説明

蛍光体およびその製造方法ならびに発光装置

【課題】原料混合物を1回焼成しただけで、中間原料を経ずに一挙に、所定の組成、構造のユーロピウム付活サイアロン構造の蛍光体を生成可能な蛍光体の製造方法および蛍光体ならびに発光装置を提供すること。
【解決手段】酸化ストロンチウム、水酸化ストロンチウム、珪化ストロンチウム、および窒化ストロンチウムから選択される1種以上のストロンチウム化合物と、窒化珪素と、窒化アルミニウムと、酸化アルミニウムと、酸化ユーロピウムとを含む蛍光体原料混合物を、N含有ガス雰囲気下、1400℃〜2200℃で焼成して蛍光体を得る焼成工程を有する蛍光体の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、蛍光体およびその製造方法ならびに発光装置に関する。
【背景技術】
【0002】
蛍光体粉末は、たとえば、発光ダイオード(LED:Light Emitting Diode)等の発光装置に用いられる。発光装置は、たとえば、基板上に配置され所定の色の光を出射する半導体発光素子と、この半導体発光素子から出射される紫外光、青色光等の光により励起されて可視光を発する蛍光体粉末を封止樹脂である透明樹脂硬化物中に含む発光部とを備える。
【0003】
発光装置の半導体発光素子としては、たとえば、GaN、InGaN、AlGaN、InGaAlP等が用いられる。また、蛍光体粉末の蛍光体としては、たとえば、半導体発光素子からの出射光により励起されてそれぞれ青色光、緑色光、黄色光、赤色光の光を出射する青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体等が用いられる。
【0004】
発光装置は、封止樹脂中に赤色蛍光体等の各種の蛍光体粉末を含有させることにより、放射光の色を調整することができる。すなわち、半導体発光素子と、半導体発光素子から放射された光を吸収して所定波長域の光を発光する蛍光体粉末とを組み合わせて用いることにより、半導体発光素子から放射された光と蛍光体粉末から放射された光との作用で、可視光領域の光や白色光を発光させることが可能になる。
従来、蛍光体としては、ストロンチウムを含むユーロピウム付活サイアロン(Si−Al−O−N)構造の蛍光体が知られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2007/105631号
【発明の概要】
【発明が解決しようとする課題】
【0006】
ユーロピウム付活サイアロン構造の蛍光体は、通常、ストロンチウム化合物、ユーロピウム化合物、珪素化合物、アルミニウム化合物等を混合した原料混合物を焼成して得られる。
【0007】
しかし、ストロンチウム化合物として、安価で入手が容易であるため工業用に好適な炭酸ストロンチウムを用いると、原料混合物を1回焼成しただけでは、所定の組成、構造のユーロピウム付活サイアロン構造の蛍光体が得られない場合があった。すなわち、炭酸ストロンチウムSrCOはSr1モルに対して酸素Oが3モルと酸素含有量が多いため、炭酸ストロンチウムを含む原料混合物を焼成した場合に焼成体の酸素O含有量が所定の組成の範囲を超えて所望の組成の蛍光体を得られないことがある。この場合、焼成体の酸素O含有量を低下させるために、1回目の焼成と同様の焼成をさらに1回以上繰り返して行う必要があり、生産コストが高くなるという問題があった。
【0008】
本発明は、上記事情に鑑みてなされたものであり、原料混合物を1回焼成しただけで、中間原料を経ずに一挙に、所定の組成、構造のユーロピウム付活サイアロン構造の蛍光体を生成可能な蛍光体の製造方法および蛍光体ならびに発光装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
実施形態の蛍光体の製造方法および蛍光体ならびに発光装置は、原料混合物中のストロンチウム化合物として酸化ストロンチウムを用いることにより、原料混合物を1回焼成しただけで、中間原料を経ずに一挙に、所定の組成、構造のユーロピウム付活サイアロン構造の蛍光体が得られることを見出して完成されたものである。
【0010】
実施形態の蛍光体の製造方法は、上記問題点を解決するものであり、酸化ストロンチウム、水酸化ストロンチウム、珪化ストロンチウム、および窒化ストロンチウムから選択される1種以上のストロンチウム化合物と、窒化珪素と、窒化アルミニウムと、酸化アルミニウムと、酸化ユーロピウムとを含む蛍光体原料混合物を、N含有ガス雰囲気下、1400℃〜2200℃で焼成して蛍光体を得る焼成工程を有することを特徴とする。
また、実施形態の蛍光体は、上記問題点を解決するものであり、前記製造方法により得られた蛍光体であって、下記一般式(1)
【0011】
[化1]
一般式:(Sr1−x,EuxαSiβAlγδω (1)
(式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦25を満足する数である)
【0012】
で表されるユーロピウム付活サイアロン結晶体からなり、紫外光〜青色光で励起されることにより緑色発光することを特徴とする。
【0013】
さらに、実施形態の発光装置は、上記問題点を解決するものであり、基板と、この基板上に配置され、紫外光〜青色光を出射する半導体発光素子と、この半導体発光素子の発光面を覆うように形成され、前記半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、前記蛍光体は、前記実施形態の蛍光体を含むことを特徴とする。
【図面の簡単な説明】
【0014】
【図1】発光装置の発光スペクトルの一例。
【発明を実施するための形態】
【0015】
実施形態の蛍光体の製造方法、蛍光体、および発光装置について説明する。
【0016】
[蛍光体の製造方法]
蛍光体の製造方法は、酸化ストロンチウム、水酸化ストロンチウム、珪化ストロンチウム、および窒化ストロンチウムから選択される1種以上のストロンチウム化合物と、窒化珪素と、窒化アルミニウムと、酸化アルミニウムと、酸化ユーロピウムとを含む蛍光体原料混合物を、N含有ガス雰囲気下、1400℃〜2200℃で焼成して蛍光体を得る焼成工程を有する。
【0017】
(焼成工程)
焼成工程では、所定のストロンチウム化合物を含む蛍光体原料混合物を焼成して蛍光体を得る。
【0018】
<蛍光体原料混合物>
蛍光体原料混合物は、酸化ストロンチウムSrO、水酸化ストロンチウムSr(OH)、珪化ストロンチウムSrSi、および窒化ストロンチウムSrから選択される1種以上のストロンチウム化合物と、窒化珪素Siと、窒化アルミニウムAlNと、酸化アルミニウムAlと、酸化ユーロピウムEuとを含む混合物である。
蛍光体原料混合物は、さらにフラックス剤として、反応促進剤である塩化ストロンチウムSrCl等を含んでいてもよい。
蛍光体原料混合物は、耐火るつぼに充填される。耐火るつぼとしては、たとえば、窒化ホウ素るつぼ、カーボンるつぼ等が用いられる。
【0019】
<焼成条件>
耐火るつぼに充填された蛍光体原料混合物は焼成される。焼成装置は、耐火るつぼが配置される内部の焼成雰囲気の組成および圧力、ならびに焼成温度および焼成時間が所定条件に保たれる装置が用いられる。このような焼成装置としては、たとえば、電気炉が用いられる。
焼成雰囲気としては、N含有ガスが用いられる。N含有ガスとしては、たとえば、Nガスや、NとHとの混合ガス等が用いられる。
含有ガス中のHは、蛍光体原料混合物から蛍光体粉末を焼成する際に、還元剤として作用するものである。
【0020】
一般的に、蛍光体の原料混合物から蛍光体粉末を焼成するときは、蛍光体粉末に対して酸素Oを過剰に含む蛍光体の原料混合物から適量の酸素Oが消失することにより、所定の組成の蛍光体粉末を得る。このとき、N含有ガス中にHが含まれると、焼成雰囲気が還元性雰囲気となり、焼成時の酸素Oの消失の度合いが大きくなる。
このため、本工程においても、N含有ガス中にHが含まれる場合は、N含有ガス中にHが含まれない場合に比べて、焼成時間を短くすることができる。
【0021】
含有ガスが、Nガス、またはNとHとの混合ガスである場合、N含有ガス中のNとHとのモル比率は、N:Hが、通常10:0〜1:9、好ましくは8:2〜2:8、さらに好ましくは6:4〜4:6である。
【0022】
含有ガス中のNとHとのモル比率が、上記範囲内、すなわち通常10:0〜1:9であると、短時間の焼成で、結晶構造の欠陥の少ない高品質な単結晶の蛍光体粉末を得ることができる。
【0023】
含有ガス中のNとHとのモル比率は、焼成装置のチャンバー内に連続的に供給されるNとHとを、NとHとの流量の比率が上記比率になるように供給するとともに、チャンバー内の混合ガスを連続的に排出することにより、上記比率、すなわち通常10:0〜1:9にすることができる。
焼成雰囲気であるN含有ガスは、焼成装置のチャンバー内で気流を形成させるように流通させると、焼成が均一に行われるため好ましい。
【0024】
焼成雰囲気であるN含有ガスの圧力は、通常0.1MPa(略1atm)〜1.0MPa(略10atm)、好ましくは0.5MPa〜0.8MPa、さらに好ましくは0.6MPa〜0.8MPaである。
【0025】
焼成雰囲気の圧力が0.1MPa未満であると、焼成前にるつぼに仕込んだ蛍光体原料混合物の構成元素の一部が揮発することにより、焼成後に得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
【0026】
焼成雰囲気の圧力が1.0MPaを超えると、圧力が1.0MPa以下の場合と比較しても焼成条件に特に変化がなく、エネルギーの無駄遣いになるため好ましくない。
焼成温度は、通常1400℃〜2200℃、好ましくは1600℃〜1900℃である。
焼成温度が1400℃〜2200℃の範囲内にあると、短時間の焼成で、結晶構造の欠陥の少ない高品質な単結晶の蛍光体粉末を得ることができる。
焼成温度が1400℃未満であると、一般式(1)で表されるSrサイアロン緑色蛍光体が得られないおそれがある。
【0027】
焼成温度が2200℃を超えると、焼成の際のNとOの消失度合いが大きくなることにより得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
焼成時間は、通常0.5時間〜20時間、好ましくは2時間〜10時間、さらに好ましくは3時間〜5時間である。
【0028】
焼成時間が0.5時間未満である場合または20時間を超える場合は、得られる蛍光体粉末の組成が一般式(1)で表されるSrサイアロン緑色蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。
【0029】
焼成時間は、焼成温度が高い場合は、0.5時間〜20時間の範囲内で短い時間とすることが好ましく、焼成温度が低い場合は、0.5時間〜20時間の範囲内で長い時間とすることが好ましい。
【0030】
焼成後の耐火るつぼ中には、蛍光体粉末からなる焼成体が生成される。焼成体は、通常、弱く固まった塊状になっている。焼成体を乳棒等を用いて軽く解砕すると、蛍光体粉末が得られる。解砕で得られた蛍光体粉末は、一般式(1)で表されるSrサイアロン緑色蛍光体の粉末になる。
【0031】
[緑色蛍光体]
蛍光体は、紫外光〜青色光で励起されることにより緑色発光する緑色蛍光体である。
この緑色蛍光体は、上記蛍光体の製造方法で得られるものであり、下記一般式(1)
【0032】
[化2]
一般式:(Sr1−x,EuxαSiβAlγδω (1)
(式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦25を満足する数である)
【0033】
で表されるユーロピウム付活サイアロン結晶体からなり、紫外光〜青色光で励起されることにより緑色発光する蛍光体である。このSrを含むユーロピウム付活サイアロン蛍光体を、以下、「Srサイアロン緑色蛍光体」ともいう。Srサイアロン緑色蛍光体の結晶系は斜方晶である。
【0034】
一般式(1)において、xは、0<x<1、好ましくは0.025≦x≦0.5、さらに好ましくは0.25≦x≦0.5を満足する数である。
xが0であると焼成工程で得られる焼成体が蛍光体にならず、xが1であると緑色蛍光体粉末の発光効率が低くなる。
【0035】
また、xは0<x<1の範囲内で小さい数になるほど緑色蛍光体の発光効率が低下しやすくなる。さらに、xは0<x<1の範囲内で大きい数になるほどEu濃度の過剰のために濃度消光を起こしやすくなる。
このため、xは0<x<1のうちでも、0.025≦x≦0.5を満足する数が好ましく、0.25≦x≦0.5を満足する数がさらに好ましい。
【0036】
一般式(1)において、Srの総合的な添え字(1−x)αは0<(1−x)α<4を満足する数である。また、Euの総合的な添え字xαは0<xα<4を満足する数である。すなわち、一般式(1)において、SrおよびEuの総合的な添え字は、それぞれ0を超え4未満を満足する数である。
【0037】
一般式(1)において、β、γ、δおよびωは、αが3のときに換算した数値である。
一般式(1)において、Siの添え字であるβは、αが3のときに換算した数値が9<β≦15を満足する数である。
一般式(1)において、Alの添え字であるγは、αが3のときに換算した数値が1≦γ≦5を満足する数である。
一般式(1)において、Oの添え字であるδは、αが3のときに換算した数値が0.5≦δ≦3を満足する数である。
一般式(1)において、Nの添え字であるωは、αが3のときに換算した数値が10≦ω≦25を満足する数である。
【0038】
一般式(1)において、添え字β、γ、δおよびωが、それぞれ上記範囲外の数になると、焼成で得られる蛍光体の組成が、一般式(1)で表される斜方晶系のSrサイアロン緑色蛍光体と異なるものになるおそれがある。
一般式(1)で表されるSrサイアロン緑色蛍光体は、通常、単結晶の粉末の形態をとる。
【0039】
Srサイアロン緑色蛍光体の粉末は、平均粒径が、好ましくは1μm以上100μm以下、さらに好ましくは5μm以上20μm以下、より好ましくは10μm以上20μm以下である。ここで、平均粒径とは、コールターカウンター法による測定値であり、体積累積分布の中央値D50を意味する。
【0040】
Srサイアロン緑色蛍光体の粉末の平均粒径が1μm未満であったり100μmを超えたりすると、透明樹脂硬化物中にSrサイアロン緑色蛍光体の粉末や他の色の蛍光体粉末を分散させ、半導体発光素子からの紫外光〜青色光の照射により緑色光や他の色の光を出射させる構造の発光装置を作製した場合に、発光装置からの光の取り出し効率が低下するおそれがある。
一般式(1)で表されるSrサイアロン緑色蛍光体は、紫外光〜青色光を受光すると励起され、緑色光を出射する。
【0041】
ここで、紫外光〜青色光とは、紫外光〜青色光の波長域内にピーク波長を有する光を意味する。紫外光〜青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることが好ましい。
【0042】
紫外光〜青色光の受光により励起された一般式(1)で表されるSrサイアロン緑色蛍光体は、発光ピーク波長が500nm以上540nm以下の範囲内の緑色光を発光する。
【0043】
[発光装置]
発光装置は、上記の一般式(1)で表されるSrサイアロン緑色蛍光体を用いる発光装置である。
具体的には、発光装置は、基板と、この基板上に配置され、紫外光〜青色光を出射する半導体発光素子と、この半導体発光素子の発光面を覆うように形成され、半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、蛍光体は、一般式(1)で表されるSrサイアロン緑色蛍光体を含む発光装置である。
発光装置は、発光部中に含まれる蛍光体がSrサイアロン緑色蛍光体のみであれば発光装置の出射面から緑色光を出射する。
【0044】
また、発光装置は、発光部中に、Srサイアロン緑色蛍光体に加え青色蛍光体および赤色蛍光体等の蛍光体を含むようにすると、各色の蛍光体から出射される赤色光、青色光および緑色光等の各色の光の混色により、発光装置の出射面から白色光を出射する白色光発光装置とすることもできる。
さらに、発光装置は、Srサイアロン緑色蛍光体に加え他の緑色蛍光体を含んでいてもよい。
【0045】
(基板)
基板としては、たとえば、アルミナ、窒化アルミニウム(AlN)等のセラミックス、ガラスエポキシ樹脂等が用いられる。基板がアルミナ板や窒化アルミニウム板であると、熱伝導性が高く、LED光源の温度上昇を抑制することができるため好ましい。
【0046】
(半導体発光素子)
半導体発光素子は、基板上に配置される。
半導体発光素子としては、紫外光〜青色光を出射する半導体発光素子が用いられる。ここで、紫外光〜青色光とは、紫外光〜青色光の波長域内にピーク波長を有する光を意味する。紫外光〜青色光は、370nm以上470nm以下の範囲内にピーク波長を有する光であることが好ましい。
【0047】
紫外光〜青色光を出射する半導体発光素子としては、たとえば、紫外発光ダイオード、紫色発光ダイオード、青色発光ダイオード、紫外レーザダイオード、紫色レーザダイオードおよび青色レーザダイオード等が用いられる。なお、半導体発光素子がレーザダイオードの場合、上記ピーク波長とは、ピーク発振波長を意味する。
【0048】
(発光部)
発光部は、半導体発光素子からの出射光である紫外光〜青色光により励起されて可視光を出射する蛍光体を透明樹脂硬化物中に含むものであり、半導体発光素子の発光面を被覆するように形成される。
発光部に用いられる蛍光体は、少なくとも上記のSrサイアロン緑色蛍光体を含む。
【0049】
また、発光部に用いられる蛍光体は、Srサイアロン緑色蛍光体と、Srサイアロン緑色蛍光体以外の蛍光体とを含むものであってもよい。Srサイアロン緑色蛍光体以外の蛍光体としては、たとえば、赤色蛍光体、青色蛍光体、緑色蛍光体、黄色蛍光体、紫色蛍光体、橙色蛍光体等を用いることができる。蛍光体としては、通常、粉末状のものが用いられる。
発光部において、蛍光体は透明樹脂硬化物中に含まれる。通常、蛍光体は透明樹脂硬化物中に分散される。
【0050】
発光部に用いられる透明樹脂硬化物は、透明樹脂、すなわち透明性の高い樹脂を硬化させたものである。透明樹脂としては、たとえば、シリコーン樹脂、エポキシ樹脂等が用いられる。シリコーン樹脂は、エポキシ樹脂よりもUV耐性が高いため好ましい。また、シリコーン樹脂のうちでは、ジメチルシリコーン樹脂が、UV耐性が高いためさらに好ましい。
【0051】
発光部は、蛍光体100質量部に対して透明樹脂硬化物20〜1000質量部の割合で構成されていることが好ましい。蛍光体に対する透明樹脂硬化物の割合がこの範囲内にあると、発光部の発光強度が高い。
【0052】
発光部の膜厚は、通常、80μm以上800μm以下、好ましくは150μm以上600μm以下である。発光部の膜厚が80μm以上800μm以下であると、半導体発光素子から出射される紫外光〜青色光の漏出量が少ない状態で実用的な明るさを確保することができる。発光部の膜厚を150μm以上600μm以下とすると、発光部からの発光をより明るくすることができる。
【0053】
発光部は、たとえば、はじめに透明樹脂と蛍光体とを混合して、蛍光体が透明樹脂中に分散した蛍光体スラリーを調製し、次に、蛍光体スラリーを半導体発光素子やグローブ内面に塗布し硬化させることにより得られる。
【0054】
蛍光体スラリーを半導体発光素子に塗布した場合には、発光部は半導体発光素子に接触して被覆する形態となる。また、蛍光体スラリーをグローブ内面に塗布した場合には、発光部は半導体発光素子と離間してグローブ内面に形成される形態となる。この発光部がグローブ内面に形成される形態の発光装置は、リモートフォスファー型LED発光装置と称される。
蛍光体スラリーは、たとえば、100℃〜160℃に加熱することにより硬化させることができる。
【0055】
図1は、発光装置の発光スペクトルの一例である。
具体的には、半導体発光素子としてピーク波長が400nmの紫色光を出射する紫色LEDを用いるとともに、蛍光体としてSr2.7Eu0.3Si13Al21で表されるSrサイアロン緑色蛍光体のみを用いた、25℃での緑色発光装置の発光スペクトルである。
なお、紫色LEDは、順方向降下電圧Vfが3.195V、順方向電流Ifが20mAである。
【0056】
図1に示すように、蛍光体として一般式(1)で表されるSrサイアロン緑色蛍光体を用いた緑色発光装置は、紫色光等の短波長の励起光を用いた場合でも発光強度が高い。
【実施例】
【0057】
以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。
【0058】
[実施例1]
(蛍光体の作製)
はじめに、SrOを259.83g、Alを63.34g、AlNを63.44g、Siを567.55g、およびEuを49.05g秤量し、これらにフラックス剤を適量加え、乾式混合して蛍光体原料混合物を調製した。その後、この蛍光体原料混合物を窒化ホウ素るつぼに充填した。
蛍光体原料混合物が充填された窒化ホウ素るつぼを、電気炉内で、0.76MPa(略7.6気圧)の窒素雰囲気中、1600℃で8時間焼成したところ、るつぼ中に焼成粉末の塊が得られた。
この塊を解砕した後、焼成粉末に焼成粉末の質量の10倍量の純水を加えて10分間攪拌し、ろ過して焼成粉末を得た。この焼成粉末の洗浄操作をさらに2回繰り返し、合計3回洗浄した。洗浄後の焼成粉末をろ過し、乾燥した後、目開き75ミクロンのナイロンメッシュで篩ったところ、焼成粉末が得られた。
上記の焼成工程の処理条件を表1に示す。
焼成粉末を分析したところ、表2に示す組成からなる単結晶のSrサイアロン緑色発光蛍光体であった。
【0059】
【表1】

【0060】
【表2】

【0061】
(蛍光体の分析)
得られたSrサイアロン緑色発光蛍光体について平均粒径、発光ピーク波長および輝度を調べた。
平均粒径は、コールターカウンター法による測定値であり、体積累積分布の中央値D50の値である。
また、輝度は、室温(25℃)で測定した。室温での輝度を、後述する実施例8の室温での輝度を100とする相対値(%)(以下、相対輝度という)として示す。実施例1の輝度は70%であった。
なお、以下に示す実施例および比較例においても、室温での輝度を、実施例8の室温での輝度を100とする相対値(%)(相対輝度)として示す。
また、蛍光体原料混合物における原料の質量と、焼成粉末の組成および質量とから、焼成粉末における、一般式(1)で表されるSrサイアロン緑色発光蛍光体の歩留りを算出した。
測定結果を表2に示す。
【0062】
[実施例2〜8、比較例1および2]
焼成工程の焼成条件を表1に示すように変えた以外は実施例1と同様にして焼成粉末を得た。
得られた焼成粉末について、実施例1と同様にして組成、平均粒径、発光ピーク波長、輝度、および歩留りを調べた。
なお、比較例1および2では、一般式(1)で表されるSrサイアロン緑色発光蛍光体は得られなかった。
測定結果を表2に示す。
【0063】
(実施例1〜8、比較例1および2の結果についての評価)
表1および表2に示す結果より、焼成工程の焼成条件が特定条件に該当する実施例では一般式(1)で表されるSrサイアロン緑色発光蛍光体の歩留りが高いが、特定条件に該当しない比較例では一般式(1)で表されるSrサイアロン緑色発光蛍光体の歩留りが低いことが分かった。
【0064】
[実施例9〜19、比較例3]
焼成工程後に得られる焼成粉末が表3に示す組成になるように、蛍光体原料混合物におけるSrO、Al、AlN、Si、およびEuの配合量を調節した以外は、実施例1と同様にして、焼成粉末を得た。
得られた焼成粉末について、実施例1と同様にして組成、平均粒径、発光ピーク波長、および輝度を調べた。
測定結果を表3に示す。
【0065】
【表3】

【0066】
(実施例9〜19、比較例3の結果についての評価)
表3に示す結果より、焼成粉末が、一般式(1)で表される斜方晶のSrサイアロン蛍光体であると、発光効率が高い緑色発光蛍光体になることが分かった。
【0067】
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【0068】
以上説明した実施例によれば、原料混合物を1回焼成しただけで、中間原料を経ずに一挙に、所定の組成、構造のユーロピウム付活サイアロン構造の蛍光体を生成可能な蛍光体の製造方法および蛍光体ならびに発光装置が得られる。

【特許請求の範囲】
【請求項1】
酸化ストロンチウム、水酸化ストロンチウム、珪化ストロンチウム、および窒化ストロンチウムから選択される1種以上のストロンチウム化合物と、窒化珪素と、窒化アルミニウムと、酸化アルミニウムと、酸化ユーロピウムとを含む蛍光体原料混合物を、N含有ガス雰囲気下、1400℃〜2200℃で焼成して蛍光体を得る焼成工程を有することを特徴とする蛍光体の製造方法。
【請求項2】
請求項1に記載の製造方法により得られた蛍光体であって、
下記一般式(1)
[化1]
一般式:(Sr1−x,EuxαSiβAlγδω (1)
(式中、xは0<x<1、αは0<α≦4であり、β、γ、δおよびωはαが3のときに換算した数値が、9<β≦15、1≦γ≦5、0.5≦δ≦3、10≦ω≦25を満足する数である)
で表されるユーロピウム付活サイアロン結晶体からなり、紫外光〜青色光で励起されることにより緑色発光することを特徴とする蛍光体。
【請求項3】
平均粒径が1μm以上100μm以下であることを特徴とする請求項2に記載の蛍光体。
【請求項4】
370nm以上470nm以下の範囲内にピーク波長を有する紫外光〜青色光で励起されることにより、発光ピーク波長が500nm以上540nm以下の緑色光を発光することを特徴とする請求項2または3に記載の蛍光体。
【請求項5】
基板と、
この基板上に配置され、紫外光〜青色光を出射する半導体発光素子と、
この半導体発光素子の発光面を覆うように形成され、前記半導体発光素子からの出射光により励起されて可視光を発する蛍光体を含む発光部とを備え、
前記蛍光体は、請求項2〜4のいずれか1項に記載の蛍光体を含むことを特徴とする発光装置。
【請求項6】
前記半導体発光素子は370nm以上470nm以下の範囲内にピーク波長を有する光を出射する発光ダイオードまたはレーザダイオードであることを特徴とする請求項5に記載の発光装置。

【図1】
image rotate


【公開番号】特開2012−62440(P2012−62440A)
【公開日】平成24年3月29日(2012.3.29)
【国際特許分類】
【出願番号】特願2010−209642(P2010−209642)
【出願日】平成22年9月17日(2010.9.17)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(303058328)東芝マテリアル株式会社 (252)
【Fターム(参考)】