説明

計測加工一体型装置

【課題】切削工具を形状測定プローブとした計測加工一体型装置の提供
【解決手段】計測加工一体型装置100は、高速工具制御ユニットと力センサ150からなる。高速工具サーボ制御ユニットは工具120を保持し、高速にその切り込み量を制御するための機構であり、円筒型圧電素子(PZT)130,工具を保持する工具ホルダ122,及び工具120の変位を計測する容量型センサ140から構成されている。円筒型圧電素子(PZT)130により工具を保持する工具ホルダ122を介して、工具120に切り込み量を与えることができる。圧電素子と同心に配置される静電容量型変位計140は工具の変位を検出する。また、力センサ150はベース110にネジ152,154によって固定される。固定に用いるキャップスクリュー152,154の回転角で、力センサに任意の予荷重を負荷させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、材料表面に形状を創成する加工を行いながら、加工対象の形状を計測することができる計測加工一体型装置に関し、特に、表面の微細パターン作製に適した計測加工一体型装置に関する。
【背景技術】
【0002】
材料の表面に微細パターンを作製する技術は情報技術の根幹を成している。三次元微細形状を材料表面に創成することによって、新たな機能表面を生み出すことができるからである。光学的機能ではフレネルレンズ,マイクロプリズム,マイクロレンズ・アレイ等があり、情報技術産業において幅広く応用されている。また、微細溝や突起を分布させることによって、ディスプレイ装置に光源強度分布の補正,反射防止,虹・モアレ発生防止等の機能を付与することができ、太陽電池に対しては変換効率を向上させることができる。その他にも、トライボロジー的機能の改善として、エンジンのピストンしゅう動部に微細形状を創成し接触面積を減らすことにより摩擦力を低減するといった応用や、境界面的機能の改善として微細形状により撥水性を高め自浄表面を創成したり、熱伝達率,境界層流れ,軸受け,防錆,接着等の特性を改善したりすることもできる。更には、バイオ分野におけるインプラントやバイオセンサ等にも応用が広まっている。また、計測基準面の例として多自由度位置計測用角度格子がある。角度格子はXY方向に正弦波を重ね合わせた形状を持つ鏡面体であり、その波長と振幅は形状を読み取る角度センサの仕様に基づきそれぞれ数十mm〜百mm,数十nm〜百nmと設計されている。また角度格子の加工範囲は数十mm〜数百mmであり、測定範囲は基本的にこの範囲に制限される。従って、角度格子には広範囲に渡って高い形状精度が要求される。
【0003】
これらの微細パターンの創成技術としては、精度の高い表面形状を大面積にわたって実時間で創成できる加工法が望ましい。電気的、光学的な三次元微細形状創成技術には、電子ビーム描画方式,レーザ描画方式,ホログラフィック方式等,様々な種類がある。これらの手法は、無反射表面,回折格子,マイクロレンズ・アレイ等,マイクロメートル〜サブマイクロメートルの非常に短い空間波長を持つ構造の創成には有効であるが、複雑な三次元形状の創成には不向きである。
【0004】
一方、現在の超精密切削・研削加工技術は、精密運動制御や計測・精密加工用ツールの進歩によってサブマイクロ・メートル・オーダ以下の精度の加工が容易に行えるようになっている。その代表的な例がシングルポイント・ダイヤモンド切削加工であり、非常に鋭利な単一の切れ刃をもつ単結晶ダイヤモンド工具を使い軟質金属などを高精度の加工機を用いて加工する方法である。工具と工作物の相対運動軌跡がその速度に依存せず非常に正確に加工表面形状に転写されるという性質を持つので、精密な加工面が迅速に得られる。この技術は延性材料の精密部品の大量生産によってその地位を確立し、今後も脆性材料の加工やナノマシニングに対して期待が寄せられている。加えて、ファースト・ツール・サーボ(FTS:高速工具サーボ)やファースト・ツール・コントロール(FTC:高速工具制御)の技術を用い、工具を工作物に対して三次元的に精密かつ高速に運動制御し、切り込み量を加工面上のすべての点に対して独立に与えることによって、複雑な幾何学的形状を高い形状精度と表面粗さで創成することができるという利点も持つ。電気的、光学的加工法に比べ、ダイヤモンド切削では数マイクロメートル以下の空間波長を持つ微細形状の創成は困難であるが、数十マイクロメートル〜数百マイクロメートルの範囲の空間波長の創成に対しては優れた方法であり、特に複雑な三次元微細形状の精密創成に適している。
【0005】
通常の旋削加工では直動2軸+回転軸の3軸を旋盤によって制御し、加工物に目標形状を与えるが、このFTCは直動2軸の内、1軸を圧電素子(以下PZT)などの高い分解能・剛性・応答性を持つ機構によって制御する技術である。この技術によって数十nmレベルの形状精度での微細パターンを創成することが可能になったが、通常の機械加工と違い工具を高速に制御するという特徴を持つこの手法は、まだ「超微細加工を行うための方法」として研究されているのみで、「構造にどのような負荷が加わるか」や「工具の高速移動に伴う影響」といった、手法自体を解析する研究はなされていない。このように、今後FTCを利用して微細形状を創成するシステムを構築する際に必要とされる設計指針が未だに無いのが現状であり、最適設計の確立に重要な役割を果たす力計測への要望が高まっている。また加工状態のモニタリングとしても、力は重要な情報を担う因子であり、インプロセスでの力計測が可能になることで、機上計測の情報を加工にフィードバックして加工精度を向上させる事も可能になる。また、この力情報を利用すれば、微細加工時に困難とされる工具とワークの接触位置の判断が可能となる。さらに、力センサの出力から微細加工時に重要となる工具の磨耗が計測できる。
【0006】
一方、国内外では創成された表面形状を機上で形状計測し、その形状データを元に修正加工を行う超精密加工面の機上形状計測に関する研究及び技術開発が盛んに行われている。しかしこれらの機上計測では、各種の変位センサを加工機に搭載して形状計測を行っており、加工点と形状計測点の位置が一致しないという問題点がある。そのため、機上形状計測情報を正確に修正加工にフィードバックできず、複雑な自由曲面のナノ加工が実現できていない。また、原子間力顕微鏡(AFM)とほぼ同じ原理を利用した微細加工を用いた機上計測加工一体型評価装置が国内外で実現されている。こちらは加工点と形状計測点の位置が一致しないといった問題点は解消しているが、加工機としての剛性が非常に低いため、高剛性加工が要求される超精密切削加工には適用できないというのが現状である。
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、超精密旋削と高速工具制御を組み合わせて、3次元形状をナノメートルの精度で創成するために、切削工具をそのまま形状測定プローブとして用い、創成された3次元形状を機上でナノメートルの精度で計測し、形状データを元に同ダイヤモンド工具で形状測定点を修正加工することができる計測加工一体型装置を提供することである。
【課題を解決するための手段】
【0008】
前記目的を達成するために、本発明は、工具を駆動するアクチュエータと、該アクチュエータに結合され、工具を保持する工具ホルダと、該アクチュエータと同軸に配置され、工具の変位を計測する変位センサと、工具に印加される力を計測する力センサとを一体として構成し、工具を形状測定プローブとして用いる計測加工一体型装置である。
計測加工一体型装置と、さらに、前記アクチュエータを駆動するための駆動回路と、該駆動回路に印加して、前記アクチュエータにより、工具を動かすための信号を発生する信号発生手段と、前記力センサおよび変位センサからの信号を検出する検出手段とを備え、前記信号発生手段から工具を振動させる信号を出力して、前記検出手段が前記力センサから、前記工具に与えた振動と同じ振動を検出したときに、前記工具の対象物接触として、このときの変位を検出する制御手段とを備えることを特徴とする計測・加工システムも本発明である。接触位置を精密に計測できるので、工具の微小磨耗や、工具を交換したときの工具先端の原点位置の計測ができる。
計測・加工システムは、前記計測加工一体型装置を対象物に対して相対的に移動させる走査手段を備え、前記制御手段は、前記信号発生手段および前記走査手段を制御し、対象物の表面を走査しながら、前記信号発生手段からの信号により工具を動かし、対象物の表面に対して所定の加工を行うこともできる。前記検出手段で検出した力センサの信号により、加工中の加工力を計測することもできる。
前記制御手段は、前記検出手段と前記信号発生手段を用いて、対象物に一定の力を印加するように工具を駆動するフィードバックを行い、対象物に対して走査を行うとともに、一定の力を印加し、そのときに変位センサからの出力を計測することもできる。これにより、対象物の表面形状を計測することができる。このとき、対象物の形状が既知の場合、工具の形状を計測できる。
【発明の効果】
【0009】
本発明は、力に注目し、高速工具制御ユニット(FTC)を搭載した装置に高剛性・高感度力センサを組み込んだ、力計測を可能にした計測加工一体型装置である。この装置を用いることによって。3次元微細パターン創成時にどのような力が働くのかをインプロセスで計測することができるほか、工具とワークの接触位置検出、工具の微小磨耗検出ができる。また、力センサの出力が一定になるように制御することによって、同じ装置で形状測定もできる。
計測加工一体型装置を用いることによって、
1)工具とワークの接触位置が検出できること
2)加工力をインプロセスで計測できること
3)工具の微小磨耗が計測できること
4)工具の先端の原点位置が計測できること
5)加工状態のモニタリングができること
6)加工面形状を同じ工具で計測できること
7)工具先端形状を計測できること
などの利点がある。
【発明を実施するための最良の形態】
【0010】
図面を用いて、本発明の実施形態について説明する。
<計測加工一体型装置の構成>
図1は、本発明の実施形態である計測加工一体型装置の概要を示す。装置100は高速工具制御ユニットと力センサ150からなる。高速工具サーボ制御ユニットは工具120を保持し、高速にその切り込み量を制御するための機構であり、アクチュエータとしての円筒型圧電素子(PZT)130,工具を保持する工具ホルダ122,及び工具120の変位を計測する容量型センサ140から構成されている。高剛性かつ応答性に優れた円筒型圧電素子(PZT)130により工具を保持する工具ホルダ122を介して、工具120に切り込み量を与えることができる。
アクチュエータとして用いている圧電素子(PZT)130は、非線形の電圧−変位特性を示す。原因の一つはヒステリシスであり、これは電圧に対する変位の応答が線形ではなく、また電圧の上昇時と下降時で一致しないという現象である。もう一つはクリープであり、これは一定電圧を加え、一定の位置を保持しようとしても、時間と共に変位がゆっくりと変化してしまう現象である。このため工具の位置を検出し、フィードバック制御を行う必要がある。
【0011】
圧電素子と同心に配置される静電容量型変位計140はキャップの変位、すなわち工具の変位を検出する。この信号をフィードバック信号としサーボ系を構成することで、PZTのもつヒステリシス、クリープ等を補償し、工具切り込み量を高精度に制御できる。
また、力センサ150はベース110にネジ152,154によって固定される。固定に用いるキャップスクリュー152,154の回転角で、力センサに任意の予荷重を負荷させることができる。
このような計測加工一体型装置100により、試料160の表面を加工するために、相対的にX−Yの方向に走査できる走査装置(図示せず)に乗せ、試料の表面を走査しながら加工することで、微細パターンを創成することができる。
【0012】
<接触判断>
さて、微細パターン加工するときに、正確な切り込み深さ(Z方向)を決めるために、工具とワークの接触点を正確に決める必要がある。通常の加工では、目視や光学式顕微鏡でワーク表面にできた加工痕を観察することで工具とワークの接触判断をしている。しかし、微細パターン加工時は工具先端と切り込み量が小さいので加工痕が微小であり、目視や光学式顕微鏡では観察できない問題がある。本発明では、図2に示すような計測加工一体型装置の制御・計測システムを用いて、接触判断を行うことができる。
図2の制御・計測システムにおいて、PZT駆動回路173からの駆動電圧で、圧電素子130により工具120をnmオーダーの微小な振幅で振動させながら試料160に近づける。この微小振動は、ファンクション・ジェネレータ172からの正弦波による。近づけるための信号は、パソコンシステム180から、D/Aボード184を介して、加算回路174により正弦波と合わせてPZTに対して印加している。工具120の変位を示す容量型センサ140からの出力は、A/Dボード182を介してパソコンシステム180に入力されている。力センサ150のAC出力をロックインアンプ175で読取り、工具120の振動と同じ周波数を検出した時点で、パソコンシステム180により接触と判断する。力センサ150とロックインアンプ175で駆動周波数成分のみを高感度に検出するため、高感度に接触点の位置を検出することができる。なお、図示していないが、XY走査装置による計測加工一体型装置100のX−Y方向の移動制御も、パソコンシステム180により行っている。
【0013】
<工具の磨耗計測>
さて、微細パターン加工は鋭い工具を使う必要がある。そのため、工具の微小磨耗が大きな問題となる。しかし、工具顕微鏡などでは解像度不足のため、工具微小磨耗の計測ができない。本発明の計測加工一体型装置における工具の微小磨耗の計測を図3に示す。
位置が固定される標準用サンプル162を設置し、上述した制御・計測システムによる工具とワークの接触点を検出する方法で、工具120と標準サンプル162の接触位置を検出できる。図3(a),(b)のように、工具を使った、ワークを加工する前後に、それぞれの工具と標準サンプルの接触位置を容量型センサの変位計140で検出し、パソコンシステム180で記録する。その接触位置の変化が、工具の磨耗量dとなる(図3(c)参照)。
また、ワークを加工するときの加工力を計測加工一体型装置の力センサ150でインプロセス測定を行うことによって、工具のチッピングなどの損傷をリアルタイムに検出することができる。
【0014】
<工具の原点位置>
また、工具を交換した場合、取り付け誤差や工具寸法の個体差などによって、工具先端の原点位置がずれてしまう問題が生じる。
図4において、工具を交換した場合に、図3と同様にして、工具と試料160の接触位置を検出する方法(図2参照)で原点位置の決め方を示す。図4(a),(b)に示すように、工具を使ってワークを加工する前後に、それぞれ工具と標準サンプルの接触位置を検出し、パソコンシステム180に記録する。その情報から工具先端の原点位置を決めることができる(図4(c)参照)。
【0015】
<加工形状計測>
図5を用いて、計測加工一体型装置100による加工面微細形状を測定する方法の原理を説明する。図4において、試料160の加工表面は、例えばXY正弦波で加工されており、波長は50μm、振幅は100nmである。また、加工面の弾力変形域は、この場合では0.1nm以内である。
機上で加工プローブ(単結晶ダイヤモンド工具)をそのまま測定プローブとして用い、PZT130にPZT駆動回路173から電圧を加えることにより、工具120を微小振動させながらステップ状に試料160へ接近させる。パソコンシステム180により、プローブ120と試料160の弾性変形域での接触を力センサ150で検出し、力センサ150からの接触力が一定となるように、PZT駆動回路173からの電圧を印加して、フィードバック制御することで、工具のZ方向の位置を高速に制御しながらX方向に走査する。このとき、容量センサの変位計140による工具の運動軌跡が形状測定結果となる。この測定データを元に測定点を修正加工することで3次元表面形状をナノメートルオーダで高精度創成する。
【0016】
<工具先端形状計測>
自由曲面形状を加工する場合、工具の先端形状が加工精度に大きな影響を与える場合がある。加工精度向上のため、工具の先端形状を計測し、加工データに補正を加える必要がある。図6に示すように、形状精度が非常に高い、あるいは形状誤差が既知の基準試料(例えば基準試料球)164の形状を計測加工一体型装置で、上述の形状計測と同様に、走査して計測することによって、得られた装置の出力から工具先端の形状を求めることができる。
図6(a),(b),(c)には装置をY方向に沿って走査し、YZ断面の工具先端形状を測定する例を示しているが、X方向走査をすることによって、XZ断面の工具先端形状を計測することができる。またXY平面において走査することによって、工具先端形状の3次元形状を測定することができる。
なお、加工前後に同様の測定を行うことによって、磨耗などによる工具先端形状の変化を見ることもできる。
【0017】
この計測加工一体型装置100を用いることにより、形状計測点と工具加工点の位置が一致しないという問題、つまり形状計測情報を正確に修正加工フィードバックできず、複雑な自由曲面のナノ加工が実現できないということを解決できる。
また、従来の原子間力顕微鏡(AFM)と異なり、超精密ダイヤモンド旋削可能な高速工具制御装置を応用した手法であるので、加工機としての剛性が低くなるということはなく、高剛性加工が要求される超精密切削加工に適用できると考えられる。
【0018】
<計測加工一体型装置の剛性>
計測加工一体型装置100の装置全体としての剛性や固有振動周波数を算出する。算出する装置の具体的な構成を図7に示す。図7(a)は上から見た平面図、図7(b)は横から見た側面図である。
図7の構造は、高剛性・応答性を重視した並列測定系であり、図8に示すようなバネ─質量系のモデル化を行った。各部を弾性体と見なし、PZTの剛性をk,並列系支持部の剛性をk,インパクトプレートの剛性をk,力センサの剛性をkとしたうえでモデル化を試みた。
【0019】
測定点に測定力が負荷された場合、図7に示すような構造において、PZT130・並列系支持部(PZT固定用ジグ)138・インパクトプレート156・力センサ150では、それぞれ加工点の方向に向けて反力を生じる。工具120に生じた測定力は、PZT130で受けられ、その後で並列系支持部138、力センサ150へと分力される。力センサ150が検出する力は並列系支持部138との剛性値の比率に依存する。図7に従って系全体の剛性を算出すると、次式で示される。
【数1】

【0020】
装置各部の剛性値を元に式(1)を適用すると、加工機としての剛性値は480N/mmとなり、共振周波数を計算すると、3400Hzとなる。これらの数値をまとめると表1のようになる。
【表1】

【0021】
また、本計測加工一体型装置を並列測定系にするに当たり、力センサが検出する力が測定力の分力になるという問題が生じる。この分力は、インパクトプレート─力センサと並列支持部の有する剛性に依存する。装置の共振周波数を向上させるため、並列支持部の剛性を過剰に強固にしてしまうと、力センサが検出する加工力の分力が小さくなり、力計測に弊害が生じる。本研究で選択した並列支持部の剛性値は570N/mmであり、インパクトプレート─力センサの剛性値は360N/mmである。よって、力センサが検出する力は、装置に負荷されている加工力の25%であることが算出される。
このようにして、力センサで加工中にリアルタイムで検出されている計測量は、実際の加工力の25%であることが予め分っているので、実際の加工力も算出できる。このようにして、実際の加工力をインプロセスで把握することができる。
【0022】
<計測加工一体型装置の振動>
計測加工一体型装置は、試料切削中にPZTを利用して工具を高速に制御することで、3次元形状を創成する。工具を駆動する際、装置が持つ固有振動周波数で共振すると、制御が正確に行われず、正しい切込み量を与えることが出来ない。この周波数特性は、加工時に主軸回転数及び切込み量変化の制御点数の条件を定めるのに重要な要素である。また、計測加工一体型装置の固有振動周波数が低い場合、加工速度が遅くなり加工時間が大幅にかかってしまう。そこで、図9のような測定系を組み、装置の周波数特性を調べた。
図9に示すように、計測加工一体型装置100の周波数応答の測定には、FFTアナライザ210を利用した。FFTアナライザ210は、デジタル・スペクトル・アナライザ212とファンクション・ジェネレータ214から構成されている。ファンクション・ジェネレータ214から白色信号が出力され、一方をPZT駆動回路173に、一方をデジタル・スペクトル・アナライザ212のAチャンネルに入力する。白色信号が印加されたPZTの応答を静電容量センサ230で計測し、その応答をデジタルスペクトル・アナライザ212のBチャンネルに入力する。この2つのチャンネル情報から、系(装置)がもつ応答性能を計算し、ゲインや位相を数値化する。その情報はGPIBインターフェースボード220を介してパーソナルコンピュータで記録される。
【0023】
図10に本装置の周波数特性を示す。図10において、100Hzから10kHzまでが本装置のゲイン・位相特性である。図10によると、2.5kHzと5kHz近傍にピークがあることが分かる。2.5kHz近傍でのピークは、計算した装置全体の固有振動周波数に近いと言える。若干低い数値でピークが見られたのは、モデル化を行う際に剛体として見なしていた部位が微小な挙動においては弾性体として作用していたため、もしくはキャップスクリューの締付け不足のためだと考えられる。しかし、この2.5kHzという高い固有振動周波数は加工・計測一体型装置として十分な周波数応答であり、高剛性化を実現したと言える。
【0024】
<加工の実体>
図11に計測加工一体型装置100を超精密旋盤に設置し、正面切削による大面積3次元微細形状創成システムを示す。スライド194に取り付けられた計測加工一体型装置100を一方向にスライドして、回転するスピンドル195に取り付けられたワーク193の表面を3次元微細形状に加工する。
また、図12には機上計測加工一体型装置を超精密旋盤に設置し、円筒面に大面積3次元微細形状を創成するシステムを示す。回転するスピンドル192に取り付けられた円筒形のワーク190の表面を、軸方向にスライドするようにした計測加工一体型装置100により3次元微細形状に加工する。
図11や図12のように構成して、平面や自由曲面に大面積3次元微細形状を創成することができる。
【0025】
<他の実施形態>
上述では、計測加工一体型装置100のZ方向の力サンサは、一方向の力センサを用いている。そのために取り付ける位置がPZTと同じ中心軸上と決まってしまう。しかしながら、図13に示すように、3軸力センサ155を用いることにより、例えばPZTとは直角の位置に取り付けても、Z方向の力を検出することができる。
【図面の簡単な説明】
【0026】
【図1】計測加工一体型装置の原理図である。
【図2】計測加工一体型装置の制御・計測を行うためのブロック図である。
【図3】工具の微小磨耗の測定を示す図である。
【図4】工具取替えのときの工具先端原点の測定を示す図である。
【図5】計測加工一体型装置による形状測定を示す図である。
【図6】計測加工一体型装置による工具先端形状測定を示す図である。
【図7】剛性を測定した、計測加工一体型装置の構成を示す図である。
【図8】図7の装置構成の剛性計算モデルを示す図である。
【図9】剛性特性を計測したときの計測系を示す図である。
【図10】図7の装置構成の周波数特性を示す図である。
【図11】計測加工一体型装置により、平面上に加工を行っている図である。
【図12】計測加工一体型装置により、曲面上に加工を行っている図である。
【図13】計測加工一体型装置の他の実施形態を示す図である。

【特許請求の範囲】
【請求項1】
工具を駆動するアクチュエータと、
該アクチュエータに結合され、工具を保持する工具ホルダと、
該アクチュエータと同軸に配置され、工具の変位を計測する変位センサと、
工具に印加される力を計測する力センサと
を一体として構成し、工具を形状測定プローブとして用いる計測加工一体型装置。
【請求項2】
請求項1に記載の計測加工一体型装置と、
さらに、前記アクチュエータを駆動するための駆動回路と、
該駆動回路に印加して、前記アクチュエータにより、工具を動かすための信号を発生する信号発生手段と、
前記力センサおよび変位センサからの信号を検出する検出手段とを備え、
前記信号発生手段から工具を振動させる信号を出力して、前記検出手段が前記力センサから、前記工具に与えた振動と同じ振動を検出したときに、前記工具の対象物接触として、このときの変位を検出する制御手段と
を備えることを特徴とする計測・加工システム。
【請求項3】
請求項2に記載の計測・加工システムにおいて、
前記計測加工一体型装置を対象物に対して相対的に移動させる走査手段を備え、
前記制御手段は、前記信号発生手段および前記走査手段を制御し、対象物の表面を走査しながら、前記信号発生手段からの信号により工具を動かし、対象物の表面に対して所定の加工を行うことを特徴とする計測・加工システム。
【請求項4】
請求項3に記載の計測・加工システムにおいて、
前記検出手段で検出した力センサの信号により、加工中の加工力を計測することを特徴とする計測・加工システム。
【請求項5】
請求項3に記載の計測・加工システムにおいて、
前記制御手段は、前記検出手段と前記信号発生手段を用いて、対象物に一定の力を印加するように工具を駆動するフィードバックを行い、対象物に対して走査を行うとともに、一定の力を印加し、そのときに変位センサからの出力を計測することを特徴とする計測・加工システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2006−159299(P2006−159299A)
【公開日】平成18年6月22日(2006.6.22)
【国際特許分類】
【出願番号】特願2004−349434(P2004−349434)
【出願日】平成16年12月2日(2004.12.2)
【出願人】(899000035)株式会社東北テクノアーチ (68)
【Fターム(参考)】