説明

複合磁性材料

【課題】本発明は、熱処理後の圧粉磁芯の強度の向上および磁気特性の改善の二つを両立できる複合磁性材料を提供することを目的とする。
【解決手段】上記目的を達成するために本発明は、鉄を主成分とした複数の金属磁性粉と、金属酸化物と、無機フィラーとを含み、前記金属酸化物を介して前記金属磁性粉同士が結着しているとともに、前記金属酸化物は前記金属磁性粉の表面積の14.4%以上、35.5%以下を覆うことを特徴とした複合磁性材料とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変圧器、電動機、チョーク、ノイズフィルター等に用いられる高性能な金属系複合磁性材料に関し、特に磁芯用の軟磁性材料として用いられる複合磁性材料、磁性素子に関するものである。
【背景技術】
【0002】
近年の電気・電子機器の小型化に伴い、用いられるインダクタンス部品に関しても小型かつ高効率である事が求められている。このインダクタンス部品の性能は用いられる磁性材料により大きく性能が左右され、小型化や飽和磁束密度に有利な圧粉磁芯が広く用いられている。この圧粉磁芯はFeを主成分とする金属磁性粉と、絶縁材として機能する無機フィラー等からなりこれらを加圧成形して形成され、より高密度とするためにより高圧で加圧される。その際、成形後の圧粉磁芯には加工歪が残留し、この加工歪を開放するために熱処理が施され、この温度が高いほどより多くの加工歪を解放することができる。
【0003】
しかしながら高温での熱処理を行うと圧粉磁芯中の金属磁性粉同士が焼結し、渦電流損失が大きくなる。そのため上述した無機フィラーのような絶縁材を金属磁性粉間に介在させることで耐熱性を上げる技術が一般的に知られているが、このように形成された圧粉磁芯は強度が低く、破壊されやすいため生産性が悪いという問題があった。
【0004】
このような上記課題に対して特許文献1では、金属磁性粉と酸化物粉末とを混合し、加圧成形後に熱処理してなる圧粉磁芯において、酸化物粉末を金属磁性粉の間に介在させることで圧粉磁芯の強度を向上する技術が開示されている。しかしながら、このような構成の圧粉磁芯では酸化物が金属磁性粉の全体を覆い、酸化物が金属磁性粉内に拡散して磁気特性が悪化するという問題が生じてしまう。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−302447号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は上記問題を解決するものであり、熱処理後の圧粉磁芯の強度の向上および磁気特性の改善の二つを両立することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明は、鉄を主成分とした複数の金属磁性粉と、金属酸化物と、無機フィラーを含み、前記金属酸化物を介して前記金属磁性粉同士が結着しているとともに、前記金属酸化物は前記金属磁性粉の表面積の14.4%以上、35.5%以下を覆うことを特徴とした複合磁性材料とした。
【発明の効果】
【0008】
本発明によれば、金属酸化物を金属磁性粉間に偏在させ、金属磁性粉の表面積の14.4%〜35.5%を覆う構成とすることで、圧粉磁芯の強度を維持し、金属磁性粉内部への金属酸化物の拡散を一定量以下とすることができるので、磁気損失を低減させることができ磁気特性の劣化を抑制することができるものである。
【図面の簡単な説明】
【0009】
【図1】本発明の一実施の形態における複合磁性材料の断面模式図
【図2】本発明の一実施の形態における熱処理前の成形体の断面模式図
【図3】本発明の一実施の形態における熱処理前の金属磁性粉周囲の断面模式図
【図4】本発明の一実施の形態における機械的強度測定方法を示した模式図
【発明を実施するための形態】
【0010】
以下、本発明の複合磁性材料について説明する。
【0011】
本発明の複合磁性材料は、図1に示すように、金属磁性粉1と、無機フィラー2と、金属酸化物3とからなり、加圧成形後に熱処理してなる複合磁性材料であって、金属酸化物3は前記金属磁性粉同士を結着する結着材として機能するとともに、金属磁性粉1同士が接触して渦電流が増大する絶縁材としての機能も果たす。また、無機フィラー2は熱処理時に金属磁性粉1同士が焼結しないように金属磁性粉1間に介在しており耐熱材としての機能も有する。このとき、金属酸化物3が金属磁性粉1の表面積の14.4%以上、35.5%以下を被覆している。
【0012】
この図1の構成を実現する方法を以下に図面を用いて説明する。
【0013】
まず、金属酸化物3を金属酸化物粒子としてあらかじめ混合する方法がある。図2は加圧成形後、すなわち熱処理前の成形体の断面図を示しており、結着性樹脂4が金属磁性粉1、無機フィラー2および金属酸化物3の隙間に存在している。ここで、結着性樹脂4は、加圧成形後の熱処理において熱分解するため、結着性樹脂4中に存在した金属酸化物3は熱処理後には金属磁性粉1の表面に付着する構成となり、熱処理後の複合磁性材料は図1に示した構成となる。
【0014】
次に反応性樹脂に含まれる金属元素を、熱処理することで金属酸化物3とする方法、すなわち残渣物として金属酸化物3を生成させる方法がある。図3は加圧成形後、すなわち熱処理前の成形体の断面図を示しており、結着性樹脂4と反応性樹脂5を混合したものが金属磁性粉1および無機フィラー2の隙間に存在している。
【0015】
ここで結着性樹脂4は熱処理後に熱分解するが、反応性樹脂5は熱処理することで金属酸化物3を生成し、この金属酸化物3が金属磁性粉1の表面に偏在するような構成となる。
【0016】
上記2つの方法で得られた複合磁性材料において、金属酸化物3が金属磁性粉1の表面を被覆している割合を被覆率Aとする。
【0017】
以下に、本実施の形態1における被覆率Aの導出方法を説明する。上述したように金属酸化物3は、金属酸化物粒子を添加して得られる場合と、反応性樹脂成分を熱処理することで金属酸化物3を生成する場合がある。すなわち金属酸化物粒子を添加して得られる場合は、金属酸化物3と結着性樹脂4の添加量から、また反応性樹脂添加により形成する場合は、反応性樹脂5と結着性樹脂4の添加量から被覆率Aを導出する。
【0018】
例えば、金属酸化物3の添加量をb、比重をdとすると、添加した金属酸化物3の体積VXはVX=(b/d)となる。また、結着性樹脂4の添加量をc、比重をeとすると、結着性樹脂4の体積VYはVY=(c/e)となる。
【0019】
従って、金属酸化物3の体積VXと結着性樹脂4の体積VYから、それぞれの体積比を算出すると、金属酸化物3の体積比RXは、RX=[VX/(VX+VY)]、結着性樹脂4の体積比RYは、RY=[VY/(VX+VY)]となる。
【0020】
一方、反応性樹脂5を熱処理することによって金属酸化物3を形成する方法も同様に、結着性樹脂4と反応性樹脂5の混合物が金属磁性粉1の表面を覆う構成となっており、この表面には前記2種類の樹脂の体積比によって金属酸化物3が付着する面積比が異なる。このようにして熱処理をすることで結着性樹脂4は熱分解して消失し、反応性樹脂5は付着面積部分に金属酸化物3を形成する。
【0021】
次に、上記のように算出した体積を面積に換算する。
【0022】
そこで、金属酸化物3の体積VXと結着性樹脂4の体積VYを2/3乗することにより、体積を面積へと換算した。即ち、金属磁性粉1表面への金属酸化物3の被覆面積AXは、AX=VX2/3=[(b/d)2/3]となる。同様に、結着性樹脂4の被覆面積AYは、AY=VY2/3=[(c/e)2/3]となる。これら金属酸化物3の被覆面積AXと結着性樹脂4の被覆面積AYを、金属酸化物3の体積比RXに適用すると、金属磁性粉1表面に対して金属酸化物3が被覆している面積の比率、即ち被覆率Aとなる。
【0023】
以上のことから、金属酸化物3の添加量をb、比重をd、結着性樹脂4の添加量をc、比重をeとすると、金属磁性粉1表面に介在する金属酸化物3の被覆率Aは、次式で表される。
【0024】
被覆率A=[VX2/3/(VX2/3+VY2/3)]×100
=[(b/d)2/3/{(b/d)2/3+(c/e)2/3}]×100
本実施の形態1において、被覆率Aが14.4%以下であると金属磁性粉1間に存在する金属酸化物3が少な過ぎるため熱処理後の金属粉同士の結着性が弱く機械的強度が低下してしまい、35.5%以上であると熱処理を施した際に金属酸化物3が必要以上に金属磁性粉1内部にまで拡散して軟磁気特性が劣化する可能性がある。このため、金属磁性粉1の表面を被覆する金属酸化物3の被覆率Aの範囲を、14.4%≦A≦35.5%とする構成により、優れた磁気特性と、熱処理後の機械的強度の向上を両立することができる。
【0025】
以下、各構成について具体的に説明する。
【0026】
本実施の形態1に用いられる金属磁性粉1は、主成分として少なくともFeを含むものであり、好ましくはFe、Fe−Si系、Fe−Ni系、Fe−Si−Al系から選ばれる、少なくとも1種以上である。
【0027】
本実施の形態1に用いられるFe−Si系の金属磁性粉1は、Siの含有量が1wt%以上8wt%以下であり、残部がFeおよび不可避な不純物からなるものである。本実施の形態1におけるSiの役割は軟磁気特性を向上させるものであり、磁気異方性、磁歪定数を小さくし、また電気抵抗を高め渦電流損失を低減する効果がある。Si含有量としては上記組成範囲とすることが好ましい。Si含有量が1wt%より少ないと軟磁気特性の改善効果に乏しく、8wt%より多いと飽和磁化の低下が大きく直流重畳特性が低下する。
【0028】
本実施の形態1に用いられるFe−Ni系の金属磁性粉は、Niの含有量が40wt%以上90wt%以下であり、残部がFeおよび不可避な不純物からなるものである。本実施の形態1におけるNiの役割は軟磁気特性を向上させるものであり、含有量は上記組成範囲とすることが好ましい。Ni含有量が40wt%より少ないと軟磁気特性の改善効果に乏しく、90wt%より多いと飽和磁化の低下が大きく直流重畳特性が低下する。さらに、透磁率改善のために1〜6wt%のMoを添加することも可能である。
【0029】
本実施の形態1に用いられるFe−Si−Al系の金属磁性粉1は、Siの含有量が6wt%以上12wt%以下、Alの含有量が4wt%以上8wt%以下であり、残部がFeおよび不可避な不純物からなるものである。本実施の形態1におけるSi、Alの役割は軟磁気特性を向上させるものであり、含有量は上記組成範囲とすることが好ましい。Si、Alの含有量が上記組成範囲より少ないと軟磁気特性の改善効果に乏しく、上記組成範囲より多いと飽和磁化の低下が大きく直流重畳特性が低下する。
【0030】
本実施の形態1に用いられる金属磁性粉1の平均粒径としては、1μm以上100μm以下が好ましい。この金属磁性粉1の平均粒径を1μm以上とすることにより成形密度が向上し、透磁率の低下を抑制できるため好ましく、平均粒径を100μm以下とすることにより、高周波領域での渦電流損失の増大を抑制できるため好ましい。さらに好ましくは、金属磁性粉1の平均粒径を1μm以上50μm以下とすることがより好ましい。
【0031】
本実施の形態1における金属磁性粉1の作製方法は特に限定されるものではなく、各種アトマイズ法や各種粉砕法により得られる金属磁性粉1を用いることが可能である。
【0032】
本実施の形態1における無機フィラー2は、金属磁性粉1との絶縁性を有し、かつ融点が700℃以上であるため高温での熱処理が可能となり、優れた磁気特性を実現しえる。このとき用いられる無機フィラー2としては、アルミナ、タルク、マイカ、窒化ホウ素、シリカが挙げられる。
【0033】
本実施の形態1に用いられる無機フィラー2の形状は特に限定されるものではないが、好ましくはアスペクト比が10以上200以下の扁平状のものが良く、アスペクト比が10未満である金属酸化物とは異なる。扁平状無機フィラーは、球状無機フィラーと比較して効率的に隣接する金属磁性粉1間に入り込み金属磁性粉1同士の接触を妨げることができ、熱処理時における金属磁性粉1同士の焼結を防ぎ、複合磁性材料の耐熱性を向上させることが可能である。また、無機フィラー2の形状を扁平状にすることにより、金属酸化物3を介して金属磁性粉1間に絡みつくようにして入り込むことで結着性が増し、機械的強度をより向上させる効果が期待できる。
【0034】
本実施の形態1における無機フィラー2は、無機フィラー2の平均粒径をR、前記金属磁性粉1の平均粒径をrとしたとき、0.1r≦R≦2.0rの関係からなる構成を有する。このとき、無機フィラー2が扁平状である場合、無機フィラー2の平均粒径Rは粒子の長径のことを指す。無機フィラー2の平均粒径が0.1r以下であると金属磁性粉1同士の接触を効率的に妨げられなくなるために熱処理時の耐熱性が低下してしまい、2.0r以上であると後述の加圧成形後の成形体における金属磁性粉1の充填率が小さくなるために透磁率が大きく低下する可能性がある。
【0035】
このような構成とすることにより、熱処理温度の高温化とコア強度の向上を両立することができる。
【0036】
以下に、本実施の形態1における製造方法について具体的に説明する。
【0037】
本実施の形態1における複合磁性材料は、Feを主成分とした金属磁性粉1と、無機フィラー2と、熱処理後に金属酸化物3を生じる反応材と、結着性樹脂とからなり、これらを混合分散する第1の工程と、加圧成形により成形体を得る第2の工程と、成形体を熱処理することにより複合磁性材料を得る第3の工程とからなる。
【0038】
本実施の形態1における金属磁性粉1と無機フィラー2および金属酸化物3の混合、分散方法は特に限定されるものではなく、回転ボールミル、遊星型ボールミル等各種ボールミル、Vブレンダー、プラネタリーミキサー等を用いることが可能である。また、加圧成形後の成形体の保形性を確保するため、金属磁性粉1と無機フィラー2の混合分散後に、結着性樹脂4を添加、混合する。また、金属酸化物3がシリコーンなどの反応性樹脂5からなる場合、成形体の保形性を目的として結着性樹脂4とともに添加、混合することが可能である。
【0039】
本実施の形態1における結着性樹脂4としては、アクリル樹脂、ブチラール樹脂、エポキシ樹脂、フェノール樹脂、シリコーン樹脂などが挙げられる。結着性樹脂4の混合、分散方法は特に限定されるものではなく、例えば金属磁性粉1と無機フィラー2の混合分散に用いられる方法を使用することができる。
【0040】
本実施の形態1における加圧成型方法は特に限定されるものではなく、通常の加圧成型方法が用いられる。成形圧力としては5ton/cm2以上20ton/cm2以下の範囲が好ましい。5ton/cm2以上とすることにより金属磁性粉1の充填率を高くすることができ、高い磁気特性を得ることができる。また、20ton/cm2以下とすることにより、加圧成形時の金型強度を確保するために金型を小型化することができ、また、成形圧力を確保するためにプレス機を小型化することができる。上記を実現することにより、生産性の向上、コストダウンにつながる。
【0041】
本実施の形態1における熱処理は、加圧成形時に金属磁性粉1に導入される加工歪みによる軟磁気特性の劣化を防ぐ、すなわち加工歪みを開放することによりヒステリシス損失を低下することが目的である。
【0042】
熱処理温度としては、700℃以上1000℃以下の範囲とすることが好ましい。熱処理温度を700℃以上とすることにより、加工歪みを十分に開放することができ、優れた磁気特性を実現することができる。また、1000℃以下とすることにより、金属磁性粉1と金属磁性粉1表面に偏在する金属酸化物3との反応の促進を抑制し、十分な絶縁性を確保することができ、渦電流損失の増大を抑制することができる。
【0043】
熱処理雰囲気としては、金属磁性粉1の酸化による軟磁気特性の低下を抑制するために非酸化性雰囲気が好ましく、例えば、アルゴンガス、ヘリウムガス、窒素ガス等を用いた不活性雰囲気、水素ガス等を用いた還元雰囲気、真空雰囲気において熱処理することができる。以下、本実施の形態1の複合磁性材料の実施例について説明する。
【実施例1】
【0044】
平均粒径が30μmで、組成が重量%で10.0Si−5.0Al−bal.Feの金属磁性粉1を準備した。この金属磁性粉1に対し、(表1)記載の金属酸化物3および無機フィラー2として、平均粒子径が16μm、平均粒子厚みが0.8μm、アスペクト比が20の扁平状の窒化ホウ素を添加混合し、混合粉末を作製した。得られた混合粉末にブチラール樹脂を(表1)記載の量だけ添加した後、エタノールを少量加えて混合分散を行い、窒素ガス雰囲気中にて800℃で0.5h熱処理を行った。このとき、金属酸化物3として添加したSiO2の比重を2.33g/cm3、結着性樹脂4として添加したブチラール樹脂の比重を1.0g/cm3として被覆率Aを算出した。作製した試料形状は、外形14mm、内径10mm、高さ2mm程度のトロイダルコアである。
【0045】
得られたサンプルについて、コア損失の周波数特性、透磁率の直流重畳特性、熱処理後の機械的強度の評価を行った。コア損失は交流B−Hカーブ測定機を用いて測定周波数100kHz、測定磁束密度0.1Tで測定を行った。直流重畳特性は、印加磁場0Oe、周波数100kHzにおける透磁率を、LCRメーターにて測定し評価した。機械的強度の測定は、図4に示すように、長辺18mm、短辺5mm、高さ2mm程度の試料片6をギャップ8mmの支持治具7に設置し、加圧治具8を用いて試料片の中心線上を1.5cm/minの速度で加圧し、破壊したときの負荷を機械的強度として評価した。得られた結果を(表1)に示す。
【0046】
【表1】

【0047】
(表1)より、本発明の複合磁性材料は、金属酸化物3と無機フィラー2とを備えた場合にのみ、低いコア損失と高い機械的強度を両立できることがわかる。
【実施例2】
【0048】
平均粒径が10μmで、組成が重量%で50.0Ni−bal.Feの金属磁性粉1を準備した。この金属磁性粉1に対し、(表2)記載の無機フィラー2として、平均粒子径が18μm、平均粒子厚みが0.2μm、アスペクト比が90の扁平状のマイカを添加混合し、混合粉末を作製した。得られた混合粉末に対して、熱処理後に金属酸化物3になるシリコーン樹脂とアクリル樹脂を(表2)記載の量であらかじめ混合したものを添加後、トルエンを少量加えて混合分散を行い、窒素ガス雰囲気中にて840℃で0.5h熱処理を行った。このとき、金属酸化物3として添加したシリコーン樹脂の比重を1.0g/cm3、結着性樹脂として添加したアクリル樹脂の比重を1.0g/cm3として被覆率Aを算出した。
【0049】
また、試料No.14と15には、無機フィラー2として扁平状および球状のアルミナを添加しており、扁平状アルミナは平均粒子径が10μm、平均粒子厚みが0.3μm、アスペクト比が33とし、球状アルミナは平均粒子径を4.7μmのものを用いた。作製した試料は、実施例1と同形状のトロイダルコアである。
【0050】
得られたサンプルについて、コア損失の周波数特性、透磁率の直流重畳特性、熱処理後の機械的強度の評価を行った。コア損失は交流B−Hカーブ測定機を用いて測定周波数50kHz、測定磁束密度0.05Tで測定を行った。直流重畳特性は、印加磁場0Oe、周波数10kHzにおける透磁率を、LCRメーターにて測定し評価した。機械的強度の測定は実施例1と同様にして行った。得られた結果を(表2)に示す。
【0051】
【表2】

【0052】
(表2)より、本実施の形態1の複合磁性材料は、構成中に金属酸化物3と無機フィラー2とを備え、かつ金属磁性粉1表面における金属酸化物3の被覆率を14.4%〜35.5%の範囲とすることで、低いコア損失と高い機械的強度を両立できることがわかる。また、無機フィラー2のアスペクト比を10以上200以下の扁平形状とすることで、より高い機械的強度を得られることがわかる。
【産業上の利用可能性】
【0053】
本実施の形態1にかかる複合磁性材料は、低いコア損失と優れた機械的強度を有しており、トランスコア、チョークコイル等に用いる磁性材料として有用である。
【符号の説明】
【0054】
1 金属磁性粉
2 無機フィラー
3 金属酸化物
4 結着性樹脂
5 反応性樹脂
6 試料片
7 支持治具
8 加圧治具

【特許請求の範囲】
【請求項1】
鉄を主成分とした複数の金属磁性粉と、金属酸化物と、無機フィラーを含み、
前記金属酸化物を介して前記金属磁性粉同士が結着しているとともに、
前記金属酸化物は前記金属磁性粉の表面積の14.4%以上、35.5%以下を覆うことを特徴とした複合磁性材料。
【請求項2】
前記無機フィラーは、アルミナ、タルク、マイカ、シリカ、窒化ホウ素のいずれかであることを特徴とした請求項1に記載の複合磁性材料。
【請求項3】
複数の前記金属酸化物は、前記無機フィラーを介して結着していることを特徴とした請求項1に記載の複合磁性材料。
【請求項4】
前記無機フィラーの平均粒径をR、前記金属磁性粉の平均粒径をrとしたとき、0.1r≦R≦2.0rの関係からなることを特徴とした請求項1に記載の複合磁性材料。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−8762(P2013−8762A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2011−139081(P2011−139081)
【出願日】平成23年6月23日(2011.6.23)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】