説明

膜電極接合体および燃料電池

【課題】電解質膜に固体高分子膜を用いた燃料電池用のMEAにおいて、発電反応の進行場である三相界面の形成を阻害することなく、燃料物質や酸素などの反応剤をその三相界面へ円滑かつ迅速に供給させることができる。これにより、固体高分子型燃料電池の発電出力を大幅に向上させる。
【解決手段】ガス拡散層15に、厚み方向に抜ける貫通孔151を分布形成するとともに、触媒層14に、面方向への流路をなす溝141を形成し、さらに望ましくは、ガス拡散層の貫通孔151を触媒層の溝141に位置対応させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電解質膜に固体高分子膜を用いた燃料電池用の膜電極接合体および燃料電池に関する。
【背景技術】
【0002】
近年、携帯電話やPDA、ノート型パソコンなどの携帯型電子機器の高性能化にともない、その駆動電源となる電池に対する性能向上が求められている。現在、携帯用電子機器の電源としてはリチウムイオン二次電池が主に使用されている。この二次電池のエネルギー密度は旧来型のものよりも大幅に向上しているが、さらに今以上の劇的な向上は望めない。このため、将来的に要求されるエネルギー密度を満たすことは困難である。また、二次電池は充電が必要なため、携帯機器用の駆動電源としては利便性に欠けるところがある。そこで、最近は、それらの要求に応える手段として燃料電池が注目されている。
【0003】
燃料電池は、燃料と空気(酸素)を供給することによって電気エネルギーを取り出す発電デバイスであって、将来的に要求されるエネルギー密度を満たすことが可能であるとともに、燃料の補給により発電を維持することができるため、充電が不要で携帯用としての利便性もすぐれている。
【0004】
この燃料電池には、リン酸型、固体酸化物型、溶融炭酸塩型、固体高分子型など、種々の方式が存在するが、携帯型電子機器の駆動電源としては、電解質膜に固体高分子膜を使用し、室温付近の低温での動作が可能な固体高分子型が適している。
【0005】
固体高分子型の燃料電池は、図4に示すような膜電極接合体(以下、MEA)10を単位として構成される。そのMEA10は、同図にその模式化断面を示すように、電解質膜13の両面に酸化/還元の反応極11,12を接合したものである。
【0006】
電解質膜13はイオン導電性を有する固体高分子膜からなる。この電解質膜13の一方の面には、還元反応極をなすアノード極(燃料極)11が接合される。また、その他方の面には、酸化反応極をなすカソード極(空気極)12が接合される。両反応極11,12はそれぞれ触媒層14とガス拡散層15を有する。触媒層14は、たとえば貴金属触媒を担持させた炭素粉末を用いて形成される。ガス拡散層15は導電性を有する多孔質体を用いて形成される(たとえば、特許文献1参照)。
【特許文献1】特開2005−108820
【発明の開示】
【発明が解決しようとする課題】
【0007】
上記MEA10では、アノード極11にてメタノール等の燃料物質(還元剤)から水素イオンH+と電子e−の生成反応が進行する一方、カソード極12にてその反応で生成した水素イオンと電子が酸素(酸化剤)と反応して水を生成する。この酸化還元の反応により、両反応極11,12間に起電力が生じて電気エネルギーを取り出すことができる。
【0008】
両反応極11,12における酸化還元反応は、触媒層14内部に形成される三相(気液固相)界面において進行する。還元剤である燃料物質は、アノード極11側のガス拡散層15内を拡散して触媒層14に到達し、さらに触媒層14内を拡散して発電反応(還元)の進行場である三相界面に供給される。同様に、酸化剤である酸素は、カソード極12側のガス拡散層15内を拡散して触媒層14に到達し、さらに触媒層14内を拡散して発電反応(酸化)の進行場である三相界面に供給される。
【0009】
高出力な燃料電池を実現するためには、アノード極11とカソード極12における反応を円滑に進行させる必要があり、このためには、燃料や酸素などの反応剤(酸化/還元反応物質)を上記三相界面に円滑かつ迅速に供給する必要がある。
【0010】
その反応剤の供給経路は、ガス拡散層15および触媒層14の多孔質構造によって形成される。この多孔質構造は3次元的にランダムに分布する迷路状の微細孔を有する。反応剤はその微細孔内を迷走移動しながら拡散するので、その拡散速度は遅い。つまり、拡散性が低い。このため、燃料物質や酸素などの反応剤を上記三相界面に円滑かつ迅速に供給することができない、という問題が生じる。
【0011】
この場合、単に拡散速度を速めるということだけであれば、ガス拡散層15および触媒層14の多孔質構造を粗くすればよいが、そうすると、発電反応の進行場である三相界面の形成が阻害されて発電出力が低下してしまう、という背反が生じる。
【0012】
そこで、本発明者らは、燃料物質や酸素などの反応剤が上記三相界面に円滑かつ迅速に供給されるようにするため、次のような構成手段(1)(2)を検討した。
(1)図5の(a)に模式化断面を示すように、MEA10のガス拡散層15に貫通孔151を分布形成する。
(2)同図の(b)に模式化断面を示すように、触媒層14に溝141を格子状に形成する。
【0013】
しかしながら、上記手段(1)(2)はそれぞれ、図4に示した構成との比較では改善効果が認められたが、将来的に要求される高出力化への対応には、まだ不十分であった。
【0014】
本発明は以上のような技術背景を鑑みてなされたもので、その目的とするところは、電解質膜に固体高分子膜を用いた燃料電池用のMEAにおいて、発電反応の進行場である三相界面の形成を阻害することなく、燃料物質や酸素などの反応剤をその三相界面へ円滑かつ迅速に供給させることを可能にし、これにより、固体高分子型燃料電池の発電出力を大幅に向上させることにある。
【0015】
本発明の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。
【課題を解決するための手段】
【0016】
本発明が提供する解決手段は以下のとおりである。
(1)固体高分子膜からなる電解質膜の両面に、触媒層とガス拡散層からなる反応極が接合された燃料電池用の膜電極接合体において、上記ガス拡散層には厚み方向に抜ける貫通孔が分布形成され、かつ、上記触媒層には面方向への流路をなす溝が形成されていることを特徴とする膜電極接合体。
(2)上記手段(1)において、ガス拡散層の貫通孔が触媒層の溝に位置対応して配設されていることを特徴とする膜電極接合体。
(3)上記手段(1)または(2)のいずれかに記載の膜電極接合体を用いたことを特徴とする燃料電池。
【発明の効果】
【0017】
電解質膜に固体高分子膜を用いた燃料電池用のMEAにおいて、発電反応の進行場である三相界面の形成を阻害することなく、燃料物質や酸素などの反応剤をその三相界面へ円滑かつ迅速に供給させることができる。これにより、固体高分子型燃料電池の発電出力を大幅に向上させることが可能になる。
【0018】
上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。
【発明を実施するための最良の形態】
【0019】
図1は、本発明に係るMEA(膜電極接合体)の第1実施形態を示す。同図において、(a)は模式化断面図、(b)そのA矢視面図、(c)はその部分斜視図をそれぞれ示す。
【0020】
同図に示すMEA10は固体高分子型燃料電池の構成単位をなすものであって、電解質膜13の両面に酸化/還元の反応極11,12が接合されている。電解質膜13はイオン導電性を有する固体高分子膜からなる。この電解質膜13の一方の面には、還元反応極をなすアノード極(燃料極)11が接合されている。また、その他方の面には、酸化反応極をなすカソード極(空気極)12が接合されている。
【0021】
両反応極11,12はそれぞれ触媒層14とガス拡散層15を有する。触媒層14は電解質膜13に接する層であって、たとえば貴金属触媒を担持させた炭素粉末を用いて形成される。ガス拡散層15は触媒層14の上に積層された層であって、導電性を有する多孔質体を用いて形成される。
【0022】
さらに、ガス拡散層15には厚み方向に抜ける貫通孔151が分布形成されている。また、触媒層14には面方向への流路をなす溝141が形成されている。
【0023】
アノード極11側には還元剤となる燃料として、液体メタノール、ガス状メタノール、水素ガス、エタノール、ジメチルエーテルなどが供給される。また、カソード極12側には上記燃料の酸化剤として、空気、酸素、または空気以外の酸素混合ガスが供給される。
【0024】
アノード極11では、メタノール等の燃料物質から水素イオンH+と電子e−の生成反応が進行する。これと同時に、カソード極12では、その反応で生成した水素イオンと電子が酸素と反応して水を生成する。この酸化還元の反応により、両反応極11,12間に起電力が生じて電気エネルギーを取り出すことができる。
【0025】
両反応極11,12における反応は、触媒層14内部の三相界面において進行する。この反応の進行場に燃料物質と酸素が供給されることにより、発電反応が生じる。アノード極11側から供給された燃料物質(還元剤)は、そのアノード極11側のガス拡散層15で拡散されながら触媒層14に達し、さらにその触媒層14内を拡散して上記三相界面に到達する。同様に、カソード極12側から供給された酸素(酸化剤)も、そのカソード極12側のガス拡散層15で拡散されながら触媒層14に達し、さらにその触媒層14内を拡散して上記三相界面に到達する。
【0026】
この反応剤の供給を反応極11,12の多孔質構造だけに依存させると、前述したように、その多孔質構造内での拡散速度が遅いことにより、反応の進行場となる三相界面に反応剤を円滑に供給させることができず、反応の進行に支障が生じる。
【0027】
しかし、実施形態のMEA10では、ガス拡散層15に、厚み方向に抜ける貫通孔151が分布形成されていることにより、反応剤は、拡散層15の表面と貫通孔151の内壁面の両面から拡散層15内に移動して拡散する。この多面的な拡散移動は貫通孔151ごとに行われる。したがって、その貫通孔151が分布形成されているガス拡散層15全体で多面的な拡散移動が行われる。これにより、反応剤が多孔質の微細孔を迷走移動する距離が大幅に短縮され、結果的に反応剤の拡散移動が加速される効果が得られる。
【0028】
ガス拡散層15内に拡散した反応剤は触媒層14に移動し、その触媒層14内を拡散して反応の進行場に達するが、その触媒層14には面方向への流路をなす溝141が形成されているので、その触媒層14においても、反応剤は、触媒層14の表面と溝141の内壁面の両面から触媒層14内に移動して拡散する。つまり、触媒層14においても、その触媒層14全体で多面的な拡散移動が行われて、反応剤が多孔質の微細孔を迷走移動する距離が大幅に短縮され、結果的に反応剤の拡散移動が加速される効果が得られる。
【0029】
上記により、反応剤は、反応極11,12の多孔質構造を粗くしなくても、反応の進行場へ円滑かつ迅速に供給されるようになる。しかし、ここで注目すべきことは、その円滑かつ迅速な供給は、上述した多面的な拡散移動が、ガス拡散層15と触媒層14の両方で同時に行われることによりはじめて成立する、ということである。
【0030】
すなわち、ガス拡散層15に貫通孔151を分布形成するだけでは、そのガス拡散層15から触媒層14への反応剤の移動が円滑に行われず、反応の進行場への反応剤供給に支障が生じてしまう。また、触媒層14に上記溝141を形成するだけでは、ガス拡散層15から触媒層14へ移動する反応剤が不足し、反応の進行場への反応剤供給に支障が生じてしまう。
【0031】
ガス拡散層15に貫通孔151を分布形成する構成と、触媒層14に上記溝141を形成する構成は、両者を一緒に設けることによってその有効性が相乗的に高められることが、本発明者等によって明らかにされた。また、ガス拡散層15の貫通孔151と触媒層14の溝141は、アノードとカソードの両極11,12側にて共に形成することで、酸化還元の発電反応を向上させる効果を相乗的に高められることが判明した。
【0032】
本発明は、上述した構成により、電解質膜13に固体高分子膜を用いた燃料電池用のMEA10において、発電反応の進行場である三相界面の形成を阻害することなく、燃料物質や酸素などの反応剤をその三相界面へ円滑かつ迅速に供給させることを可能にしている。これにより、燃料電池の発電出力を大幅に向上させることが可能になる。
【0033】
貫通孔151は、図示例では、円形断面の孔がガス拡散層15を垂直に貫通する形状となっているが、矩形あるいはその他の異形状の断面形状であってもよい。また、拡散層15を斜め方向に貫通する形状、あるいは、断面径や断面形状が深さで変化する形状であってもよい。
【0034】
溝141は、図示例では方形格子状の平面パターンをなすように形成されているが、その平面パターンは、たとえばジクザク状あるいは螺旋状に屈曲する1本の溝であってもよい。溝141の断面形状については、図示例では矩形断面となっているが、半円等のその他の断面形状でもよい。また、図示例では、溝の底が厚み方向に抜けてスリットを形成しているが、溝の底を残した形状であってもよい。
【0035】
図2は、本発明に係るMEAの第2実施形態を示す。同図において、(a)は模式化断面図、(b)そのA矢視面図、(c)はその部分斜視図をそれぞれ示す。
【0036】
第1実施形態との相違点に着目して説明すると、この第2実施形態のMEA10では、同図に示すように、ガス拡散層15の貫通孔151が触媒層14の溝141に位置対応して配設されている。つまり、貫通孔151と溝141の位置が重なっている。
【0037】
これにより、燃料や酸素などの反応剤は、ガス拡散層15全体に多面的に拡散移動して結果的にその拡散移動が加速されるとともに、その一部は貫通孔151から溝141に直接移動し、その溝141内を面方向に移動して触媒層14全体に非常に迅速に行き渡るようになる。この結果、反応の進行場への反応剤の供給をさらに円滑かつ迅速に行わせることができるようになる。
【実施例】
【0038】
(実施例1)
空気極触媒層の作製:
Pt担持触媒(田中貴金属社製TEC10E50E)と電解質溶液(デュポン社製ナフィオン<デュポン社登録商標>溶液DE2010<デュポン社商品名>)を混練して空気極触媒ペーストを調整した。この触媒ペーストをスクリーン印刷法によりポリプロピレンフィルム上に塗布し、100℃にて1時間乾燥して所定の流路溝構造が形成された空気極触媒層を作製する。
【0039】
燃料極触媒層の作製:
次に、Pt担持触媒(田中貴金属社製TEC61E54)と電解質溶液(デュポン社製ナフィオン<デュポン社登録商標>溶液DE2010<デュポン社商品名>)を混練して燃料極触媒ペーストを調整した。この触媒ペーストをスクリーン印刷法によりポリプロピレンフィルム上に塗布し、100℃にて1時間乾燥して所定の流路溝構造が形成された燃料極触媒層を作製する。
【0040】
電解質触媒層接合体の作製:
上記にて作製した空気極触媒層と燃料極触媒層をそれぞれ30mmx30mmの寸法に裁断し、固体電解質ナフィオン(デュポン社登録商標)NF117(デュポン社商品名)を介して互いに対抗するように配置し、140℃にて5分間ホットプレスすることで空気極触媒層と燃料極触媒層を電解質膜に転写し、電解質触媒層接合体を作製する。
【0041】
MEAの作製:
作製した電解質触媒層接合体に、あらかじめ貫通孔を分布形成したガス拡散層(東レ社製カーボンペーパ)をホットプレスで接合することにより、図1に示す構成のMEA(膜電極接合体)を作製した。
【0042】
(実施例2)
膜電極接合体の形成において、作製した電解質触媒層接合体に、あらかじめ貫通孔を分布形成したガス拡散層(東レ社製カーボンペーパ)を、ガス拡散層の貫通孔が触媒層の溝位置と一致するように配置し、ホットプレスで接合することにより、図2に示す構成の膜電極接合体を作製した。その他は実施例1と同様の方法で作製した。
【0043】
(比較例1)
図4に示すように、アノード極11とカソード極12のいずれにも触媒層14の溝とガス拡散層15の貫通孔を形成していないMEA10を作製した。その他は実施例1と同様の方法で作製した。
【0044】
(比較例2)
図5の(a)に示すように、アノード極11のガス拡散層15だけに貫通孔151を分布形成し、その他は比較例1と同様に作製した。
【0045】
(比較例3)
図5の(b)に示すように、アノード極11の触媒層14だけに溝141を形成し、その他は比較例1と同様に作製した。
【0046】
特性評価:
実施例1,2および比較例1〜3にて作製したMEAをそれぞれ、一対のセパレータで挟み込んで燃料電池の評価セルを作製した。セパレータは反応剤をMEAの反応極表面に供給するためのものである。このセパレータを介して、空気極には酸素、燃料極にはメタノールガスをそれぞれ供給して放電試験を行った。
【0047】
図3は各評価セルの放電試験結果をそれぞれ示す。同図は、電流密度に対する放電出力の変化状態を評価セルごとにプロットしたグラフを示す。
【0048】
同図からも明らかなように、実施例1と2の評価セルは、比較例1〜3のものに比べて、放電特性が大幅に向上している。
【0049】
さらに、実施例1と2の間では、実施例2の放電性能が有意にすぐれているが、これは、ガス拡散層の貫通孔と触媒層の溝位置を一致するように配置したことによる効果と考えられる。
【産業上の利用可能性】
【0050】
電解質膜に固体高分子膜を用いた燃料電池用のMEAにおいて、発電反応の進行場である三相界面の形成を阻害することなく、燃料物質や酸素などの反応剤をその三相界面へ円滑かつ迅速に供給させることができる。これにより、固体高分子型燃料電池の発電出力を大幅に向上させることが可能になる。
【図面の簡単な説明】
【0051】
【図1】本発明に係るMEAの第1実施形態を示す図である。
【図2】本発明に係るMEAの第2実施形態を示す図である。
【図3】本発明に係るMEAと従来のMEAの放電特性を示すグラフである。
【図4】従来のMEAの構成を示す断面図である。
【図5】本発明に先だって検討されたMEAの構成を示す断面図である。
【符号の説明】
【0052】
10 MEA(膜電極接合体)
11 アノード極(燃料極/反応極)
12 カソード極(空気極/反応極)
13 電解質膜
14 触媒層
141 溝
15 ガス拡散層
151 貫通孔

【特許請求の範囲】
【請求項1】
固体高分子膜からなる電解質膜の両面に、触媒層とガス拡散層からなる反応極が接合された燃料電池用の膜電極接合体において、上記ガス拡散層には厚み方向に抜ける貫通孔が分布形成され、かつ、上記触媒層には面方向への流路をなす溝が形成されていることを特徴とする膜電極接合体。
【請求項2】
請求項1において、ガス拡散層の貫通孔が触媒層の溝に位置対応して配設されていることを特徴とする膜電極接合体。
【請求項3】
請求項1または2のいずれかに記載の膜電極接合体を用いたことを特徴とする燃料電池。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−41488(P2008−41488A)
【公開日】平成20年2月21日(2008.2.21)
【国際特許分類】
【出願番号】特願2006−215720(P2006−215720)
【出願日】平成18年8月8日(2006.8.8)
【出願人】(000237721)FDK株式会社 (449)
【Fターム(参考)】