媒の浸透性を決定する改善した方法についてのニーズが存在している。
【課題を解決するための手段】
【0010】
好ましい実施形態によれば、例えば、水などの溶媒についての薄膜またはコーティングの浸透性を決定する簡単で良好な方法が提供される。好ましい実施形態の方法はまた、1μm未満の厚さを持つ薄膜または上部コーティングの浸透性を決定するために応用可能である。
【0011】
好ましい実施形態によれば、例えば、水などの溶媒についての膜またはコーティングの浸透性(本願では、薄膜または(上部)コーティングを通した水などの溶媒の拡散とも称する)を測定するための方法が提供される。(上部)コーティングまたは薄膜は、典型的には、基板上に成膜され、1μm未満、好ましくは、約1nm〜1μmの厚さを有することができ、これは、基板から分離して、キャリアまたは基板無しで薄膜またはコーティングを取り扱うことが不可能あるいは極めて困難である。好ましい実施形態によれば、これらの膜またはコーティングを基板から分離する必要が無く、水などの溶媒についての膜またはコーティング、特に1μm未満の厚さを持つ薄膜の浸透性を測定する問題点を解決するための方法が提供される。
【0012】
膜、例えば、薄膜、即ち、1μm未満、好ましくは、約1nm〜1μmの厚さを持つ膜の間に、コンテナ層が設けられた基板を用意するステップと、次に、コンテナ層および膜を含む基板を、加圧室内に移送するステップと、次に、加圧室の圧力を減少させて、加圧室を溶媒のガス状物質で充満するステップと、次に、加圧室の圧力を溶媒の蒸気圧まで徐々に増加させて、溶媒が膜に浸透し、コンテナ層の中に吸収されるようにし、そしてコンテナ層に吸収された溶媒の量を示すパラメータの第1値を決定するステップと、次に、加圧室の圧力を減少させて、吸収された溶媒が膜を通して逆拡散するようにし、コンテナ層に吸収された溶媒の量を示すパラメータの第2値を決定するステップと、次に、コンテナ層に吸収された溶媒の量を示すパラメータの第1値および第2値から、膜を通して拡散した溶媒量を決定するステップとを含み、膜を通して拡散した溶媒量が溶媒についての膜の浸透性の測定量となる方法が提供される。
【0013】
該方法は、基板を用意するステップで開始する。基板は、好ましくは、シリコンウエハなど、平坦な基板とすることができる。基板の上に、調査対象の溶媒を能動的に吸収し、あるいは調査対象の溶媒で飽和可能なように選ばれた第1層が成膜される。第1層は、吸収層またはコンテナ層とも称される。好ましくは、吸収層またはコンテナ層は、多孔性材料で形成される。理由は、こうした多孔性材料はこれらの孔に高い吸収能力を有するためである。しかしながら、ある実施形態では、無孔性(nonporous)層も採用することができる。調査対象の溶媒についての吸収を増強するため、吸収層またはコンテナ層への追加の活性化処理を最初に行うことができ、即ち、ある層またはコーティングが吸収層またはコンテナ層の上部に成膜される。こうした処理の例は、先行技術で知られた方法を含み、例えば、疎水性材料を親水性材料に改質したり、その逆に改質するための方法である。調査対象の溶媒が、例えば、水である場合、多孔性かつ親水性の材料をコンテナ層として選ぶことが好ましい。続いて、調査対象の膜または上部コーティングが、例えば、1μm未満の厚さを持つ膜として吸収層またはコンテナ層に成膜される。そして、吸収層またはコンテナ層と、吸収層またはコンテナ層の上部にあるコーティング層とを支持する基板は、加圧室内に搬送される。次に、加圧室の圧力を減少させる。圧力は、10−2〜10−3Torrまたはそれ以下のレベル(ここでは「真空」と称する)にまで減少できる。
【0014】
そして、加圧室は、調査対象の溶媒のガス状物質、いわゆる蒸気で充満され、そして、加圧室の圧力を、10−2〜10−3Torrの真空から溶媒の平衡蒸気圧まで徐々に増加させて、溶媒が膜または上部コーティングを通して浸透し、吸収層またはコンテナ層の中に能動的に吸収されるようにする。蒸気が吸収層またはコンテナ層の中に浸透する速度は、圧力変化により監視できる。蒸気浸透の速度が充分に速い場合、吸収層またはコンテナ層の充填量(換言すると、コンテナ層に吸収されて、膜またはコーティングを通して拡散する溶媒の量)は、上部コーティングの浸透性によって規定できる。コンテナ層に吸収された溶媒の量を示すパラメータの第1値が決定される。
【0015】
いったん吸収層またはコンテナ層が溶媒で飽和すると、加圧室の圧力をきわめて急速に減少させて、溶媒を吸収層またはコンテナ層から離脱または解放させる。離脱プロセスは、上部コーティングを通した拡散によって規定される。コンテナ層に吸収された溶媒の量を示すパラメータの第2値が決定される。
【0016】
好ましい方法に係る最後のステップでは、膜またはコーティングを通して拡散した溶媒の量は、コンテナ層に吸収された溶媒の量を示すパラメータの第1値および第2値から決定される。膜または上部コーティングを通して浸透できる、水などの溶媒の量は、例えば、偏光解析法(Ellipsometry)、質量分析法(Mass Spectrometry: MS)または、先行技術で知られているような他の適切な方法によって測定または決定できる。膜または上部コーティングを通して浸透する溶媒量が、水などの(液体)溶媒についての膜または上部コーティングの浸透性の測定量となる。
【0017】
好ましい方法によれば、溶媒およびコンテナ層は、両方とも親水性を有することができる。
【0018】
他の好ましい方法によれば、溶媒およびコンテナ層は、両方とも疎水性を有することができる。
【0019】
好ましい実施形態の方法は、水などの溶媒について、半導体プロセスでのフォトリソグラフ、特に望ましくは、浸漬リソグラフで用いられる感光性コーティングのための保護被覆層の浸透性を予測するために適用可能である。該方法の他の応用分野は、例えば、有機発光ダイオードをベースとしたフラットパネルディスプレイなどの高級製品で使用されるコーティングであり、そこでは、機能性の劣化を回避するために、水などの溶媒または液体の取り込みの最小量を予防し、制御しなければならない。
【0020】
好ましい実施形態によれば、該方法は、基板5と膜7の間にあるコンテナ層6を伴う基板5を用いて、溶媒について膜7の浸透性を決定するためのシステムも提供する。該システムは、コンテナ層6および膜7を備えた基板5を保持するための加圧室と、加圧室の圧力を減少させて、加圧室を溶媒のガス状物質で充満させるように、加圧室の動作を制御するための手段と、加圧室の圧力を溶媒の蒸気圧まで徐々に増加させて、溶媒が膜に浸透し、コンテナ層6の中に吸収されるように動作を制御するための手段と、コンテナ層6に吸収された溶媒の量を示すパラメータの第1値を決定するための手段と、加圧室の圧力を減少させて、吸収された溶媒が膜7を通して逆拡散するように動作を制御するための手段と、コンテナ層6に吸収された溶媒の量を示すパラメータの第2値を決定するための手段と、コンテナ層に吸収された溶媒の量を示すパラメータの第1値および第2値から、膜7を通して拡散した溶媒量を決定するための手段とを備え、膜7を通して拡散した溶媒量が溶媒についての膜7の浸透性の測定量となる。
【0021】
例示の実施形態は図面の参照図に示されている。ここで開示した実施形態および図面は、限定的ではなく例示的であることを意図している。
【発明を実施するための最良の形態】
【0022】
下記の説明および例は、本発明の好ましい実施形態を詳細に説明する。当業者は、本発明について、その範囲に包囲される数多くの変形および変更が存在することを認識することであろう。従って、好ましい実施形態の説明は、本発明の範囲を制限するとみなすべきでない。
【0023】
以下、好ましい実施形態は、薄膜、即ち、1μm未満の厚さを持つ膜の浸透性に関して説明しているが、特にこうした膜に有用ではあるが、好ましい実施形態はこれに限定されない。記載した図面は、概略的なものに過ぎず、非限定的である。図面において、いくつかの要素のサイズは強調しており、説明目的のための比率どおりに描いていない。寸法および相対寸法は、実際の好ましい実施形態の実施に対応していない。
【0024】
さらに、下記説明は、水及び/又は他の溶媒についての薄膜(上部コーティングとも称される)の浸透性の決定方法を説明している。数多くの可能性ある変化および変更が存在することは理解されるであろう。従って、この説明は範囲を制限するものとみなすべきでない。
【0025】
用語「薄膜」と「上部コーティング」は、下記説明において互いに隣接して用いており、基板上に成膜または塗布可能であって、約1nm〜1μmの厚さを有する薄い層を参照している。ここで説明するような好ましい実施形態の方法は、「薄膜」と「上部コーティング」の両方に適用可能であり、この説明において区別することを意図していない。好ましい実施形態の方法は、1μmより大きいまたはそれ未満の厚さを持つ膜にも適用可能である。
【0026】
(薄膜の浸透性の決定方法)
例えば、水などの溶媒について薄膜または(上部)コーティングの浸透性の決定方法が開示されている。図1A(先行技術)は、隔膜(membrane)などの厚膜の浸透性を決定するために用いられる設定を示す。こうした設定において、隔膜3は、第1体積1と第2体積2の間に配置される。第1体積1は、隔膜3の第1側に接触して、高い溶媒蒸気量を収容している。第2体積2では、隔膜3の第1側と反対にある第2側に接触して、隔膜3の孔を通して浸透可能な溶媒の量が、例えば、質量分析計4を用いた質量分析法によって測定される。この方法は、キャリア無しで容器内に置くことができる数ミクロンまでの寸法を有するかなり厚い膜の浸透性を測定するのに適しているが、基板(またはキャリア)から取り外しできない1μm未満の厚さを持つ薄膜およびコーティングについては、一般に適していない。
【0027】
従って、好ましい実施形態は、基板またはキャリア無しで分離または取り扱いができない、最小厚さが1nmの範囲で1μm未満の厚さを持つ薄膜または(上部)コーティングを通した、溶媒の浸透性及び/又は拡散レートを決定することを可能にする方法に関係している。
【0028】
好ましい実施形態では、溶媒(矢印8で示す)についての薄膜またはコーティングの浸透性を決定する方法は、図1Bに概略的に示しており、コンテナ層6としても参照される吸収層を基板5の上に成膜することによって開始する。吸収層またはコンテナ層6は、当業者に知られた何れかの適切な成膜技術、例えば、化学気相成長法(CVD)、スピンオン技術などを用いて、基板5の上に成膜することができる。基板5は、好ましくは、平坦な表面を有し、好ましくは、シリコンウエハとすることができる。他の実施形態によれば、例えば、GaAsなどの他の半導体ウエハを使用できる。吸収層またはコンテナ層6は、調査対象の溶媒の役割に応じて選択できる。例えば、溶媒が水である場合、吸収層またはコンテナ層6は、好ましくは、水を容易に吸収する親水性材料で作成できる。調査対象の溶媒および該溶媒を吸収するのに用いられる吸収層またはコンテナ層6が、両方とも疎水性または親水性のいずれかを有することが最も好ましい。好ましいのは、調査対象の溶媒は、吸収層またはコンテナ層6に対して、低い接触角または良好な濡れ能力を有することである。吸収層またはコンテナ層6の内部に最適な吸収能力を作成するために、吸収層またはコンテナ層6は、好ましくは、比較的小さな孔サイズを持つ多孔性材料である。こうした多孔性材料は、これらの孔への高い吸収能力を有するからである。最も好ましくは、多孔性材料の孔は、調査対象の薄膜またはコーティング7の厚さより著しく小さい(例えば、10倍)。吸収層またはコンテナ層6として用いられる適切な多孔性材料の例は、半導体プロセスにおいて広く用いられているlow−k(低誘電率)材料、例えば、多孔性ナノ凝集(NanoClustered)シリカ(NCS)または化学気相成長(CVD)したlow−k材料、例えば、ブラックダイアモンド(Black Diamond)(登録商標)やオーロラ(Aurora)(SiCO(H))などの(水素化)シリコンオキシカーバイド材料(SiCO(H))等である。適切な多孔性材料の他の例は、ゼオライトであり、これらの材料は、一般に親水性である。
【0029】
好ましい実施形態によれば、吸収層またはコンテナ層6は、必要に応じて、調査対象の溶媒について吸収を増強させるように活性化してもよい。従って、追加の処理は、薄膜またはコーティング7をその上に成膜する前に行うことができる。こうした処理の例は、当業者に知られた方法、例えば、疎水性材料を親水性材料に改質したり、その逆に改質するための方法を含む。例えば、調査対象の溶媒(矢印8で示す)が水である場合、吸収層またはコンテナ層6、例えば、SiCO(H)材料は、例えば、アニール処理を用いて最初に親水性とすることができる。吸収層またはコンテナ層6をゼオライトで形成した場合、吸収層またはコンテナ層6は、必要に応じて、UV処理することができ、これによりゼオライトのOH結合を壊して疎水性とすることができ、あるいは、例えば、Oプラズマ中で損傷させて親水性とすることができる。
【0030】
吸収層またはコンテナ層6の厚さは、薄膜またはコーティング7の厚さより著しく厚いことが好ましく、充分な量の、水などの溶媒が吸収または凝縮可能になり、浸透性測定の際、後で蒸発速度論(kinetics)を調査するのに充分な時間があるようになる(換言すると、溶媒蒸気が完全に吸収され、再び離脱される前に、充分な時間があるようになる)。使用する吸収層またはコンテナ層6の最小厚さは、吸収層またはコンテナ層6での蒸発速度論を調査するために用いられる分析ツールに依存している。例えば、偏光解析法を用いた場合、吸収層またはコンテナ層6の最小厚さは、約50nmが好ましい。
【0031】
続いて、調査対象の薄膜またはコーティング7が、吸収層またはコンテナ層6の上に成膜される。そして、吸収層またはコンテナ層6と、吸収層またはコンテナ層6の上に薄膜またはコーティング7とを備えた基板5は、加圧室内に移送され、圧力を減少させる。圧力は、10−2〜10−3Torrまたはそれ以下のレベル(真空)にまで減少させることが好ましい。一般に、最小圧力は、対象となる溶媒の平衡蒸気圧に依存する。大部分の溶媒は、室温で液相であって、10〜100Torrの平衡蒸気圧を有し、これらの溶媒については10−2〜10−3Torrの減少したレベルで充分となる。そして、加圧室を、調査対象の溶媒のガス状物質、いわゆる溶媒の蒸気で充満させて、加圧室の圧力を真空から溶媒の平衡蒸気圧まで徐々に増加させて、溶媒が膜または上部コーティング7を通して浸透し、吸収層またはコンテナ層6の中に能動的に吸収され、凝縮されようになる。蒸気が吸収層またはコンテナ層6の中に浸透する速度は、圧力変化により監視できる。
【0032】
いったん吸収層またはコンテナ層6が溶媒で充満されると、コンテナ層6に吸収された溶媒の量を示すパラメータの第1値が測定される。その後、加圧室の圧力を極めて急速に減少させて、溶媒は、膜または上部コーティング7から離脱または解放される。吸収層またはコンテナ層6の充填の程度は、ローレンツ−ローレンス(Lorentz-Lorenz)式(下記の式2に示す)を用いて監視される。そして、コンテナ層6に吸収された溶媒の量を示すパラメータの第2値が測定される。圧力は、10−2〜10−3Torrまたはそれ以下のレベル(真空)にまで減少する。
【0033】
吸収された溶媒の量は、後で分析ツールによって検出するのに充分である。例えば、偏光解析法の場合、吸収された溶媒の量は、屈折率の変化を測定することによって決定され、吸収層またはコンテナ層6のその孔中で溶媒有りと溶媒無しの屈折率0.02の変化は、一般に充分な感度を提供する。吸収層またはコンテナ層6での少ない量の溶媒は、吸収層またはコンテナ層6が形成された材料の屈折率差を与える。しかしながら、吸収層またはコンテナ層6自体の拡散限界に関連した可能性ある誤差を排除するには、一般に、屈折率で約0.04の大きな変化が好ましい。ローレンツ−ローレンス式(式2を参照)を用いて、この屈折率変化は、吸収された、水などの溶媒についてコンテナ層の体積の約10〜11%の量に対応していることが概算できる。
【0034】
吸収された溶媒の量は、開放空隙率(open porosity)に匹敵し、膜または上部コーティング7の成膜前に評価される。開放空隙率とは、全体孔体積に対するアクセス可能な孔体積の比率を意味し、アクセス可能とは、サンプルの表面に連結されることであり、換言すると、全体孔体積に対する、調査対象の溶媒で充填可能な孔体積の比率を意味する。アクセス可能な孔体積は、全体孔体積とは相違することがあり、材料は、行き止まりの孔及び/又は無連結の空洞を有することがあるためである。後者は、孔が材料内に形成されているが、材料表面には見えず、調査対象の溶媒で充填できないことを意味する。換言すると、開放空隙率は、有効空隙率とも称され、調査対象の溶媒で充填される全体孔体積の割合を意味する。吸収された、水などの溶媒の最大量は、吸収層またはコンテナ層6の空隙率に関する測定量である。吸収層またはコンテナ層6として用いられる適切なlow−k材料の大部分は、約30〜50%の空隙率を有する。離脱処理は、薄膜または上部コーティング7を通した拡散によって制限され規定される。時間の関数として、薄膜または上部コーティング7を通した拡散できる溶媒の量は、薄膜または上部コーティング7の浸透性に関する測定量である。この溶媒量は、上述で決定したような、コンテナ層に吸収された溶媒の量を示すパラメータの第1値および第2値から決定される。
【0035】
好ましい実施形態では、薄膜または上部コーティング7を通して拡散した溶媒量は、圧力の減少/増加の関数として、偏光解析法にかけられ、これは偏光解析測定または偏光解析ポロシメトリー(porosimetry)測定とも称される。偏光解析法は、サンプルの表面から反射した光の状態変化を測定する。偏光解析測定は、多孔性材料の孔からの吸収および離脱のとき、毛細管凝集プロセスに起因したヒステリシスループの解析をベースとしている。凝集した液体のメニスカス(meniscus)の有効曲率半径が、吸収および離脱プロセスの際に相違するため、ヒステリシスループが現れる。偏光解析ポロシメトリー測定技術は、文献「"The Optics Source Book", Editor Sybil P. Parker, 1988, McGraw-Hill」で論じられている。偏光解析測定は、単一または複数の波長の偏光解析法を用いて行われる。
【0036】
コーティングまたは薄膜7を通して浸透した溶媒の量(体積で表現)V(換言すると、凝集液体の体積)を計算するため、下記の式が用いられる。
【0037】
【数1】

【0038】
ここで、
P=薄膜またはコーティング7の下に位置した吸収層またはコンテナ層6の空隙率
d=吸収層またはコンテナ層6の厚さ
S=吸収層またはコンテナ層6の表面積
【0039】
吸収層またはコンテナ層6の空隙率は、下記のように表される。
【0040】
【数2】

【0041】
ここで、neffとnは、それぞれ孔が飽和した場合と空の場合の吸収層またはコンテナ層6の屈折率であり、nadは、水などの溶媒の屈折率である。
【0042】
アボガドロ数N(N=6.02214×1023分子/モル)と、水などの溶媒の分子量(M)を考慮すると、薄膜またはコーティング7を通して離脱した溶媒分子の全体量を計算することができる(面積当たりの分子の量として表現)。
【0043】
【数3】

【0044】
ここで、ρは、拡散する、水などの溶媒の密度である。
【0045】
薄膜または上部コーティング7の単位面積を通過する分子の数は、総流量(Phi)とも称され、薄膜または上部コーティング7の浸透性に関する測定量であり、減圧(pumping down)の際、換言すると、加圧室の圧力を減少させるときに、下記のようにdV/dt(t→0)として計算できる。
【0046】
【数4】

【0047】
一般に、薄膜または上部コーティング7を通した総流量(Phi)は、拡散定数に直接に比例する。薄膜または上部コーティング7を通した総流量(Phi)は、下記のように記述できる。
【0048】
【数5】

【0049】
ここで、Dは、薄膜または上部コーティング7の拡散係数であり、dは、薄膜または上部コーティング7の厚さであり、C,Cは、それぞれ濃度または圧力の勾配である。拡散係数は、孔サイズに比例し、拡散した液体の粘度と孔の屈曲度(tortuosity)に反比例する。孔の屈曲度は、例えば、孔内の溶媒フロー経路の直線度を規定する変数であり、孔の形状に関連している。例えば、直線のチューブ形状を有する孔は、屈曲度1を有し、通常の多孔性材料は、屈曲度2〜5を有する。屈曲度は、抵抗性測定から実験的に決定することができる。
【0050】
吸収層またはコンテナ層6から薄膜または上部コーティング7を通る溶媒の全体蒸発(離脱)に対応した時間は、例えば、図3Bに示すように、離脱等温線(isotherm)の傾斜から計算される。図3Bは、追加の偏光解析値を持つNCS(ナノ凝集シリカ)でコートされた膜を通して浸透した水の離脱特性を示す。図3B中の破線は、圧力変化を示し、実線は、偏光解析特性を表す。式(4)と式(5)はまた、例えば、分析ツールとして偏光解析法を用いて、薄膜または上部コーティング7の浸透性を決定するための厚さの範囲の推定を可能にする。薄膜または上部コーティング7の最小厚さは、例えば、コートされたNCS膜について図3Aと図3Bに示すように、吸収−離脱グラフから導出することができる。この図は、吸収層またはコンテナ層6として用いた多孔性NCS膜の上に成膜された、10nm厚の上部コーティング7に関する推測の結果を示している。2つの測定間の時間は約20秒であり、2つの測定が離脱曲線の直線傾斜領域で行われたことが判る。従って、好ましい実施形態の計測法は、数nm、例えば、5nmの厚さを持つ層を評価するのに適切である。しかしながら、例えば、単一波長のレーザ偏光解析計などの、より迅速な偏光解析ツールを用いて、上部コーティング7の最小厚さは、1nm(ポンピング速度で制限される)まで低減できる。本発明の好ましい実施形態に係る方法を用いて浸透性を評価できる薄膜または上部コーティング7の最大厚さは、好ましくは、分析ツールとして偏光解析法を用いて、浸透性測定に使用できる妥当な時間によって規定(または制限)され得る。直線離脱領域は、図3Bに示すように、10秒に対応している。例えば、10時間(36000秒)の離脱評価が妥当であると仮定すると、上部コーティング7の最大厚さは、10nm×36000/10秒=36μmに等しくなる。上記評価は、好ましい実施形態に係る提案した方法が、1nmから数ミクロン(例えば、36μm)まで変化する厚さを持つ上部コーティング7の評価に使用できることを示している。
【0051】
代替かつ好ましい実施形態では、薄膜または上部コーティング7を通して拡散する溶媒の量を、圧力の減少/増加の関数として測定するための分析ツールは、質量分析法である。
【0052】
(システム)
好ましい実施形態によれば、基板5と膜7の間にあるコンテナ層6を伴う基板5を用いて、溶媒について膜7の浸透性を決定するためのシステムが提供される。該システムは、コンテナ層6および膜7を備えた基板5を保持するための加圧室と、加圧室の動作を制御するための手段、例えば、マイクロコントローラなどの適切な電子コントローラを備える。コントローラは、本発明の何れの実施形態に関して上述したような一連のステップを実行するように適合しており、例えば、加圧室の圧力を減少させて、加圧室を溶媒のガス状物質で充満させ、次に、加圧室の圧力を溶媒の蒸気圧まで徐々に増加させて、溶媒が膜に浸透し、コンテナ層6の中に吸収されるようにする。
【0053】
コントローラ(あるいは、コントローラの出力に応答する別個の装置を設けてもよい)は、コンテナ層6に吸収された溶媒の量を示すパラメータの第1値を決定するための手段を含むことができる。コントローラはまた、続いて、加圧室の圧力を減少させて、吸収された溶媒が膜7を通して逆拡散するように適合させることができる。コントローラ(あるいは、コントローラの出力に応答する別個の装置を設けてもよい)は、コンテナ層6に吸収された溶媒の量を示すパラメータの第2値を決定するための手段を含むことができる。コントローラ(あるいは、コントローラの出力に応答する別個の装置を設けてもよい)は、コンテナ層に吸収された溶媒の量を示すパラメータの第1値および第2値から、膜7を通して拡散する溶媒量を決定するための手段を含むことができ、膜7を通して拡散した溶媒量が、溶媒についての膜7の浸透性の測定量となる。決定するための手段は、マイクロコントローラや他のコンピュータ装置、例えば、埋め込みマイクロプロセッサやFPGAなど、特別にプログラムされたマイクロプロセッサとして動作可能である。
【0054】
コントローラは、加圧室の圧力を10−2〜10−3Torrまたはそれ以下のレベル減少させるように適合できる。これを達成するため、加圧室は、制御目的のために、そこでの圧力としてフィードバックを提供するコントローラに接続された圧力トランスデューサを有することができる。膜7を通して拡散する溶媒量を決定するための手段はまた、上述したように、偏光解析測定のための手段及び/又は質量分析測定のための手段を含むことができる。
【0055】
(応用)
好ましい実施形態に係る方法は、例えば、種々の薄膜またはコーティング7での溶媒の浸透性または透過率を予測または決定するために使用できる。多くの応用分野が可能であり、好ましい実施形態に係る説明は、下記の例および応用に限定されない。
【0056】
(感光層を保護するため、浸漬リソグラフで使用される上部コーティング7に関する浸透性の調査)
浸漬リソグラフでは、浸漬液との接触に由来する溶脱と劣化の硬化から感光層を保護するために、上部コーティング7が感光層またはレジスト上に成膜できる。水などの浸漬液について上部コーティング7の浸透性を決定するために、好ましい実施形態に係る方法が応用可能であり、上部コーティング7によって吸い取られる、水などの浸漬液の量についての情報だけでなく、上部コーティング7を通した浸漬液についての浸透性または拡散レートについての情報をも与える。
【0057】
ここでは、幾つかの実施例について説明する。これは、好ましい実施形態に係る方法の理解を容易にするだけのものであり、これらの例はいずれも本発明を限定するものでないと理解しなければならない。
【0058】
(実施例)
実施例1:親水性および疎水性の(SiCO(H))low−k材料における水の拡散レートを決定するための偏光解析測定
【0059】
図2Aは、第1のSiCO材料(A)に関して、時間の関数として加圧室の圧力変化を示す。
【0060】
図2Bは、第1のSiCO材料(A)および第2のSiCO材料(D)に関して、時間の関数として吸収性質量(溶媒)の変化を示す。第1のSiCO材料(A)は、本実施例によれば、疎水性のSiCO(H)low−k材料とすることができる。第2のSiCO材料(D)は、本実施例によれば、(前処理した)親水性のlow−k SiCO(H)とすることができる。第2のSiCO材料(D)に関し、(蒸気)圧力の変化は、吸収された溶媒の質量と同じである。第2のSiCO材料(D)の場合、拡散レートは圧力変化と同じであり、よってこのプロセスは吸収(拡散でなく)によって制限される。第1のSiCO材料(A)において、吸収/離脱レートは、第2のSiCO材料(D)よりかなり小さく、拡散によっても決定され、吸収/離脱だけではない。
【0061】
実施例2:コンテナ層としてNCS(ナノ凝集シリカ)層を用いて、浸漬リソグラフで使用される上部コーティングを通して浸透する水の量の決定
【0062】
ナノ凝集シリカ(NCS)層は、誘電体材料として半導体プロセスで用いられるもので、本実験では吸収層またはコンテナ層6として用いている。NCS層6は、基板5の上にコートされ、NCS層6の厚さは400nmで、30%の空隙率(P)を有する。NCSコンテナ層6は、上部コーティング7によって覆われる。上部コーティング7は、浸漬リソグラフにおいて感光層のための保護コーティングとして用いられる。続いて、コンテナ(NCS)層6は、基板5を、水蒸気で充満した加圧室へ移送することによって、水で完全に飽和する。水蒸気は、上部コーティング7を通して(図3A、吸収領域)NCS層6の中へ拡散する。そして、加圧室の圧力を極めて急速に減圧して(図3B中の破線は、圧力変化を示す)、NCS層6から水を離脱させる。水の離脱は、ポンピング速度より低速で生じ、上部コーティング7の浸透性を反映することが判る。
【0063】
30%に等しい空隙率(P)、400nmに等しい厚さ(d)および、1cmに等しい表面積(S)を持つNCS層6は、下記式に等しい最大量の水を収容できる。
【0064】
【数6】

【0065】
アボガドロ数N(N=6.02214×1023分子/モル)と水の分子量を考慮すると、NCS層6を通して離脱される水分子の全体量(N)が与えられる。
【0066】
【数7】

【0067】
水(蒸発)をNCS層6から上部コーティング7を通して離脱させるのに必要な時間は、図3B中の傾斜から計算できて、9秒に相当する。従って、このコーティング7の浸透性は、下記式に等しい。
【0068】
【数8】

【0069】
この結果は、1cmの膜を考慮しているため、分子数/cmとして表される。
【0070】
ここで引用した全ての文献は、参照により、その全体がここに組み込まれる。参照により組み込まれた公報および特許または特許出願が、明細書に含まれる開示と相反する程度までは、明細書は、こうしたいずれの相反する材料と置き換えられ及び/又はこれに優先するものである。
【0071】
ここで用いた用語「備える(comprising)」は「含む(including),(containing)」または「特徴とする(characterized by)」と同義語であり、包括的かつ開放型であり、追加の言及のない要素や方法ステップを排除するものでない。
【0072】
明細書および請求項で用いられた、成分の量、反応条件などを表す全ての数値は、用語「約」によって全てにおいて変更されるものと理解すべきである。従って、逆に示していない限り、明細書および添付の請求項で記載された数値パラメータは、本発明によって得られる所望の特性に依存して変化し得る近似である。最低限でも、請求項の範囲への均等論の適用を制限する企図としてでなく、各数値パラメータは、有意な有効数字および通常の丸め手法の観点で解釈すべきである
【0073】
上記説明は、本発明の幾つかの方法および材料を開示している。本発明は、方法および材料での変更、そして製造方法および設備での改変を許容するものである。こうした変更は、この開示の考察またはここで開示した発明の実践から当業者にとって明らかとなろう。従って、本発明は、ここで開示した特定の実施形態に限定される意図はなく、添付の請求項で具体化したような本発明の真の範囲および精神から由来する全ての変更および代替を網羅するものである。
【図面の簡単な説明】
【0074】
【図1A】水が隔膜を通してどれぐらい速く拡散するかを示す隔膜系に用いられる、先行技術に係る浸透性測定の設定を示す。
【図1B】膜または上部コーティングの浸透性を決定する、好ましい実施形態に係る浸透性測定を示す。
【図2A】好ましい実施形態に関し、加圧室における時間の関数として圧力変化を示す。
【図2B】好ましい実施形態に関し、時間の関数として吸収性質量(溶媒)の変化を示す。
【図3A】ナノ凝集(NanoClustered)シリカ(NCS)に関する吸収および離脱を示す。
【図3B】偏光解析値を追加して、図3Aの離脱特性を詳細に示す
【符号の説明】
【0075】
5 基板
6 吸収層またはコンテナ層
7 膜または上部コーティング
8 溶媒

【特許請求の範囲】
【請求項1】
溶媒について膜の浸透性を決定する方法であって、
基板、膜および、基板と膜の間に位置するコンテナ層を用意するステップと、
基板、コンテナ層および膜加圧室内に移送するステップと、
次に、加圧室の圧力を減少させるステップと、
次に、加圧室を溶媒のガス状物質で充満するステップと、
次に、加圧室の圧力を溶媒の蒸気圧まで徐々に増加させて、溶媒が膜に浸透し、コンテナ層の中に吸収されるようにするステップと、
コンテナ層に吸収された溶媒の量を示すパラメータの第1値を決定するステップと、
次に、加圧室の圧力を減少させて、吸収された溶媒が膜を通して逆拡散するようにするステップと、
コンテナ層に吸収された溶媒の量を示すパラメータの第2値を決定するステップと、
次に、第1値および第2値から、膜を通して拡散した溶媒量を決定するステップとを含み、
膜を通して拡散した溶媒量が溶媒についての膜の浸透性を示すようにした方法。
【請求項2】
加圧室の圧力を減少させるステップは、10−2Torrまたはそれ以下のレベルにまで減少させるようにした請求項1記載の方法。
【請求項3】
加圧室の圧力を減少させるステップは、10−3Torrまたはそれ以下のレベルにまで減少させるようにした請求項1記載の方法。
【請求項4】
コンテナ層を活性化させて、溶媒についてコンテナ層の吸収を増加させるステップをさらに含む請求項1記載の方法。
【請求項5】
コンテナ層は、多孔性材料である請求項1記載の方法。
【請求項6】
溶媒およびコンテナ層は、両方とも親水性である請求項1記載の方法。
【請求項7】
溶媒およびコンテナ層は、両方とも疎水性である請求項1記載の方法。
【請求項8】
第1値および第2値から、膜を通して拡散した溶媒量を決定するステップは、偏光解析測定を用いて行うようにした請求項1記載の方法。
【請求項9】
第1値および第2値から、膜を通して拡散した溶媒量を決定するステップは、質量分析測定を用いて行うようにした請求項1記載の方法。
【請求項10】
請求項1記載の方法を実施することを含む浸漬リソグラフ方法であって、
請求項1記載の方法を、浸漬リソグラフ方法の一部として実施するようにした方法。
【請求項11】
基板、膜および、基板と膜の間に位置するコンテナ層を用いて、溶媒について膜の浸透性を決定するためのシステムであって、
基板、コンテナ層および膜を保持するように構成された加圧室と、
加圧室の圧力を減少させるための手段と、
加圧室を溶媒のガス状物質で充満させるための手段と、
加圧室の圧力を溶媒の蒸気圧まで徐々に増加させて、溶媒が膜に浸透し、コンテナ層の中に吸収されるようにするための手段と、
コンテナ層に吸収された溶媒の量を示すパラメータの第1値を決定するための手段と、
加圧室の圧力を減少させて、吸収された溶媒が膜を通して逆拡散するようにするための手段と、
コンテナ層に吸収された溶媒の量を示すパラメータの第2値を決定するための手段と、
第1値および第2値から、膜を通して拡散した溶媒量を決定するための手段とを備え、
膜を通して拡散した溶媒量が溶媒についての膜の浸透性を示すようにしたシステム。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate


【公開番号】特開2007−171204(P2007−171204A)
【公開日】平成19年7月5日(2007.7.5)
【国際特許分類】
【外国語出願】
【出願番号】特願2006−346094(P2006−346094)
【出願日】平成18年12月22日(2006.12.22)
【出願人】(591060898)アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ (302)
【氏名又は名称原語表記】INTERUNIVERSITAIR MICRO−ELEKTRONICA CENTRUM VZW
【Fターム(参考)】