Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
質量分析計システムにおける現場調整
説明

質量分析計システムにおける現場調整

【課題】ガスクロマトグラフィと連結された質量分析計を含む質量分析計に関し、質量分析計を調整して、その性能を改善または回復させる。
【解決手段】質量分析計またはガスクロマトグラフ/質量分析計システムにおいて、水素等の調整ガスを添加して、イオン源等の質量分析計の1つ以上の構成要素または領域を調整または洗浄する。調整ガスは質量分析計の上流、試料入口またはクロマトグラフカラムの中に添加されてもよく、または質量分析計の中に直接添加されてもよい。調整ガスは質量分析計が試料を分析していないとき、オフラインで添加されてもよく、または試料分析中にオンラインで添加されてもよい。オンラインで添加されるとき、調整ガスはヘリウム等のキャリアガスと混合されてもよい。別の実施形態では、調整ガスはまたカラムを通るキャリアガスとして機能し、ヘリウムなどの別のガスがキャリアガス流に添加されてもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、ガスクロマトグラフィと連結された質量分析計を含む、質量分析計に関する。より具体的に、本発明は、質量分析計を調整して、その性能を改善または回復させることに関する。
【背景技術】
【0002】
質量分析計(MS)は、通常、導入された試料から電荷種を生成するためのイオン源と、それらの質量対電荷比(m/z比、または単純に「質量」)による電荷種を分離するための質量分析計と、分離された種をカウントして、質量スペクトルが生成され得る信号を提供するためのイオン検出器とを含む。試料は、種々の技術によるイオン源の中に導入されてもよい。一実施例では、ガスクロマトグラフ(GC)は、GCカラムから出力される試料(クロマトグラフィによって分離された試料構成要素を含む)が、イオン源への試料入力として機能するようにMSと適合される。後者のシステムは、多くの場合、GC/MSシステムと称される。
【0003】
MSは、長い期間をかけて連続して操作されるため、MSの性能におけるいくらかの変更または低下は、常に試料、それらのマトリクス(例えば、石油試料における重質炭化水素、脂質試料におけるトリグリセリド)、および溶媒、GCカラムからの固定相の漏れ、または他の反抗物質に起因して発生し、それらのすべては長い期間をかけて蓄積し得る。MSの初期操作においてさえ、MSは、適切な性能または均一な性能を提供するように安定化または「調整」され得ない。電子衝撃(EI)または化学イオン化(CI)源が、通常MSにおいて利用されるガスクロマトグラフィの場合、イオン源は、導入された試料構成要素によって急速に汚染され得、結果として検体信号またはスペクトル特徴に見られるような性能の低下をもたらす。特に沸点の高い検体に関する別の問題は、信号応答の減少に加えて、連続使用に伴ってピークテーリングが増加し得ることである。性能の低下は、多くの方法で示され得るが、通常、測定基準は、検体信号応答の減少および高いシステム背景雑音であり、後者は特に、検体の検出および識別にとって厄介である。
【0004】
これらの問題のために、MSを定期的に洗浄する必要がある。一般に、汚染物質の沈着率が高いほど、より頻繁にMSを洗浄する必要がある。一般的な従来の洗浄方法は、MSシステムを換気し、著しく影響を受けた構成要素(例えば、イオン源、イオン光学、プレフィルター等)を除去し、除去した構成要素を機械的および/または化学的洗浄した後、他のプロセス(例えば、マッフルまたは真空焼成炉)を行い、次に構成要素をMSシステムに再インストールする。そのような従来の移動洗浄手順は、極めて複雑で時間のかかる手順であり得、潜在的に毒性の溶媒、高価な機器、および熟練技術者の時間と配慮を伴う。さらに、洗浄プロセスは、一時的に問題を解決するに過ぎない。反復洗浄を行い、MSの分析操作を再開した後、MSの性能は再び低下し始め、最終的に別の反復洗浄を必要とする。さらに、従来の洗浄プロセスは、構成要素の再インストールと関連付けられた機械的問題に起因するか、または手順におけるいくつかのステップが障害される(例えば、洗浄溶媒が汚染された)ため、失敗し得る。そのような失敗は、MSが再度組み立てられ、真空下の操作条件となるまで発見され得ない。換気プロセスはまた、ある背景種を取り込むが、その中で最も豊富なのは水であり、結果として、これらの物質を排除するために追加の時間が必要とされる。汚染物質としての水は、MS信号応答の急速な減少をもたらし得る。
【0005】
ヘリウムは、ヘリウムの不活性、低質量、高イオン化能力、および望ましいクロマトグラフィ特性に起因して、GC/MSにおいて最も一般に用いられるキャリアガスである。さらに、NIST08(米国標準技術局)等のスペクトル参照ライブラリは、ヘリウムをキャリアガスとして使用して記録される。しかしながら、ヘリウム単独では、いかなる固有の洗浄または調整特性も有しないため、キャリアガスとしてのその使用は、上述の洗浄手順を頻繁に実行する必要性を改善することはできない。したがって、ヘリウムをキャリアガスとして使用するときに発生する、応答の喪失およびテーリングを防止する、および/またはヘリウムをキャリアガスとして使用する利益を依然として維持しながら、上述の従来技術によってMSシステムを洗浄する必要性を低減または排除する、この問題に対する解決策を提供することが望ましい。
【0006】
水素もまたキャリアガスとして用いられているが、ヘリウムおよび他のキャリアガスよりもはるかに稀である。水素をキャリアガスとして使用することは、多数の重要な欠点を伴う。水素は、極めて可燃性である。カラム寸法の選択は、その低い粘度に起因して、水素によって大いに限定される。カラム出口がMSであるとき、正の入口圧を維持するために、はるかに小さいカラムが必要となる。水素をキャリアガスとして使用するときの質量スペクトルまたはクロマトグラムの信号対雑音比は、はるかに低く、結果として、ヘリウムをキャリアガスとして使用するときよりも5〜10倍悪い検出限界をもたらす。水素の使用は、イオン源における検体の分解反応をもたらし得、結果として関連ピークの頂点とは異なる組成を有するピークテールをもたらす。これは、スペクトルライブラリ検索を用いるときに検体の識別において重要な要素である、スペクトルの忠実度を含む。試料入口およびカラムにおける水素の存在はまた、それらの構造を変化させる、検体との化学反応をもたらし得る。
【0007】
前述を考慮して、MSシステムを調整するための方法および装置について、ガスクロマトグラフィ/質量分析を含む、質量分析が引き続き必要とされる。MSシステムにおいて実行される原位置調整のための方法および装置も必要とされ、それによって従来の移動洗浄の必要性が排除されるか、または少なくとも著しく低減される。ヘリウム等のより一般的なガスの代替として、またはそれと併せて、MSシステムにおける水素および/または他のガスを有効に使用する方法および装置も必要とされる。
【発明の概要】
【0008】
前述の問題の全体または部分、および/または当業者によって認められ得る他の問題に対処するために、本開示は、以下に記載される実装例によって説明されるように、方法、プロセス、システム、装置、器具、および/またはデバイスを提供する。
【0009】
一実施形態によると、質量分析計(MS)システムを操作するための方法は、MSシステムの電離箱の中に試料およびキャリアガスを導入することと、調整ガスをMSシステムの質量分析計の中に流すことと、を含み、質量分析計内の調整ガスは、試料の検体の質量スペクトル特徴を実質的に変化させず、調整ガスは、キャリアガスとは異なる。
【0010】
別の実施形態によると、質量分析計(MS)システムを操作するための方法は、試料を質量分析計の中に導入することなく、調整ガスをMSシステムの質量分析計の中に流すことと(質量分析計は、調整ガスによって調整される)、試料をキャリアガスとともに調整された質量分析計の中に導入し、試料から分析データを収集することと(キャリアガスは調整ガスとは異なる)を含む。
【0011】
別の実施形態によると、質量分析計(MS)システムを操作するための方法は、試料およびキャリアガスを、カラムを通してMSシステムの電離箱の中に流すことと、調整ガスをMSシステムの質量分析計の中に流すことと、を含む(調整ガスはキャリアガスとは異なる)。
【0012】
別の実施形態によると、質量分析計(MS)システムを操作するための方法は、試料およびキャリアガスを、カラムを通してMSシステムの電離箱の中に流すことによって、MSシステムを分析モードで操作することと、試料の流れを止めることによって、MSシステムを分析モードで操作するのを停止することと、調整ガスを質量分析計の中に流すことによって、MSシステムを調整モードで操作して、質量分析計の1つ以上の構成要素を調整することと、を含む(調整ガスはキャリアガスとは異なる)。調整ガスは、例えば、水素、アルゴン、アンモニア、および/またはメタンであってもよい。
【0013】
別の実施形態によると、質量分析計(MS)システムを操作するための方法は、試料およびキャリアガスを、カラムを通してMSシステムの電離箱の中に流すことと、試料およびキャリアガスを流しながら、調整ガスをMSシステムの質量分析計の中に流すことと(調整ガスはキャリアガスとは異なる)、試料の構成要素を電離箱内でイオン化することと、を含む。調整ガスは、例えば、水素、アルゴン、アンモニア、および/またはメタンであってもよい。
【0014】
別の実施形態によると、質量分析計(MS)システムを操作するための方法は、試料およびキャリアガスを、カラムを通してMSシステムの電離箱の中に流すことと、試料およびキャリアガスを流しながら、補助ガスを電離箱の中に流すことと(補助ガスはキャリアガスとは異なる)、試料の構成要素を電離箱内でイオン化することと、を含む。キャリアガスは、例えば、水素、アルゴン、アンモニア、および/またはメタンであってもよい。
【0015】
別の実施形態によると、質量分析計(MS)システムを操作するための方法は、試料およびキャリアガスを、カラムを通してMSシステムの電離箱の中に流すことと(キャリアガスは、水素、アルゴン、アンモニア、およびメタンから成る群から選択される)、試料およびキャリアガスを流しながら、補助ガスをMSシステムの質量分析計の中に流すことと(補助ガスはキャリアガスとは異なり、ヘリウム、窒素、およびアルゴンから成る群から選択される)、試料の構成要素を電離箱内でイオン化することと、を含む。
【0016】
別の実施形態によると、質量分析計と、調整ガスシステムとを備える質量分析計(MS)システムは、上記方法のいずれかを行うために構成される。MSシステムは、質量分析計と、調整システムとを含んでもよい。MSシステムはまた、ガスクロマトグラフを含んでもよい。
【0017】
別の実施形態によると、質量分析計(MS)システムは、試料インターフェースと、試料インターフェースと連通する電離箱とを含む質量分析計と、調整ガス源と流体連通するように構成された調整ガスラインと、試料インターフェースを通って電離箱の中に入る試料流路を確立するために構成された、分析モードで操作するためのデバイスまたは装置と、調整ガス源から調整ガスラインを通って質量分析計の中に入る調整ガス流路を確立するために構成された、調整モードで操作するためのデバイスまたは装置とを含む。
【0018】
別の実施形態によると、質量分析計(MS)システムは、試料インターフェースと、試料インターフェースと連通する電離箱とを含む質量分析計と、調整ガス源と、調整ガスと流体連通し、調整ガスを質量分析計に向かって配向するために構成された調整ガスラインと、質量分析計へのキャリアガスおよび調整ガスのそれぞれの流れを調節するためのデバイスまたは装置とを含む。
【0019】
別の実施形態によると、質量分析計(MS)システムは、試料インターフェースと、試料インターフェースと連通する電離箱とを含む質量分析計と(試料インターフェースは、キャリアガス源と流体連通するために構成され、キャリアガス源は、キャリアガスを供給するために構成される)、補助ガス源と流体連通するために構成された補助ガスラインと(補助ガス源は、キャリアガスとは異なる補助ガスを供給するために構成され、補助ガスラインは、補助ガスをキャリアガスに添加するために構成される)、キャリアガスに対する補助ガスの比率が、0容量%〜100容量%未満の範囲となるように、電離箱へのキャリアガスおよび補助ガスのそれぞれの流れを調節するためのデバイスまたは装置とを含む。キャリアガスは、水素、アルゴン、アンモニア、および/またはメタンであってもよい。
【0020】
別の実施形態によると、上記方法のいずれかを行うための命令を含む、コンピュータ可読記憶媒体が提供される。
【0021】
別の実施形態によると、コンピュータ可読記憶媒体を含む、質量分析計(MS)システムが提供される。
【0022】
いくつかの実施形態では、調整ガスは、水素、アルゴン、フッ素、酸素、アンモニアおよび/またはメタンであり得るか、または含んでもよい。いくつかの実施形態では、キャリアガスは、ヘリウム、窒素、またはアルゴンであり得るか、または含んでもよい。いくつかの実施形態では、調整ガスは、水素であるか、または水素を含み、キャリアガスは、ヘリウムであるか、またはヘリウムを含む。
【0023】
他の実施形態では、キャリアガスは水素であり、例えば、ヘリウム等の補助ガスは、水素に添加される。
【0024】
本発明の他のデバイス、装置、システム、方法、特徴、および利点は、以下の図面および詳細な説明を検討するとき、当業者に明らかであるか、または明らかとなるであろう。そのような追加のシステム、方法、特徴、および利点は、本開示の範囲に含まれ、すべて本発明の範囲内であり、添付の請求項によって保護されるものとする。
【0025】
本発明は、以下の図面を参照することによって、よりよく理解され得る。図中の構成要素は、必ずしも原寸であるとは限らず、代わりに本発明の原理を説明する際に強調される。図中の同様の参照番号は、異なる図面を通して対応する部分を指定する。
【図面の簡単な説明】
【0026】
【図1】本開示による質量分析計(MS)システムの一実施例の概略図である。
【図2】MSシステムを通る調整ガスおよびキャリアガスの質量スペクトル測定を示し、その存在量の比率を利用して、本開示によるMSシステムに提供される調整ガスの量を決定することができる。
【図3A】MSシステムの重度の汚染を示す質量スペクトルを示す。
【図3B】図3Aと同一のMSシステムから生成されたが、MSシステムを本開示による調整プロセスに供した後の質量スペクトルを示す。
【図3C】図3Bと同一であるが、拡大規模の質量スペクトルを示す。
【図4A】調整プロセスなしにMSシステムを実行することから生成された時間の関数としての、再構成トータルイオンクロマトグラム(RTICまたはTIC)である。
【図4B】図4Aと同一のMSシステムであるが、本開示に従って、240分後に、MSシステムを、調整剤として水素を使用するオフライン調整プロセスで2時間処理した後の別のRTICである。
【図5A】それぞれ個別のイオン質量55−u、105−u、91−u、215−u、および207−uについての時間の関数としてのイオンクロマトグラムであり、クロマトグラムは、MSシステムを実行し、MSシステムを約250分および270分後に調整プロセスを行うことから生成された。
【図5B】それぞれ個別のイオン質量55−u、105−u、91−u、215−u、および207−uについての時間の関数としてのイオンクロマトグラムであり、クロマトグラムは、MSシステムを実行し、MSシステムを約250分および270分後に調整プロセスを行うことから生成された。
【図5C】それぞれ個別のイオン質量55−u、105−u、91−u、215−u、および207−uについての時間の関数としてのイオンクロマトグラムであり、クロマトグラムは、MSシステムを実行し、MSシステムを約250分および270分後に調整プロセスを行うことから生成された。
【図5D】それぞれ個別のイオン質量55−u、105−u、91−u、215−u、および207−uについての時間の関数としてのイオンクロマトグラムであり、クロマトグラムは、MSシステムを実行し、MSシステムを約250分および270分後に調整プロセスを行うことから生成された。
【図5E】それぞれ個別のイオン質量55−u、105−u、91−u、215−u、および207−uについての時間の関数としてのイオンクロマトグラムであり、クロマトグラムは、MSシステムを実行し、MSシステムを約250分および270分後に調整プロセスを行うことから生成された。
【図6A】汚染されたMSシステムにおけるオクタフルオロナフタレンの選択イオンモニタリング(SIM)取得のための再構成イオンクロマトグラムである。
【図6B】図6Aと同一のMSシステムにおけるオクタフルオロナフタレンのSIM取得のための再構成イオンクロマトグラムであるが、本開示に従って、調整剤として水素を使用し、MSシステムをオフライン調整プロセスで処理した後のものである。
【図7】本開示によるオンライン調整のために構成されたMSシステムの一実施例の概略図である。
【図8】図7に示されたMSシステムを通して実行される、3つのn−アルカン系炭化水素、n−テトラデカン(n−C14)、n−ペンタデカン(n−C15)、およびn−ヘキサデカン(n−C16)の試料分析から得られたクロマトグラムである。
【図9】調整ガスを添加せずに、第1の注入に対して正規化し、3つの化合物についてプロットされた、図8の試料を22回連続実行した場合の原積分面積のプロットである。
【図10】調整ガスを添加して、第1の注入に対して正規化し、3つの化合物についてプロットされた、図8の試料を21回連続実行した場合の原積分面積のプロットである。
【図11】本開示によるオンライン調整のために構成されたMSシステムの別の実施例の概略図である。
【図12】図11に示されたMSシステムを通じて実行された8つの汚染物質の試料分析から得られたMS SIM TICおよびFIDクロマトグラムである。
【図13】本開示に従って、調整ガスを添加せずに、図12の試料に関する20回の連続分析の最初の5回と最後の5回についての質量分析計対フレームイオン化検出器(MS:FID)面積比のプロットであり、各化合物の比率は、第1の注入のそれに対して正規化される。
【図14】調整ガスを添加して、図12の試料に関する30回の連続分析の最初の5回と最後の5回についてのMS:FID面積比のプロットであり、各化合物の比率は、第1の注入のそれに対して正規化される。
【図15】本開示によるオンライン調整に対して構成されたMSシステムの別の実施例の概略図である。
【図16】図15に示されるMSシステムを通じて実行される、9個の溶媒化合物の実施例の試料分析から得られたMS SIM TICおよびFIDクロマトグラムである。
【図17】本開示に従って、調整ガスを添加する、図16の試料の9回の連続分析について、続いて調整ガスを添加しない試料の11回の連続分析についての質量分析計対フレームイオン化検出器(MS:FID)面積比のプロットであり、各化合物に関する比率は、水素を添加して作製された第1の注入のそれに対して正規化される。
【図18】典型的なGC/MSシステムにおいて、キャリアガスとして水素のみを用いる場合に観察された背景イオン質量の典型的なスペクトルを示す。
【図19】本開示によるオンライン調整のために構成されたMSシステムの別の実施例の概略図である。
【図20】キャリアガスとして水素を利用し、ポストカラム補助としてヘリウムを利用して、図19に示されたMSシステムを通じた28個の化合物試料に関するクロマトグラフを実行することから得られた2つのTICを示し、上位TICは、クロマトグラフの実行直後、下位TICはMSシステムを洗浄した後に取得された。
【発明を実施するための形態】
【0027】
本明細書で使用する、「質量分析計システム」(または「MSシステム」)という用語は、質量分析計と操作的に連動するガスクロマトグラフ(GC)の有無に関わらず、質量分析計を含むシステムを指す。したがって、便宜上「MSシステム」という用語はまた、関心対象の特定実施形態に応じて、「ガスクロマトグラフ/質量分析計システム」(または「GC/MSシステム」)という用語を包含し得る(または同義的に使用され得る)。
【0028】
本開示の文脈では、「検体」という用語は、概して、MSシステムの研究者またはユーザに対する関心対象の任意の試料分子、つまり、例えば、クロマトグラフまたはクロマトグラフ/質量スペクトル分析等の分析が望まれる分子を指す。「試料」または「試料マトリクス」という用語は、検体を含有することが知られるか、または疑われる任意の物質を指す。試料は、検体および非検体の組み合わせを含んでもよい。「非検体」または「非分析的構成要素」という用語は、本文脈では、そのような構成要素が分析的値を有さず、所望の検体の分析を障害する(例えば、干渉する)ため、分析の対象でない試料の構成要素を指す。非検体は、一般に、汚染物質または不純物等の関心対象でない任意の分子であり得る。非検体の例としては、それらに限定されないが、水、油、溶媒、または所望の検体が検出され得る他の媒体、ならびにクロマトグラフカラムから流出した固定相材料が挙げられる。非検体の源は、MSシステムを操作する時に分析され、試料に関する分析データを取得する試料であり得る。代替または追加として、非検体は、MSシステムを操作して、指定の時点で分析データを取得する前に質量分析計内に既に存在する残留種であってもよく、そのような残留種は、MSシステムの以前の使用の結果として蓄積している。
【0029】
本開示の目的で、「検体」という用語はまた、参照、基準、調整媒体、または較正を提供する目的で、MSシステムによって分析され得る化合物を指す。
【0030】
本開示は、調整ガス(または調整剤)を質量分析計(MS)システムに添加して、その性能を改善または回復するように、MSシステムを原位置で調整(または再調整)することを伴う、様々な実施形態について説明する。現時点で任意の特定の理論に拘束されることなく、調整ガスは、以下の機能、MSシステムの1つ以上の構成要素(例えば、イオン源、質量分析器、イオン検出器)の1つ以上の表面(例えば、壁、プレート、電極、導管)を洗浄すること、試料分析後にMSシステム内で蓄積したか、または試料分析中にMSシステム内に蓄積しているマトリクス構成要素等の非検体を減少させる、または除去すること、試料分析中に非検体のさらなる蓄積を回避すること、排気/ポンプダウン手順後にMSシステムの調整を加速させること、MS分析に対してより最適な、または一貫したイオン源状態(例えば、表面酸化状態または他の表面測定基準)を回復または作成すること、のうちの1つ以上を果たし得る。発明者らは、水素がMS環境において調整剤として極めて有効であることを発見した。水素は、表面の汚染物質を急速に拡散および移動させる。水素は、解離されるか、またはより高く励起されるとき、順安定または偽リュードベリ状態(例えば、電子衝撃または他のプロセスによる)が極めて活発であり、イオン源表面上に吸収され、動作を低下させる傾向があるもの等、多くの吸収された化合物を減少させることができる。さらに、水素は、金属酸化状態を変更することができる。MSシステムの金属表面は、イオン源内で発生するような脱水または還元等の、検体および他の導入された化合物に影響を及ぼす多様な反応に関与することが知られている。金属を酸化状態の範囲から複製可能な固定設定に変換することによって、性能の一貫性を高めることができる。イオン源の場合、スペクトル特徴は、大いに安定化され得る。これらの水素の調整属性は、水素の使用に伴う上記課題に起因して、これまでの研究者によって完全に理解されなかった。より一般的に、調整ガスをMSシステムに添加するという概念は、本研究以前に適切に調査されていない。これは、今日まで、調整技術の改善に対する努力が、構成要素の除去性を強化して従来の移動洗浄を容易にすること、つまり、MSシステムを遮断して、構成要素を洗浄する目的で、MSシステムから構成要素を物理的に除去すること、ならびに従来の移動洗浄の必要性を減少させる試みにおいて、イオン源の表面の代替組成を探求することに主に限定されていたという見解から明らかであり得る。
【0031】
一般に、調整ガスは、MSシステムの前記機能のうちの1つ以上を行い、水素と同一または同様の調整属性を呈するのに適した任意のガスであり得る。したがって、水素に加えて、他の調整ガスの例としては、それらに限定されないが、アルゴン、フッ素、酸素、アンモニア、メタン、および水素、アルゴン、フッ素、酸素、アンモニア、およびメタンのうちの2つ以上の組み合わせが挙げられる。利用される特定の調整ガスは、調整プロセスがオンラインモードで行われるか、またはオフラインモードで行われるかに依存し得、これらのモードは以下に説明される。調整ガスは、気体または揮発性液体源によって提供される、単一のガスまたはガスの混合であり得る。本文脈では、「ガス」という用語は、「蒸気」という用語を包含する。MSシステムの中に導入される調整ガスは、例えば、クロマトグラフィのためのキャリアガス、化学イオン化のための試薬ガス、および衝突セルまたはイオントラップ内でのイオン分裂、またはイオンガイドまたはイオントラップ内での衝突冷却のための衝突ガス等の任意の他の意図的に添加されたガスであってもよい。あるいは、調整ガスは、MSシステムのその性質および特定の状態に応じて、排他的に添加されてもよい。MSシステムに添加される調整ガスは、キャリアガスまたはいくつかの他のガス(例えば、以下でさらに説明される補助ガス)を含むブレンドの一部であり得る。調整ガスの種類に応じて、特定の実施形態が実装されるか、または調整ガスが存在するMSシステムの段階に応じて、調整ガス分子は、加熱されるか、電気的に中性であるか、順安定であるか、またはリュードベリ状態もしくは他の励起状態であるか、またはイオン化されてもよい。
【0032】
いくつかの実施形態では、原位置調整を実行するために構成されたMSシステムは、ガスクロマトグラフ/質量分析計(GC/MS)システムの一部であり、したがって、ガスクロマトグラフ(GC)と連動する。そのような実施形態では、調整ガスは、MSシステムの中に導入される前に、GCの一部を通ってもよい。いくつかの実施形態では、調整ガスは、イオン源の中に直接導入される。さらに、調整ガスは、MSシステムおよび/またはGCの1つ以上の位置の中に導入されてもよい。この目的で、調整ガスの複数の個別の源(または少なくとも複数の調整ガスライン)が利用され得る。
【0033】
いくつかの実施形態では、MSまたはGC/MSシステムは、オフライン調整モードを実行するために構成される。オフライン調整モードでは、MSまたはGC/MSシステムが分析モードで操作されていない時間、すなわち、試料に対して質量分析またはガスクロマトグラフィ/質量分析を行って、分析データを取得するように操作されていない時間の間、調整ガスは、MSまたはGC/MSシステムの中に導入される。そのような実施形態では、MSまたはGC/MSシステムは、分析モードと調整モードとを切り替えるように構成されてもよい。1つのモードから他のモードへの切り替えの実行は、例えば、以下でさらに説明されるように、1つ以上のパラメータを評価する応答において、全体的もしくは部分的に手動であり得るか、または全体的もしくは部分的に自動化されてもよい。一般に、オフラインモードでは、調整ガスは、ウォームアップ、チューニング、ポンプダウン、ベンティング、クールダウン等の試料に関する分析データの取得を伴わない任意の段階の間に添加されてもよい。さらに、オフラインモードは、調整ガスを添加することを伴い得るが、MSまたはGC/MSシステムの1つ以上の構成要素(例えば、イオン源)が除去される。
【0034】
他の実施形態では、MSまたはGC/MSシステムは、オンライン(または動的)調整モードを実行するために構成される。オンライン調整モードでは、調整ガスは、MSまたはGC/MSシステムの中に導入される一方で、MSまたはGC/MSシステムは、試料に対して質量分析またはガスクロマトグラフィ/質量分析を行うように操作される。オンライン調整モードと関連付けられた1つ以上のパラメータは、MSまたはGC/MSシステムの操作状態に応答して動的に調整されてもよい。いくつかの実施形態では、MSまたはGC/MSシステムは、オフラインおよびオンライン調整モードの両方を実行するために構成される。
【0035】
調整ガスをMSシステムの中に流すことに加えて、調整モードは、所望の温度または所望の温度範囲内で、MSシステムまたはGC/MSシステムの1つ以上の領域(例えば、イオン源、質量分析器、イオン検出器、カラム)を調整ガスに曝される状態で維持することを含み得る。調整プロセスは、調整ガスを加熱することによって強化されてもよく、および/または表面は調整ガスによって処理される。さらに、調整モードは、イオン源を操作して、電子を電離箱の中に放出することを含み得る。電子の存在は、1つ以上の機構によって、調整プロセスを強化し得、例えば、表面の洗浄を促進する二次種を調整ガスから「活性化」または生成する。
【0036】
別の実施形態では、水素等の調整ガスを、ヘリウム等のより伝統的なキャリアガスの代わりに、GCカラムを通して試料を輸送するためのキャリアガスとして利用する。イオン源上流のいくつかの地点で、ヘリウム等の補助ガスを水素キャリアガス流に添加すると、混合ガスは、イオン源に進入する。この構成はまた、オンライン調整技法として有効であることがわかった。
【0037】
本開示の文脈において、「調整する」という用語は、概して、イオン源および/または質量分析計の他の構成要素または領域を洗浄すること、またはそうでなければ質量分析計の性能を改善または最適化する状態にすることを指す。一態様では、調整は、MSシステムを操作して、調整ガスをMSシステムの質量分析計の中に流すことによって達成される。質量分析計内に調整ガスを添加することは、オンライン調整プロセス中にMSシステムによって分析される試料、またはオフライン調整プロセス後にMSシステムによって分析される試料の検体の質量スペクトル特性(またはスペクトル応答)を実質的に変更しない。つまり、検体のスペクトル特性は、調整ガスの添加の有無に関わらず、実質的に未変化のままである。言い換えれば、調整ガスは、検体のイオン存在量の比を実質的に変化させない。代わりに、調整ガスは、質量分析計を洗浄し、非検体が質量分析計内に蓄積しないようにする。これらの目的で、オンライン調整モードについて検討される典型的な実施形態では、調整ガスは、例えば、水素、アルゴン、または水素とアルゴンのブレンド(混合)であってもよい。オフライン調整モードでは、一般に、例えば、水素、アルゴン、フッ素、酸素、アンモニア、および/またはメタン等の広範な調整ガスが検討される。
【0038】
調整ガスが添加される条件またはパラメータを制御して、検体のスペクトル応答を実質的に変化させずに、調整ガスの調整を可能にし得る。実施例として、質量分析計内の調整ガスの濃度は、例えば、質量分析計の中に入る調整ガスの流量を調節することによって制御されてもよい。調整ガスの流量の調節は、質量分析計の中に流される他のガスに対して行われてもよい。他の条件またはパラメータは、調整ガスの温度、調整ガスが利用されている質量分析計の領域または構成要素における温度および/または圧力、および例えば、イオン源の操作を通して活性化された調整ガスの程度を含んでもよい。
【0039】
したがって、調整ガスの添加は、検体スペクトル応答を実質的に変更しないため、調整ガスの添加は、化学イオン化(CI)を生じないことがわかる。したがって、本開示の文脈において、調整ガスは、CI試薬ガスではない。
【0040】
MSシステムがGCを含むいくつかの実施形態では、調整ガスは、調整ガスをGCの分析カラムを通して流すことによって、質量分析計に添加されてもよい。しかしながら、本開示で教示されるように、質量分析計を「調整する」プロセスは、分析カラムを「調整する」または「事前調整する」プロセスと同一ではないことが理解されるであろう。分析カラムを調整または事前調整することは、通常、溶媒をカラムに通して、固定相の構成成分を活性化すること、および/またはクロマトグラフ実験の準備において、不純物のカラムをパージすることを伴い、したがって、本明細書に開示される調整プロセスに関連しない別個の異なるプロセスである。
【0041】
図1は、質量分析計(MS)システム100の実施例の概略図である。MSシステム100は、一般に、質量分析計104および調整ガスシステム108を含んでもよい。質量分析計104は、試料源と、試料(または試料/キャリアガス)入口またはインターフェース112、MSハウジング116、イオン化装置(またはイオン源)120、質量分析計124、イオン検出器128、および真空システム132を含む。
【0042】
試料源は、試料インターフェース112を介して、イオン源120に試料材料の流れを提供するために構成された任意のデバイスであり得る。実施例として、試料源は、バッチ量、試料プローブ、または液体処理システムと関連付けられてもよい。イオン源120に対する試料材料の流れは、ポンピング、毛管アクション、または電気的支援技術等の任意の手段によって影響され得る。複合技術において、試料源は、ガスクロマトグラフ(GC)器具、液体クロマトグラフ(LC)器具、毛管電気泳動(CE)器具、毛管電気クロマトグラフィ(CEC)器具等の分析的分離器具の出力と関連付けられてもよい。いくつかの実施形態では、試料は、試料源からカラムまたは導管を通って試料を流す必要なく、イオン源120の中に直接導入または搭載されてもよい。これらの実施形態では、イオン源120に対する試料入口または試料インターフェースは、例えば、直接挿入プローブであってもよい。試料をイオン源の中に直接導入するために用いられる技術に応じて、キャリアガスは、試料導入を支援するために利用され得るか、または利用され得ない。
【0043】
イオン源120は、試料源から受容された試料流から検体イオンを生成し、そのように生成されたイオンを質量分析器124の中に配向するために適した任意の装置であり得る。例えば、イオン源120は、電子衝撃(EI)装置または化学イオン化(CI)装置であってもよい。イオン源120はまた、EIモードの操作とCIモードの操作とを切り替える能力を含み得る。イオン源120は、電離箱136とイオン化デバイス140とを含む。EIまたはCIの場合、イオン化デバイス140は、通常、当業者によって理解される方法で、電子を放出するために構成されたフィラメントである。しかしながら、本開示は、EIおよびCIに限定されず、現在知られているか、または今後開発されるイオン化の様々な他のモードを包含してもよい。いくつかの実施形態では、イオン源120は、特にオンライン方法を操作するための、誘導結合プラズマ(ICP)イオン源等のプラズマを有する試料をイオン化するものではない。
【0044】
CIの場合、MSシステム100は、通常、試薬ガスライン152を介して試料インターフェース112の導管148と連通する、CI試薬ガス源144をさらに含む。試薬ガス源144は、1つ以上の異なる種類の試薬ガスを供給するための1つ以上の容器を表し得る。試薬ガスは、当業者に理解されるように、電離箱136内でCIを行うために適した任意のガスであってもよい。試薬ガスの実施例としては、それらに限定されないが、メタン、イソブタン、アンモニア、二酸化炭素、ジクロロジフルオロメタン、トリメチルシラン、酸化窒素、およびメチルアミンが挙げられる。試薬ガスの流れは、ガス流コントローラ(または流れ制御モジュール)156等の任意の手段によって制御されてもよい。流れコントローラ156は、例えば、1つ以上のバルブ、制限器、質量流れコントローラ、圧力調整器等を含んでもよい。流れコントローラ156は、手動または電子的に制御され得る。いくつかの実施形態では、流れコントローラ156は、周知の設計および操作のプログラム可能な電子空気圧コントローラ(EPC)であってもよい。例示の実施例では、試薬ガスは、試薬ガス源144から試薬ガスライン152を通って流れコントローラ156、補助ガスライン160を通って(導管148のポートを経由)導管148に至り、電離箱136の中に入る試薬ガス経路を介して、電離箱136に供給される。
【0045】
質量分析器124は、それぞれの質量(すなわち、質量対電荷比またはm/z比)に基づいて、検体イオンを分離、分類、またはフィルタリングするために構成された任意のデバイスであり得る。質量分析器124の例としては、それらに限定されないが、多極電極構造(例えば、質量フィルタ、イオントラップ)、飛行時間(TOF)構成要素、静電分析器(ESA)、および磁気セクターが挙げられる。質量分析器124は、特にイオン分裂が所望されるとき、複数の質量分析器のシステムを含んでもよい。実施例として、質量分析器124は、当業者に理解されるように、タンデムMSまたはMSシステムであってもよい。別の実施例として、質量分析器124は、衝突セルが続く質量フィルタを含んでもよく、順に別の質量フィルタが続く。別の実施例として、質量分析器124は、イオン移動度スペクトロメータ(IMS)を備えてもよい。しかしながら、いくつかの実施形態では、MSシステム100は、IMSを備えていない。
【0046】
イオン検出器128は、質量分析器124から出力された質量で識別されたイオンの流束(または流れ)を収集および測定するために構成された任意のデバイスであってもよい。イオン検出器128の実施例としては、それらに限定されないが、電子増幅器、光電子増倍管、およびファラデーカップが挙げられる。
【0047】
イオン源120、質量分析器124、およびイオン検出器128は、真空システム132と連動するMSハウジング116内に配置される。MSハウジング116および真空システム132は、質量分析計104内で連続する真空段階を定義するように構成される。この構成によって、イオン源120は、設計に応じて所望の低圧力または真空レベルで維持され、質量分析器124およびイオン検出器128は、所望の真空レベルで維持される。上述されるような複数の構成要素またはモジュールを含む質量分析器124の場合、各構成要素またはモジュールは、異なる真空レベルで維持されてもよい。実施例として、衝突セルは、通常、衝突セルに先行するか、または後続する真空質量フィルタよりも高い圧力で保持される。前述の目的で、真空システム132は、通常、MSハウジング116の1つ以上の排気ポートを介して、1つ以上の真空段階と連通する、1つ以上の真空ポンプを含む。
【0048】
質量分析計104はまた、加熱システム164を含んでもよい。加熱システム164は、試料インターフェース112、電離箱136、質量分析器124、およびイオン検出器128等の質量分析計104の1つ以上の構成要素のそれぞれの温度を制御するために構成された1つ以上の加熱デバイスを含み得る。指定の加熱デバイスは、抵抗加熱要素等の直接加熱、または熱交換媒体を経由するためのシステム等の間接加熱のために構成されてもよい。
【0049】
MSシステム100はまた、システムコントローラ(またはシステム制御モジュール)168を含んでもよい。システムコントローラ168は、例えば、電離箱136への試料導入、試薬ガスの導入(該当する場合)および試薬ガスの選択、試料のイオン化、操作のEIまたはCIモードの選択、真空および加圧設定、温度設定または加熱システム164によって実装される可変温度プロファイル、質量分析器124の操作パラメータ(例えば、印加される電場および/または磁場、衝突/背景ガス導入、イオン光学のタイミング等)、イオン検出器128からの信号の取得および分析、質量スペクトルまたはクロマトグラムの生成および表示等のMSシステム100の様々な態様を制御および/または監視するために構成され得る。これらの目的で、システムコントローラ168は、通信リンク172を介して質量分析計104と信号通信するように概略的に示される。通信リンク172は、それぞれMSシステム100の様々な構成要素と連動する、いくつかの通信リンクの代表であり得る。指定の通信リンクは、有線または無線であってもよい。またこれらの目的で、システムコントローラ168は、1つ以上の種類のハードウェア、ファームウェア、および/またはソフトウェア、ならびに1つ以上の種類のメモリを含んでもよい。例示される実施例では、システムコントローラ168は、以下でさらに説明されるように、電子プロセッサ176、メモリに保存されるデータベース180、ガス流制御ソフトウェア184、および性能評価ソフトウェア188を含む。システムコントローラ168はまた、例えば、ユーザ入力デバイス(例えば、キーパッド、タッチ画面、マウス等)、ユーザ出力デバイス(例えば、ディスプレイ画面、プリンタ、可視的インジケータまたはアラート、可聴的インジケータまたはアラート等)、ソフトウェアによって制御されるグラフィカルユーザインターフェース(GUI)、および電子プロセッサ176によって読み取り可能な媒体をロードするためのデバイス(例えば、ソフトウェアにおいて具体化される論理命令、データ等)の1つ以上の種類のユーザインターフェースを代表するものであり得る。システムコントローラ168は、システムコントローラ168の様々な機能を制御および管理するための操作システム(例えば、Microsoft Windows(登録商標)ソフトウェア)を含んでもよい。システムコントローラ168の1つ以上の構成要素は、MSシステム100から遠隔に位置し、有線または無線通信リンク上でシステムコントローラ168のローカル部分と連通し得る。いくつかの実施形態では、システムコントローラ168は、実験室情報管理システム(LIMS)を含み得るか、またはその一部であってもよく、例えば、病院または他の医療環境で利用され得る。
【0050】
調整ガスシステム108は、調整ガスをMSシステム100の中に配向するために構成される。この目的で、調整ガスシステム108は、調整ガスラインと連通する調整ガス源と、必要に応じてガス流コントローラとを含み得る。上記のとおり、調整ガスは、例えば、水素、アルゴン、アンモニア、および/またはメタンであってもよい。調整ガスシステム108は、調整ガスをMSシステム100の1つ以上の位置に配向するために構成され得る。様々な代替例は、図1において点線のブロックおよびラインで表される。したがって、一実施形態では、調整ガス源204および関連付けられた調整ガスライン208は、試薬ガス源144からの試薬ガスの流れも調節する、ガス流コントローラ156と連通する。本実施形態では、調整ガスは、補助ガスライン160に流入し、導管148を通って電離箱136の中に入る。別の実施形態では、調整ガス源212および関連付けられた調整ガスライン216は、電離箱136と直接連通し、それによって、調整ガスは、電離箱136の中に直接流れ込む。別の実施形態では、調整ガス源212および関連付けられた調整ガスライン220は、質量分析器124または多構成要素質量分析器の124と直接連通する。例えば、調整ガスは、衝突セル、質量フィルタ、イオンガイド、またはそのような質量分析器構成要素のうちの2つ以上の中に導入されてもよい。別の実施形態では、調整ガス源212および関連付けられた調整ガスライン224は、イオン検出器128の適切な領域と直接連通する。調整ガスシステム108は、前述の位置のうちの1つと連通する、単一の調整ガス源212を含み得るか、または前述の位置のうちの2つ以上とそれぞれ連通する、2つ以上の調整ガス源212(または少なくとも2つ以上の調整ガスライン216、220、224)を含み得る。簡潔にするために、図1では1つの調整ガス源212が示され、調整ガスライン216、220、224のそれぞれは、異なる調整ガス源と関連付けられ得ることに留意されたい。ガス流コントローラ(図示せず)は、調整ガスライン216、220、224のうちの1つ以上と連通して配置されてもよく、試薬ガス源144と関連付けられたガス流コントローラ156と同一または同様の構成を有し得ることも留意されたい。MSシステム100内に提供されるガス流コントローラのうちのいずれかは、システムコントローラ168、例えば、電子プロセッサ176によって、ガス流制御ソフトウェア184によって提供される指示に従って手動で操作および/または制御されてもよい。
【0051】
前述の実施形態のすべてにおいて、調整ガスシステム108は、調整ガス源204および/または212から、調整ガスライン208、216、220および/または224を通って、質量分析計104の中に入る調整ガス流路を提供する。調整ガス流路は、質量分析計104の1つ以上の位置に直接入るか、または質量分析計104の上流の位置から出るかのいずれかである。これらのいずれの実施形態の場合も、調整ガスは、最初に直接進入するMS構成要素から、他のMS構成要素のうちの1つ以上に、流れるか、または拡散し得る。例えば、衝突セルの中に直接供給される調整ガスは、先行および/または後続の質量フィルタに対して流れるか、または拡散し得る。別の実施例では、質量分析器124の構成要素の中に直接供給される調整ガスは、電離箱136および/またはイオン検出器128の中に流れるか、または拡散し得る。いくつかの実施形態では(以下でさらに説明される)、調整ガス流路は、MSシステム100が分析モードで活発に操作されている間、すなわち、試料およびイオンの流路が、一般に電離箱136から質量分析器124に向かう方向で確立される間に確立されてもよい。これらの実施形態においてさえも、質量分析器124の中に直接注入された十分な量の調整ガスが、電離箱136の中へ反対方向に拡散し、電離箱136の表面を調整/洗浄するために有効であり得る。
【0052】
図1はまた、MSシステム100がガスクロマトグラフ(GCまたはGCシステム)230を含む、言い換えれば、ガスクロマトグラフ/質量分析計(GC/MS)システムの一部である実施形態を示す。そのような実施形態では、MSシステム100は、代替として、試料インターフェース112を介してGC230と連動するものとして特徴付けられてもよく、この場合、GC/MSインターフェースとも呼ばれ得る。GC230は、一般に、GCハウジング234と、通常GCハウジング234に載置される試料導入デバイス238と、キャリアガス源242と、GCハウジング234内に配置されるカラム(またはGCカラム)246と、加熱デバイス250とを含む。
【0053】
カラム246は、密閉された流体コネクタを介して、試料導入デバイス238と連通するカラム入口252と、電離箱136と連通するカラム出口254とを含む。カラム246の一部分は、カラム出口254が電離箱136内に位置するように、試料インターフェース112を通って、電離箱136の中に伸長し得る。代替または同等として、カラム246は、密閉された流体コネクタを介して輸送ラインに連結されてもよく、その場合、輸送ラインは、試料インターフェース112を通って、電離箱136の中に伸長する。カラム246は、固定相を含み、通常、カラム246の内壁をライニングする堅い担体またはフィルム上に保持される、液体またはポリマーを備える。当業者に理解されるように、多様な組成を固定相に対して選択してもよく、多孔性または密度の範囲が固定相に対して選択され得る。所望の長さを維持しながら、空間を節約するために、カラム246はコイル状のセクション256を含んでもよい。
【0054】
試料導入デバイス238は、通常、試料をカラム入口252の中に注入するためのデバイスを含み、試料を真空にするためのデバイスを含み得る。試料は、カラム246および1つ以上の溶媒中で分析的に分離される試料材料を含むマトリクスであってもよい。試料導入デバイス238は、別個の試料源(図示せず)は、別個の試料源(図示せず)と流体連通し得るか、または試料源として機能し得る。例えば、試料導入デバイス238は、1つ以上の試料容器260を受容するように構成されてもよく、カラム246の中に注入するための所望の試料を選択するためのデバイス(例えば、カルーセル)を含んでもよい。
【0055】
キャリアガス源242は、キャリアガスライン264を介して、カラム入口252と連通し得る。キャリアガスライン264は、カラム入口252の上流地点で、試料導入デバイス238の一部分に連結されてもよい。当業者に理解されるように、キャリアガスは、カラム246を通しての試料の輸送を容易にする、不活性移動相として機能するために適した任意のガスであり得る。キャリアガスの実施例としては、それらに限定されないが、ヘリウム、窒素、アルゴン、またはいくつかの実施形態では、水素が挙げられる。キャリアガスの流れは、ガス流コントローラ268等の任意の手段によって制御されてもよい。流れコントローラ268は、試薬ガス源144と関連付けられた流れコントローラ156と同一または同様の構成を有し得る。例示の実施例では、キャリアガスは、キャリアガス源242から、キャリアガスライン264を通って流れコントローラ268に至り、カラム入口252の中に入る(場合によっては、上記のように、試料導入デバイス238を介して)キャリアガス流路を介して、カラム246に供給される。
【0056】
加熱デバイス250は、所望の温度設定でカラム246を維持するため、または所望の(すなわち、既定の)温度プロファイル(または温度プログラム)に従って、カラム246の温度を変動させるために適した任意の構成を有し得る。一実施例では、GCハウジング234は、オーブンであり(または含む)、加熱デバイス250は、カラム246が通って伸長するオーブンの内側を加熱するために構成される。別の実施例では、加熱デバイス250は、カラム246を直接加熱するために構成される。例えば、加熱デバイス250は、カラム246と熱接触して載置される抵抗加熱要素を含んでもよい。
【0057】
GCが含まれるとき、MSシステム100はまた、カラム246によって分離される試料の構成要素を分析するための追加の手段、すなわち、質量分析計104に加えられる分析器具を含んでもよい。したがって、例示の実施形態では、MSシステム100は、任意の適切な種類の任意選択的なガス検出器を含み、通常、GCハウジング234の外側に位置付けられる。ガス検出器272は、フレームイオン化検出器(FID)または熱伝導性検出器(TCD)等のスペクトルまたはクロマトグラムを生成することができる種類であってもよい。ガス検出器272は、ガス出口ライン278を介して、コイル状のセクション256とカラム出口254との間のカラム246のセクション276と連通する。流れ分割器(図示せず)は、この目的で、このセクション276において、カラム246と一列に配置され得る。この構成によって、コイル状のセクション256からのカラム246内の試料/ガス流は、電離箱136の中に配向される第1の出力流と、ガス出口ライン278を介してガス検出器272の中に配向される第2の出力流とに分割される。
【0058】
GC230がMSシステム100に連結される、追加の実施形態は、調整ガスをMSシステム100に配向するように調整ガスシステム108を構成するために提示される。一般に、これらの追加の実施形態は、少なくとも部分的にGCハウジング234を通る、1つ以上の調整ガス流路を確立することによって、電離箱136の上流の1つ以上の位置において、調整ガスを導入することを伴う。いくつかの実施形態では、調整ガス流路は、カラム246の少なくとも一部分を通り得る。様々な代替例は、図1において点線ブロックおよびラインで表される。したがって、一実施形態では、調整ガス源282および関連付けられた調整ガスライン284は、キャリアガス源242からのキャリアガスの流れも調節する、ガス流コントローラ268と連通する。本実施形態では、調整ガスは、流れコントローラ268から共通のガス入口ライン286およびカラム入口252の中に流される。流れコントローラ268を利用して、カラム246のキャリアガスおよび調整ガスのそれぞれの流れ(例えば、流量)を調節してもよい。実装される特定の調整戦略に応じて、キャリアガスとカラム246に流入する調整ガスとの比率は、一般に、0容量%〜100容量%未満の範囲である。つまり、流れコントローラ268を操作して、キャリアガスの流れを完全に遮断し得る一方で、調整ガスをカラム246の中に流すか、またはキャリアガスと調整ガスとを混合し、両方のガスは、所望の比率でガス入口ライン286を通って流される。別の実施例では、混合流中の調整ガスの比率は、0.02%〜50%の範囲である。別の実施例では、調整ガスの比率は、0.05%〜40%の範囲である。別の実施例では、調整ガスの比率は、0.25%〜10%の範囲である。これらの典型的な範囲は、調整ガスがMSシステム100の別の場所に導入される、他の実施形態において用いられてもよく、より一般的に、質量分析計104の中に入る調整ガスの流れを調節するように適用される。さらに、これらの典型的な範囲は、オンラインモードまたはオフラインモードのいずれかを伴う様々な実施形態において用いられてもよい。
【0059】
別の実施形態では、調整ガス源(図示せず)および関連付けられた調整ガスライン(図示せず)は、カラム入口252とカラム出口254との間、例えば、カラム入口252とコイル状のセクション256との間、コイル状のセクション256において、またはコイル状のセクション256とカラム出口254との間で、カラム246のセクション(図示せず)と連通する。例えば、図1において、調整ガス源290および関連付けられた調整ガスライン292は、コイル状のセクション256とカラム出口254との間(またはコイル状のセクション256と試料インターフェース112との間)で、カラム246のセクション296と連通する。それぞれのガス流を所望のカラムセクションにおいてマージするために適した任意の構造またはデバイス、例えば、ティー接続、ユニオン等が利用されてもよい。他の実施形態に見られるように、適切な流れコントローラ304は、調整ガスの流れを調節するように、調整ガスライン292と一列に提供されてもよい。調整ガスがキャリアガスに添加される他の実施形態に見られるように、調整ガスの比率は、上記の範囲の例に従って調節されてもよい。
【0060】
調整ガスシステム108は、GC230の前述の位置のうちの1つと連通する、単一の調整ガス源を含み得るか、またはGC230の前述の位置のうちの2つ以上、またはGC230およびMSシステム100の上述の位置のうちの2つ以上とそれぞれ連通する、2つ以上の調整ガス源(または少なくとも2つ以上の調整ガスライン)を含んでもよい。上述の他の流れコントローラの場合に見られるように、GC230と関連付けられる流れコントローラ(例えば、268、304)のうちのいずれかは、システムコントローラ168によって、例えば、電子プロセッサ176によって、ガス流制御ソフトウェア184により提供される命令に従って、手動で操作および/または制御され得る。
【0061】
いくつかの実施形態では、指定の調整ガス源204、212、282、290は、調整ガスと補助ガスのブレンドを含んでもよい。例えば、調整ガス源204、212、282、290は、MSシステム100が調整ガスと補助ガスを一緒に混合するためのデバイスを提供する必要がないように、ブレンドを含有する単一タンクの形態で提供されてもよい。調整ガス源204、212、282、290内に含有される調整ガスと補助ガスとの比率は、0容量%〜100容量%未満の範囲であり得る。別の実施例では、調整ガスと補助ガスとの比率は、0.05%〜20%の範囲である。別の実施例では、調整ガスと補助ガスとの比率は、0.25%〜10%の範囲である。補助ガスの組成は、利用されるキャリアガスの組成と同一であり得るか、または異なってもよい。補助ガスは、一般に、調整ガスとは異なる任意の不活性ガス(すなわち、試料と反応しないか、またはそうでなければ質量分析計104の性能に悪影響を及ぼすガス)であり得る。補助ガスの例としては、それらに限定されないが、ヘリウム、窒素、およびアルゴンが挙げられる。補助ガスの組成は、MSシステム100においても利用されるキャリアガスの組成と同一であり得るか、または異なってもよい。補助ガスの使用に関するいくつかの実施例は、以下の実施例で説明される。
【0062】
別の実施形態では、補助ガス源308および関連付けられた補助ガスライン310は、調整ガスを補助ガスとブレンドできるように提供される。したがって、流れコントローラ304は、混合流中の補助ガスと調整ガスとの比率が、0容量%〜100容量%未満の範囲であるように、補助ガスおよび調整ガスのそれぞれの流れを調節するために構成され得る。別の実施例では、補助ガスと調整ガスの比率が0.05%〜80%の範囲である。別の実施例では、補助ガスと調整ガスとの比率が0.25%〜20%の範囲である。例示の実施例では、補助ガスライン310は、調整ガス源290もそれと連通する、流れコントローラ304と連通する。本実施例では、調整ガスまたは調整ガスおよび補助ガスのブレンドまたは混合は、共通のガス入口ライン314を介して、カラムセクション296に流される。本明細書に記載される、および/または図1に例示される他の調整ガス源のうちのいずれかも同様に、MSシステム100の指定の位置に対する調整ガスおよび補助ガスの混合流を確立するために、補助ガス源と関連付けられてもよい。
【0063】
質量分析計104および調整ガスシステム108の構成要素と連動することに加えて、システムコントローラ168は、カラム246への試料導入、カラム流出事象、圧力設定、加熱デバイス250によって実装される温度設定または変動温度プロファイル、ガス検出器272の操作(提供される場合)、ガス検出器272からの信号の取得および分析、ガス検出器272に由来するスペクトルまたはクロマトグラムの生成および表示等のGC230の様々な態様を制御および/または監視するために構成され得る。これらの目的で、システムコントローラ168は、通信リンク318を介して、GC230と信号連通するものとして概略的に示され、有線または無線であってもよく、GC230の個別の構成要素に対する1つ以上の専用通信リンクを表し得る。図1に概略的に表されるシステムコントローラ168は、質量分析計104およびGC230、ならびに調整ガスシステム108の様々な操作を調整または同期させるための1つ以上の手段またはデバイスを表し得る。
【0064】
MSシステム100は、MSシステム100を分析モードで操作するための手段(または装置)を含む。分析モードでは、MSシステム100は、1つ以上の試料を処理して、試料の検体に関する情報がそこから得られ得る、1つ以上のスペクトルまたはクロマトグラムを生成する。いくつかの実施形態では、分析モードで操作するための手段は、試料インターフェース112を通って電離箱136の中に入る試料流路を確立するために構成されてもよい。実施例として、試料は、試料から検体イオンを生成するように操作される、電離箱136およびイオン化デバイス140の中に導入される。検体イオンは、質量分析器124の中に輸送され、質量に従ってイオンを分類し、当業者に理解されるように、設計に応じて、場合によっては、イオン断片化の1つ以上の反復を行う。結果として生じた質量によって識別されたイオンは、次に、イオン検出器128に輸送され、通常、イオン流を電気信号に変換するように構成される。電気信号は、質量スペクトルまたはクロマトグラムを処理および生成するために、システムコントローラ168によって概略的に表されるデータ分析器に伝送される。したがって、分析モードで操作するための手段は、以下の構成要素、試料インターフェース112、電離箱136、試料の処理および質量スペクトルまたはクロマトグラムの生成に利用される、MSシステム100の他の構成要素、必要に応じて、手動(ユーザ)入力によって操作され得るか、または電子制御またはコンピュータ制御によって半自動化または完全自動化され得る、1つ以上のガス流コントローラ、および/または図1のシステムコントローラ168によって概略的に表されるような電子ハードウェア、ファームウェア、および/またはソフトウェアモジュールのうちの1つ以上を含み得る。手動入力は、バルブまたは他のデバイスを物理的に操作することを伴い得る。手動入力は、代替または追加として、ボタンを押すこと、スイッチを操作すること、またはシステムコントローラ168と連通するか、または電子プロセッサ176もしくはシステムコントローラ168の他の構成要素が、分析モードで操作するための手段の適切な構成要素に制御信号を伝送することに応答して、関連付けられる制御パネルに関する情報を入力することを伴い得る。
【0065】
MSシステム100がGC230と連動する実施形態では、分析モードは、試料導入デバイス238を操作して、試料およびキャリアガスをカラム246の中に注入し、それによって、カラム246を通る試料およびキャリアガスの流れを確立し得る。この場合、試料(または試料/キャリアガス)の流路は、カラム246によって一部が画定される。試料の異なる構成要素は、周知のクロマトグラフ保持原理に従って、カラム246の固定相によって分離され、結果として生じる分離された検体留分とキャリアガスとの混合は、カラム246を通り、試料インターフェース112を通じて、電離箱136の中に流される。次に、MSシステム100において、試料を上記の方法で処理する。したがって、これらの実施形態では、分析モードで操作するための手段は、以下の構成要素、試料導入デバイス238、キャリアガス源242、キャリアガスライン264、および/またはカラム246のうちの1つ以上を含んでもよい。
【0066】
MSシステム100はまた、MSシステム100を調整モードで操作するための手段(または装置)を含む。調整モードでMSシステム100を操作して、調整ガスを、上述される1つ以上の調整ガス流路を介して、質量分析計104の中に流す。いくつかの実施形態では、調整モードで操作するための手段は、調整ガス源204および/または212から、調整ガスライン208、216、220、および/または224を通って、質量分析計104の中に入る調整ガス流路を確立するために構成されてもよい。したがって、調整モードで操作するための手段は、以下の構成要素、調整ガスシステム108、調整ガス源204および/または212、調整ガスライン208、216、220、および/または224、および質量分析計104の1つ以上の所望の位置に調整ガスを送るための任意の他のガス導管、必要に応じて、上述のように手動で操作され得るか、半自動化され得るか、または完全に自動化され得る1つ以上のガス流コントローラ(例えば、156)、および/または図1のシステムコントローラ168によって概略的に表されるような電子ハードウェア、ファームウェア、および/またはソフトウェアモジュールのうちの1つ以上を含み得る。MSシステム100がGC230と連動する実施形態では、調整モードで操作するための手段は、代替または追加の調整ガス源282および/または290、関連付けられた調整ガスライン282および/または292、必要に応じて任意の他のガス導管、および/または他の流れコントローラ(例えば、268、304)を含み得る。調整モードで操作するための手段はまた、上述のように、1つ以上の補助ガス源308と、関連付けられた補助ガスライン310とを含み得る。
【0067】
いくつかの実施形態では、調整ガスの有効性は、熱エネルギーを調整ガスに添加すること、および/またはその温度を制御することによって最適化され得る。したがって、MSシステム100を通る調整ガス流路に応じて、調整モードで操作するための手段はまた、以下の温度、カラム246および/またはGCハウジング234(例えば、オーブン)の内側の温度、試料インターフェース112の温度、電離箱136の温度、質量分析器124の温度、および/またはイオン検出器128の温度のうちの1つ以上を制御するために構成されてもよい。したがって、温度制御は、加熱デバイス250および/または加熱システム164を操作することによって達成されてもよく、システムコントローラ168によって制御され得、プログラム化された温度プロファイルに従ってもよい。一実施例では、調整モードで操作するための手段は、電離箱136の金属表面の障害限界までの温度で、電離箱136を維持するために構成される。別の実施例では、調整モードで操作するための手段は、−20℃〜800℃の範囲の温度で、電離箱136を維持するために構成される。
【0068】
いくつかの実施形態では、調整ガスの有効性は、エネルギーを調整ガスに添加することによって最適化して、調整ガス分子をエネルギー状態(例えば、リュードベリまたは準安定状態)に励起(または活性化)し得るか、または調整ガス分子をイオン化してもよい。イオン化デバイス140は、例えば、この目的で、調整ガス分子と連動する電子を生成するように操作され得る。
【0069】
MSシステム100を調整モードで操作するための手段は、カラム入口252または質量分析計104の中に入るキャリアガスおよび調整ガスのそれぞれの流れ(例えば、流量)を調節するために構成されてもよい。カラム入口252に流入するキャリアガスと調整ガスとの比率は、0%〜100%未満の範囲である。代替または追加として、MSシステム100を調整モードで操作するための手段は、補助ガスおよび調整ガスのそれぞれの流れを調節するために構成され得る。特定のガスラインを通る補助ガスと調整ガスとの比は、0%〜100%未満の範囲である。MSシステム100を調整モードで操作するための手段は、試料の分析によってイオン検出器128から生成されたクロマトグラムと、同一分析によってガス検出器272から生成されたクロマトグラムとの比較に基づいて、MSシステム100を調整モードで操作すべきか否かを決定するため、または質量分析計104の中に入る調整ガスおよびキャリアガスのそれぞれの流れを調節するために構成され得る。
【0070】
MSシステム100を調整モードで操作するための手段は、オフライン操作、オンライン操作、またはそれら両方のために構成されてもよい。オフライン実施形態では、調整モードで操作するための手段は、MSシステム100を分析モードと調整モードとの間で切り替えるための手段(または装置)を含み得る。切り替えるための手段は、上記のように、1つ以上のガス流コントローラおよび/またはシステムコントローラ168を含んでもよい。
【0071】
オフライン調整モードで操作するための手段は、MSシステム100の1つ以上のパラメータを評価するため、およびパラメータの値に基づいて、MSシステム100を調整モードで操作すべきか否か(または同等に、分析モードから調整モードに切り替えるべきか否か)を決定するために構成され得る。評価され得るパラメータの実施例としては、それらに限定されないが、MSシステム100またはその構成要素(例えば、質量分析計104、イオン源120、カラム246)が、パラメータを評価する前に(または最後にパラメータが評価されてから、または最後に調整モードが実装されてから)、分析モードで操作された回数、パラメータを評価する前に(または最後にパラメータが評価されてから、または最後に調整モードが実装されてから)経過した時間量、既定の操作条件下でMSシステムによって生成されたクロマトグラム(または質量スペクトル)の質、分析モードまたは調整モードで操作する間に取られた1つ以上の選択された質量対電荷比のイオン存在量の測定値、および/またはカラムの固定相担体から分離された固定相材料の存在(例えば、カラム流出の証拠)が挙げられる。クロマトグラムの質は、MSシステム100の信号応答または他の性能基準の低下を示す任意の測定基準(例えば、信号対雑音比)を含んでもよい。クロマトグラムの質および汚染イオンの存在量等のパラメータを、システムコントローラ168のデータベース180に保存された参照パラメータと比較して、調整モードが実行されるべきか否かについての決定を支援し得る。選択されたイオンの存在量の測定は、調整モードで操作しながら行い、添加される調整ガスのレベル等の調整モードのある操作パラメータの調整を可能にし得る。調整モードで操作するか否かを決定する目的で、MSシステム100の1つ以上のパラメータの評価は、システムコントローラ168の性能評価ソフトウェア188によって実行または管理されてもよい。
【0072】
代替または追加として、上記パラメータのうちの1つ以上は、MSシステム100のユーザによって手動で評価されてもよい。例として、ユーザは、調整プロセスに供された後、MSシステム100の性能を改善または回復することが知られている、MSシステム100の1つ以上の構成要素の年齢および/または使用回数の追跡を続けてもよい。ユーザは、試料分析または背景分析から得られたクロマトグラムまたは質量スペクトルの目視検査を行って、MSシステム100を調整する必要があるか否かを決定してもよい。代替または追加として、MSシステム100は、任意の所望の時点、または既定のメンテナンススケジュールに従って、ユーザがMSシステム100を調整モードに切り替えることができるように構成されてもよい。
【0073】
MSシステム100が調整モードで操作されるべきか否かの決定が行われる場合、オフライン調整モードで操作するための手段は、その決定に基づいて(または応答して)アクションを取るために構成されてもよい。例として、アクションは、MSシステム100の操作を調整モードに切り替えることと、MSシステム100の操作を調整モードに切り替えるために事前に予定された時間を修正することと、および/またはMSシステム100を調整モードで操作すべきであるというユーザ可読表示を生成することと、を含み得る。ユーザ可読表示としては、例えば、可聴または可視的アラーム、MSシステム100のユーザコントロールパネル上、またはMSシステム100と連通するディスプレイ画面に表示される視覚表示またはメッセージ、ユーザに送信される電子メールメッセージ等が挙げられる。
【0074】
オンライン実施形態では、調整モードで操作するための手段は、MSシステム100が試料分析を活発に行いながら、質量分析計104の中に入るキャリアガスおよび調整ガスのそれぞれの流れを調節するための手段(または装置)を含み得る。調節するための手段は、上記のように、1つ以上のガス流コントローラおよび/またはシステムコントローラ168を含んでもよい。調節するための手段は、質量分析計に流入する調整ガスの比率が、0容量%〜100容量%未満の範囲であるように、それぞれの流れを調節するために構成され得る。別の実施例では、調整ガスの比率は、0.02%〜50%の範囲である。別の実施例では、調整ガスの比率は、0.05%〜40%の範囲である。別の実施例では、調整ガスの比率は、0.25%〜10%の範囲である。前述のように、これらの範囲はまたオフラインモードに適用されてもよい。調節するための手段は、カラム246の温度が加熱デバイス250によって直接的または間接的に変動される一方で、調整ガスの流れを一定流量で維持するために構成されてもよい。例えば、システムコントローラ268は、温度を監視し、必要に応じて1つ以上の流れコントローラにガス流量を調整させ得る。
【0075】
上記のオフライン調整モードで操作するための手段と同様に、質量分析計104の中に入るキャリアガスおよび調整ガスのそれぞれの流れを、オンラインモードで調節するための手段は、MSシステム100の1つ以上のパラメータを評価することに基づいてもよい。上記のパラメータに加えて、評価され得るパラメータの他の例としては、それらに限定されないが、MSシステム100が試料分析を行うように操作される間に取られた1つ以上の選択された質量対電荷比のイオンの存在量の測定値、カラム246を通って流れているか、または流される試料マトリクスの組成、カラム246内で担持される固定相の組成、カラム246の内径、および/または試料マトリクスの1つ以上の構成要素と調整ガスとの反応性が挙げられる。上記のように、パラメータの評価は、性能評価ソフトウェア188および/またはシステムコントローラ168のデータベース180に保存されたデータの使用によって支援され得る。
【0076】
調整ガスをMSシステム100に添加することに関連する課題の1つは、調整ガスをキャリアガスに対してどのように添加されているかを知ることである。これは、低いガス流(例えば、0.005mL/分)を実装するときに特に当てはまる。いくつかの実施形態では、添加される調整ガスの相対量は、汚染物質がイオン源120の中に導入される量に基づいて選択され得る。一般に、より高い量の汚染物質に対して多くの調整ガスが添加される。様々な実験、特に日常実験の場合、調整ガスのレベルを一定に設定できることが望ましい。いくつかの実施形態では、調整ガスのレベルは、キャリアガスの存在量と調整ガスの存在量との比率に基づく。いくつかの実施形態では、調整ガスおよびキャリアガスの量(例えば、流量、圧力)は、MSシステム100、例えば、図1に示されるシステムコントローラ168によって電子的に制御される。そのような実施形態では、調整ガスのレベルは、MSシステム100の自己調整機能の一部として自動的に設定され得る。図2は、MSシステム100を通って流れている調整ガス(本実施例では水素、m/z=2)およびキャリアガス(本実施例ではヘリウム、m/z=4)の質量スペクトル測定値を示す。具体的に、図2の測定値は、以下の実施例7で説明される実験から得られた。したがって、質量分析計104の中に入るキャリアガスおよび調整ガスのそれぞれの流れを調節するための手段は、イオン源120、質量分析器124、およびイオン検出器128を操作することによって測定されるように、調整ガスイオンの存在量とキャリアガスイオンの存在量との所望の比率に基づいて調節するために構成されてもよい。さらに、それぞれの流れを調節するための手段は、調整ガスイオンの存在量とキャリアガスイオンの存在量の測定された比率を、所望の比率と比較して、測定された比率と所望の比率との間の比率差が、所望の範囲外であるか否かを決定し、調整ガスの流れを、質量分析計104の中に入るキャリアガスに対して調整して、比率の差を所望の範囲内に維持するように構成されてもよい。所望の比率は、例えば、ある実験および/または指定の実験の異なる段階と相関されてもよく、データベース180に保存されたルックアップテーブルに提供され、システムコントローラ168のハードウェア、ファームウェア、および/またはソフトウェア構成要素によってアクセス可能であり得る。
【0077】
以下の実施例8等のいくつかの実施形態では、水素等の調整ガスは、カラム246を通じて試料を輸送するためのキャリアガスとして利用され、ヘリウム等の補助ガスは、質量分析計104の上流、または質量分析計104のいずれかにおいて、水素または他のキャリアガスに添加される。調整ガスシステム108または他の手段もしくはデバイスを利用して、質量分析計104の中に入る補助ガスの流れを、電離箱136の中に入る調整ガスの流れに対して調節してもよい。上記の評価タスクのうちの多くは、これらの実施形態において行われ得る。質量分析計104を操作して、キャリアガスイオンの存在量と、補助ガスイオンの存在量との比率を測定してもよく、調整ガスの流れに対する補助ガスの流れは、測定された比率に基づいて調節され得る。
【実施例】
【0078】
[実施例1−オフライン調整]
本実施例では、図1に示されるものと一致し、GC230がそこに接続された重度に汚染されたMSシステム100を、オフライン調整プロセスに供した。調整ガスとして水素を選択した。通常、CI試薬ガスに利用される試料インターフェース112の入口を通じて、水素流を導入し、それによって、質量分析計104の電離箱136および四重極の中に導いた。添加される水素の流量は、0.1mL/分であった。イオン源の温度は350℃であり、四重極の温度は200℃であった。水素の流入は、16時間、150μAでのフィラメントの連続操作で行った。調整に先立って、MSシステム100を、アクティブであるが試料のない質量分析計104で行い、MSシステム100を汚染していると疑われる背景種を分析した。図3Aは、結果として生じる質量スペクトルである。存在量として示されるイオン質量は、通常、非分析的または背景分子と関連付けられる。図3Bは、調整後に生成された背景質量スペクトルである。図3Aのスペクトルと同一規模で、背景種(例えば、m/z=45.1、78.1、134.9等)が排除されたと考えられる。図3Cは、図3Bと同一の質量スペクトルであるが、拡大規模である。図3Cは、背景種の存在量の著しい減少を示す。
【0079】
[実施例2−オフライン調整]
図4Aは、図1に示されるものと一致するMSシステム100を、任意の調整プロセスなしに実行することから生成された時間の関数(分)としての再構築全イオンクロマトグラム(RTICまたはTIC)である。図4Aは、本明細書に開始される調整プロセスのない場合を示し、MSシステム100の連続使用は、数時間に渡って徐々に改善をもたらす。これも図4Aに示されるように、システムは、追加の使用時間が背景の改善をほとんどもたらさない漸近状態に至る。図4Bは、同一のMSシステム100の別のRTICであるが、240分後、MSシステム100は、調整剤として水素を使用し、2時間オフライン調整プロセスで処理した。次に、背景を再審査し、図4Bに示されるように、投影されたRTIC値よりも50倍だけ低下したことがわかった。270分後の後次調整プロセスは、これも図4Bに示されるように、わずかな改善をもたらした。
【0080】
[実施例3−オフライン調整]
図5A〜5Eは、それぞれ個別のイオン質量55−u(MSシステム100における炭化水素物質から)、105−u(芳香族成分から)、91−u(芳香族成分から)、215−u(より重い試料マトリクス関連成分から)、および207−u(システムに接続されたGC毛管カラムから)についての時間の関数としてのイオンクロマトグラムである。これらのクロマトグラムは、図1に例示されるものと一致するMSシステム100を実行し、MSシステムを約250分および270分後に調整プロセスで処理することから生成された。図5A〜5Eは、指定のMSシステム100における調整プロセスの監視および修正が妥当であり得るように、すべてのイオンが、調整プロセス下で同一の起源または動作を有するとは限らないことを示す。207−uイオンがカラムから絶えず更新されるとき、207−uについて最小の増幅が達成され、これは調整プロセスをより頻繁に実行して、この成分を除去すべきであることを示唆する。
【0081】
[実施例4−オフライン調整]
図6Aは、汚染されたMSシステム100において、オクタフルオロナフタレンの選択イオンモニタリング(SIM)取得のための再構築イオンクロマトグラムである。検体は、信号対雑音(S/N)比によって示されるように、4.216分付近でかろうじて「隆起」していることが認識できる。図6Bは、図6Aと同一のMSシステム100におけるオクタフルオロナフタレンのSIM取得についての再構築イオンクロマトグラムであるが、調整剤として水素を使用するオフライン調整プロセスで処理した後である。背景雑音は大幅に除去されて尾部のないクリアなピークを残し、S/Nの50倍の増加が示される。図6Aおよび6Bは、調整プロセスの適用が、関心対象のイオン周囲の背景を低下させ、性能を向上または回復させることによって、検体の検出を強化することができる。
【0082】
[実施例5−オンライン調整]
本実施例は、質量分析計に進入するヘリウムに水素を添加する効果を試験するための、イソオクタン中の3つのn−アルカン炭化水素の試料の分析について説明する。
【0083】
図7は、特にオンライン調整のために構成され、本実施例で利用されるMSシステム700の実施例の概略図である。MSシステム700は、図1に示されるMSシステム100と同一の構成要素を多く含むが、簡潔にするために、これらの構成要素の一部は、図7に示されていない。図1と図7とに見られるように、同様の構成要素は、同一の参照番号で指定される。図7に示されるMSシステム700は、質量分析計104と、そこに接続されたGC230とを含む。質量分析計104は、イオン源120を含む。GC230は、スプリット/スプリットレス入口304を備える試料導入デバイス238と、カラム246とを含む。MSシステム700は、調整ガスの第1の流れコントローラ308および関連付けられた調整ガスライン310と、補助ガスの第2の流れコントローラ314および関連付けられた補助ガスライン316と、第3の流れコントローラ320および関連付けられたガス出口ライン322とをさらに含む。本実施例で利用される流れコントローラ308、314、320は、プログラム可能なEPCであった。調整ガスライン310は、ユニオン等の任意の適切な配管構造(図示せず)によって、GCハウジング234の外側の地点で補助ガスライン316に接続される。ガス出口ライン322は、ユニオン等の任意の適切な配管構造(図示せず)によって、GCハウジング234の内側の地点で補助ガスライン316に接続される。カラム246の出口は、パージユニオン326に接続される。ガス輸送ライン330は、パージユニオン326とイオン源120とを相互接続する。ガス輸送ライン330は、カラム246の延長と見なされ得るか、あるいは別個のガスラインとして見なされてもよい。
【0084】
本実施例では、キャリアガスはヘリウムであり、調整ガスは水素であり、補助ガスはヘリウムであった。ヘリウムキャリアガスは、約12.5psiの圧力で、カラム246の入口に供給される。パージユニオン326は、カラム246から流れる試料/ヘリウム流への水素および補助ヘリウム流の添加を容易にする。第1の流れコントローラ308は、10.12psiで制限器334を通じて水素を供給し、その後の流量は0.067mL/分であった。第2の流れコントローラ314は、3.76psi、流量8.9mL/分でヘリウムを供給し、パージユニオン326内の圧力を調節する。第3の流れコントローラ320は、制限器(図示せず)を通って後方に配管され、第1および第2の流れコントローラ308、314からの混合ヘリウム/水素流の中に入り、8.362mL/分の一定流量で、ヘリウム/水素混合体(矢印338)の一部を排気する。第3の流れコントローラ320におけるヘリウム/水素混合体の圧力は、2.0psiであった。クロマトグラフの実行中、カラム246からのヘリウム流は、1.2mL/分の流量でパージユニオン326に流れ込み、カラム246に入るヘリウムキャリアガスの入口圧、および第1、第2の流れコントローラ308、314内の圧力をすべてプログラム化して、温度プログラム全体で、一定流量を上述のレベルで維持した。すべての流れコントローラ308、314、320をオンにして、ヘリウム/水素混合体を、0.6mL/分(He)および0.005mL/分(H)でパージユニオン326の中に流した。結果として生じるヘリウム/水素混合体は、1.805mL/分でイオン源120に進入する。第1の流れコントローラ308がオフの場合(すなわち、イオン源120に進入する流れの一部である0.005mL/分の水素がない場合)、次に1.8mL/分のヘリウムのみがイオン源120に進入する。したがって、図7に示される構成によって、試料は、本実施例で用いられる調整プロセスを実装するか否かに関わらず(すなわち、水素流をオンオフする)、容易に実行することができる。
【0085】
質量分析計104に進入するヘリウムに水素を添加する効果を試験するために、イソオクタン中の3つのn−アルカン炭化水素、具体的にn−テトラデカン(n−C14)、n−ペンタデカン(n−C15)、およびn−ヘキサデカン(n−C16)の試料に関する複数の分析を、それぞれ10ng/μLの濃度で、水素を添加する場合としない場合の両方で行った。活性問題があったとしてもほとんど呈しない、高濃度の比較的非極性の化合物であるため、この試料を選択した。
【0086】
以下の表1は、本実施例の器具パラメータを列挙する。
【0087】
(表1)−器具パラメータ
【表1】

【0088】
図8は、水素が添加されるときの本実施例の典型であるTICである。
【0089】
試料について、22回の一連の複製実行を、対照として水素を添加せずに行った。カラム246は、最高325℃にプログラム化され、比較的新しいカラムであるため、カラム流出による源汚染は、連続注入の応答を低下させることが予想された。この性能の低下は、実際に、以下の表2で提供される応答データに示されるように認められた。

【0090】
(表2)−水素を添加せずに試料を22連続実行した場合の原積分面積
【表2】

【0091】
図9は、第1の注入に対して正規化され、3つの化合物についてプロットされた、表2からのデータのプロットである。図9は、すべての3つの化合物について、応答が15%低下したことを示す。
【0092】
一連の分析を反復したが、今回は上述のように、水素を0.005mL/分で添加した。応答データは、以下の表3に提供される。図10は、第1の注入に対して正規化され、3つの化合物についてプロットされた、表3からのデータのプロットである。表3および図10は、すべての3つの化合物について、応答がここで一定のままであることを示し、したがって、添加された水素が応答の低下を解消したことを示す。
【0093】
(表3)−水素を5μL/分で添加して試料を21回連続実行した場合の原積分面積
【表3】

【0094】
[実施例6−オンライン調整]
本実施例は、半揮発性汚染物質の試料の分析について説明する。これらの化合物のうちのいくつかは極性であり、活性問題を呈する。
【0095】
図11は、特にオンライン調整のために構成され、本実施例で利用されるMSシステム1100の別の実施例の概略図である。MSシステム1100は、図1に示されるMSシステム100と同一の構成要素の多くを含むが、簡潔にするために、これらの構成要素のうちのいくつかは、図11では示されていない。図1および図7と比較して、同様の構成要素は、図11において同一の参照番号で指定される。図11に示されるMSシステム1100は、調整ガスの第1の流れコントローラ308および関連付けられた調整ガスライン310と、補助ガスの第2の流れコントローラ314および関連付けられた補助ガスライン316とを含む。本実施例で利用される流れコントローラ308、314は、プログラム可能なEPCであった。調整ガスライン310は、ユニオン等の任意の適切な配管構造(図示せず)によって、GCハウジング234の外側の地点で補助ガスライン316に接続される。本実施例では、検体は、極めて低濃度の200pg/μLである。低レベルでの活性成分の一部のクロマトグラフ喪失が存在し得るため、MSシステム1100は、不活性化ポストカラム流れ分割器1104およびGCハウジング234の外側に位置するFID272を利用した。したがって、カラム246の出口は、パージ分割器1104に接続される。第1のガス出力ライン1108は、パージ分割器1104と、イオン源120とを相互接続する。第1のガス出力ライン1108は、カラム246の延長として、あるいは別個のガス輸送ラインとして見なされてもよい。第2のガス出力ライン278は、パージ分割器1104と、FID272とを相互接続する。流れ分割器1104は、質量分析計104とFID272との間にカラム流出を等しく提供する。FID応答は非常に安定し、時間で変更しない。したがって、FID272は、入口において可変する喪失度を有する化合物の場合であっても、質量分析計104における応答変化を追跡するための優れた参照となる。
【0096】
本実施例では、キャリアガスはヘリウムであり、調整ガスは水素であり、補助ガスはヘリウムであった。ヘリウムキャリアガスは、約25psiの圧力でカラム246の入口に供給され、0.95mL/分の一定流量でカラム246を通じて流された。第1の流れコントローラ308は、制限器334を通して水素を供給し、その後の流量は0.08mL/分であった。第2の流れコントローラ314は、2psigの一定圧力および3.05mL/分の流量で、ヘリウムを補充ガスとして流れ分割器1104に供給した。結果として、ヘリウムは、質量分析計104およびFID272に、それぞれ2mL/分で流された。流れ分割器1104から質量分析計104およびFID272までの制限器(図示せず)は、オーブン(加熱されたGCハウジング234)内にあり、流れ分割器1104は、第2の流れコントローラ314によって、一定圧力で維持されるため、質量分析計104およびFID272のそれぞれに対するヘリウムの流れは、初期オーブン温度の40℃で2mL/分から320℃で0.67mL/分まで低下した。しかしながら、質量分析計104に到達する水素の量は、0.04mL/分で一定のままであった。したがって、図11に示される構成によって、試料は、本実施例で用いられる調整プロセスを実装するか否かに関わらず(すなわち、水素流をオンオフする)、容易に実行することができる。
【0097】
以下の表4は、本実施例の器具パラメータを列挙する。
【0098】
(表4)−器具パラメータ
【表4】

【0099】
図12は、水素を添加した本実施例から得られたMS SIM TICおよびFIDクロマトグラムである。試料の8つの化合物が列挙される。すべての化合物は、カラムの中に200pgで存在し、したがって質量分析計104およびFID272それぞれに対して100pgで存在した。
【0100】
試料について、22回の一連の複製実行を、対照として水素を添加せずに行った。質量分析計104によって測定された面積を、FID272によって測定された面積によって分割した。次に、第1の注入の比率に対して比率を正規化し、プロットした。応答における任意の低下の程度をより明白にするために、最初の5回の注入と最後の5回の注入のみから正規化された比率をプロットする。図13は、このデータのプロットである。カラム246は、最高320℃にプログラム化され、比較的新しいカラムであったため、カラム流出による源汚染は、一連の注入比を低下させることが予想された。この性能の低下は、実際に図13に示されるように認められた。最悪の場合(トリフルラリン)、MS信号の低下は60%であった。
【0101】
図14は、今回は質量分析計104およびFID272のそれぞれに対して、水素を40μL/分で添加したことを除いて、同一実験の結果を示す。図14に見られるように、添加された水素は、応答の低下を解消する。
【0102】
[実施例7−オンライン調整]
本実施例は、水を含む溶媒の混合物の試料の分析について説明する。本実施例は、特に、大量の水を含有する試料の注入から生じるMS応答の低下に対する、本明細書で開示する調整プロセスの影響を決定することを意図した。例えば、この問題は、水性ヘッドスペース注入を用いる場合に認められる。
【0103】
図15は、特にオンライン調整のために構成され、本実施例で利用されるMSシステム1500の別の実施例の概略図である。MSシステム1500は、図1に示されるMSシステム100と同一の構成要素の多くを含むが、簡潔にするために、それらの構成要素のうちのいくつかは、図15に示されていない。図1、7、および11と比較して、同様の構成要素は、図15において同一の参照番号で指定される。図15に示されるMSシステム1500は、調整ガスの第1の流れコントローラ308および関連付けられた調整ガスライン310と、補助ガスの第2の流れコントローラ314および関連付けられた補助ガスライン316とを含む。本実施例で利用される流れコントローラ308、314は、プログラム可能なEPCであった。MSシステム1500は、GCハウジング234内にパージ流れ分割器1104と、GCハウジング234の外側にFID272とをさらに含む。したがって、カラム246の出口は、パージ分割器1104に接続される。第1のガス出口ライン1108は、パージ分割器1104と、イオン源120とを相互接続する。第1のガス出口ライン1108は、カラム246の延長として、あるいは別個のガス輸送ラインとして見なされてもよい。調整ガスライン310は、調整ガスが第1のガス出口ライン1108と導管との間に画定された環状空間を通って流れるように、第1のガス出口ライン1108を同軸上に取り囲む、GC/MSインターフェース112の導管に接続される。調整ガスライン310は、通常、CI試薬ガスをイオン源120の中に導入するために利用される導管のポートに接続される。第2のガス出口ライン278は、パージ分割器1104と、FID272とを相互接続する。流れ分割器1104は、カラム放出を質量分析計104とFID272との間に等しく分割する。
【0104】
本実施例では、キャリアガスはヘリウムであり、調整ガスは水素であり、補助ガスはヘリウムであった。ヘリウムキャリアガスは、約14psiの圧力でカラム246の入口に供給され、1.0mL/分の一定流量でカラム246を通じて流された。第1の流れコントローラ308は、制限器334を通じて水素を供給し、その後の流量は0.07mL/分であった。第2の流れコントローラ314は、3.8psigの一定圧力および5mL/分の流量で、流れ分割器1104に供給した。結果として、ヘリウムは、質量分析計104およびFID272に、それぞれ3mL/分で流された(初期オーブン温度40℃)。流れ分割器1104から質量分析計104およびFID272までの制限器(図示せず)は、オーブン(加熱されたGCハウジング234)内にあり、流れ分割器1104は、第2の流れコントローラ314によって、一定圧力で維持されるため、質量分析計104およびFID272のそれぞれに対するヘリウムの流れは、初期オーブン温度の40℃で3mL/分から220℃で1.36mL/分まで低下した。しかしながら、質量分析計104に到達する水素の量は、0.07mL/分で一定のままであった。したがって、図15に示される構成によって、試料は、本実施例で用いられる調整プロセスを実装するか否かに関わらず(すなわち、水素流をオンオフする)、容易に実行することができる。本実施例では、溶媒の混合物の注入溶媒は水であった。注入は、混合物1μLの20:1分割注入であり、各注入で50nL(50μg)の水をイオン源120の中に入れる。
【0105】
以下の表5は、本実施例の器具パラメータを列挙する。
【0106】
(表5)−器具パラメータ
【表5】

【0107】
図16は、水素を添加する本実施例から得られたMS SIM TICおよびFIDクロマトグラムである。試料の9つの溶媒化合物が列挙される。すべての化合物は、1ngでカラム246の中に存在し、したがって500pgで質量分析計およびFIDのそれぞれに存在した。
【0108】
試料について、9回の一連の複製実行を、水素を添加して行った後、対照として水素を添加せずに11回の試料の複製実行を行った。質量分析計104によって測定された面積は、FID272によって測定された面積によって分割された。次に、水素を添加して行われた第1の注入の比率に対して比率を正規化し、プロットした。図17は、このデータのプロットである。図17に示されるように、水素の非存在下では、MS応答信号は、ニトロベンゼンを除くすべての化合物について、40%〜75%の間に抑制された。比較として、水素の存在はMS性能を著しく改善した。したがって、図17は、水が一緒に注入される試料について、性能の改善を示す。
【0109】
[実施例8−オンライン調整]
本実施例では、水素とヘリウムの相対量を逆転させ、試料をカラムに流すためのキャリアガスとして水素を利用した。キャリアガスとして水素を用いてGC/MSシステムを設定するとき、イオン源がオンになるとすぐに、多くのイオンの極めて高い背景が認められる。図18は、典型的なGC/MSシステムにおいて水素のみをキャリアガスとして用いるときに認められる背景イオン質量の典型的なスペクトルを示す。高背景は、検体のTICにおいて見られるように(図20)、不良なS/N比および不良なピーク形状に随伴する。この背景は、低下させるのに非常に長い時間がかかる。背景がピーク形状およびS/N性能が許容可能なレベルに低下する前に、数週間の操作を要する場合が多い。
【0110】
本実施例では、イオン源の上流地点で水素ガス流にヘリウムを添加することは、使用中のイオン源の洗浄を容易にした。ヘリウムの流れは、30回を超えるクロマトグラフ実行の間維持され、数週間ではなく1日で背景を大幅に改善することがわかった。イオン源中のヘリウムの存在は、調整剤としての水素の有効性を高め得る。いかなる特定の理論に制約されることなく、水素の存在下でのヘリウムの部分圧が、源の内側により高い全体圧を提供することが可能であり、「洗浄」または表面調整に関連する表面関連現象の機会を増加させる。これは、調整活動ならびに純粋な水素中に存在し得ない他の電荷交換または解離種の可能性を支援し得る、準安定ヘリウム等の種も生成されるためである。
【0111】
図19は、特にオンライン調整のために構成され、本実施例で利用されるMSシステム1900の別の実施例の概略図である。MSシステム1900は、図1に示されるMSシステム100と同一の構成要素の多くを含むが、簡潔にするために、それらの構成要素のうちのいくつかは、図19に示されていない。図1、7、11、および15と比較して、同様の構成要素は、図19において同一の参照番号で指定される。図19に示されるMSシステム1900では、調整ガス源は、本実施例において、カラム246の入口と連通するキャリアガス源(図示せず)としても機能する。つまり、水素は、試料のキャリアガスとMSシステム1900の調整ガスの二重の役割を果たす。MSシステム1900は、さらに補助ガスの流れコントローラ314(本実施例ではヘリウム)と、関連付けられた補助ガスライン316とをさらに含む。本実施例で利用される流れコントローラ314は、プログラム可能なEPCであった。MSシステム1900は、カラム246の出口と補助ガスライン316が接続されるGCハウジング234内にパージユニオン326をさらに含む。ガス輸送ライン330は、パージユニオン326とイオン源120とを相互接続する。ガス輸送ライン330は、カラム246の延長として、あるいは別個のガスラインとして見なされてもよい。水素キャリアガスは、カラム246の入口に約14psiの圧力で供給し、1.11mL/分の一定流量でカラム246を通じて流した。パージユニオン326は、カラム246から流れる試料/水素流に対するヘリウム流の添加を容易にした。流れコントローラ314は、0.13mL/分の流量でヘリウムを供給した。クロマトグラフの実行中、水素/ヘリウム混合体を1.24mL/分でイオン源120の中に流した。
【0112】
以下の表6は、本実施例の器具パラメータを列挙する。
【0113】
(表6)−器具パラメータ
【表6】

【0114】
図20は、本実施例から得られた2つのTICを示す。上部トレースは、クロマトグラフの実行が開始された直後に取得した。下部トレースは、MSシステム1900が約24時間後に清潔になり、ヘリウムの流れがオンになった後に取得した。試料は、28化合物の毒性試験混合であり、図20に列挙される。ヘリウムを水素キャリアガスに添加する結果として、S/N比およびピーク形状が改善することは、図20から明らかに証明される。上記のとおり、この洗浄効果は、数週間ではなく数日で発生し得る。

【0115】
[典型的な実施形態]
本明細書で開示される主題により提供される典型的な実施形態としては、これらに限定されないが、以下が挙げられる。
【0116】
1.
試料インターフェースと、試料インターフェースと連通する電離箱とを備える、質量分析計と、
調整ガスを供給するために構成された調整ガスラインと、
試料インターフェースを通って電離箱の中に入る試料流路を確立するために構成された、分析モードで操作するための手段と、
調整ガスラインを通って質量分析計の中に入る調整ガス流路を確立するために構成された、調整モードで操作するための手段と、
を備える、質量分析計(MS)システム。
【0117】
2.試料ガス流路がGCハウジングから試料インターフェースの中に通っている、試料インターフェースと連通するガスクロマトグラフ(GC)ハウジングを備える、実施形態1に記載のMSシステム。
【0118】
3.調整ガスラインが、GCハウジング内の位置から試料インターフェースと連通する、実施形態2に記載のMSシステム。
【0119】
4.カラム入口とカラム出口とを備えるカラムを備え、カラム入口が調整ガスラインと連通し、カラム出口が試料インターフェースを介して電離箱と連通し、調整ガス流路がカラム入口の中に入ってカラムを通る、実施形態1に記載のMSシステム。
【0120】
5.カラムと連通するキャリアガス源を備え、調整モードで操作するための手段が、カラム入口へのキャリアガスと調整ガスのそれぞれの流れを調整するために構成され、カラム入口に流されるキャリアガスと調整ガスとの比は、0%〜100%未満の範囲である、実施形態4に記載のMSシステム。
【0121】
6.カラムが試料インターフェースを通って伸長し、試料インターフェースが、電離箱と連通する導管を備え、調整ガスラインが導管と連通し、調整ガス流路が導管を通る、実施形態4に記載のMSシステム。
【0122】
7.化学イオン化のための試薬ガスを供給し、導管と連通するように構成された補助ガスラインと、補助ガスラインと連通する流れ制御デバイスとを備え、
調整ガスラインが、流れ制御デバイスと通信し、
分析モードで操作するための手段が、流れ制御デバイスを操作するために構成され、補助ガスラインを通り、導管を通じて電離箱の中に入る試薬ガス流路を確立し、
調整モードで操作するための手段が、流れ制御デバイスを操作するために構成され、調整ガスラインから補助ガスラインを通り、導管を通じて電離箱の中に入る調整ガス流路を確立する、
実施形態6に記載のMSシステム。
【0123】
8.調整ガスラインが、カラムとは別に、質量分析計と直接連通する、実施形態4に記載のMSシステム。
【0124】
9.カラムと連通する流れ分割器と、流れ分割器と連通するガス出口ラインと、ガス出口ラインと連通するガス検出器と、電離箱と連通する質量分析器と、質量分析器と連通するイオン検出器とを備え、流れ分割器が、カラム内の試料/ガス流を電離箱の中に配向される第1の出力流と、ガス出口ラインを介してガス検出器の中に配向される第2の出力流とに分割するために構成され、調整モードで操作するための手段が、試料の分析によってイオン検出器から生成されたクロマトグラムまたは他の分析データと、同一の分析によってガス検出器から生成されたクロマトグラムまたは他の分析データとの比較に基づいて、MSシステムを調整モードで操作するべきか否かを決定するように構成される、実施形態4に記載のMSシステム。
【0125】
10.カラム入口とカラム出口とを備えるカラムを備え、カラム出口が、試料インターフェースを介して電離箱と連通し、調整ガスラインが、カラム入口とカラム出口との間のカラムの一部分と連通し、調整ガスラインが、カラム入口とカラム出口との間のカラムの一部分と連通し、調整ガス流路が、その部分の中に入り、カラムを通る、実施形態1に記載のMSシステム。
【0126】
11.調整ガスとは異なる補助ガスを供給するための調整ガスラインと連通する補助ガス源を備え、調整モードで操作するための手段が、補助ガスと調整ガスのそれぞれの流れを調節するために構成される、実施形態1に記載のMSシステム。
【0127】
12.調整モードで操作するための手段が、電離箱を−20〜800℃の範囲の温度で維持するために構成される、実施形態1に記載のMSシステム。
【0128】
13.調整モードで操作するための手段が、電離箱内の調整ガスを励起するように電離装置を操作するために構成される、実施形態12に記載のMSシステム。
【0129】
14.調整モードで操作するための手段が、試料インターフェースと連通するハウジングの温度、試料インターフェースと連通するカラムの温度、試料インターフェースの温度、電離箱の温度、電離箱と連通する質量分析器の温度、質量分析計の検出器の温度、およびそれらの2つ以上の組み合わせから成る群から選択される温度を制御するために構成される、実施形態1に記載のMSシステム。
【0130】
15.調整モードで操作するための手段が、手動ユーザ入力、電子プロセッサ、MSシステムのローカルメモリまたは電子プロセッサによってアクセス可能なリモートメモリ内に常駐する電子プロセッサによって実行可能な論理命令、またはそれらの2つ以上の組み合わせから成る群から選択されるデバイスを備える、実施形態1に記載のMSシステム。
【0131】
16.調整モードで操作するための手段が、MSシステムのパラメータを評価するために構成され、パラメータに基づいて、MSシステムを調整モードで操作すべきか否かを決定する。実施形態1に記載のMSシステム。
【0132】
17.パラメータは、パラメータを評価する前に、MSシステムの構成要素を分析モードで操作した回数、パラメータを評価する前に経過した時間量、既定の操作条件下でMSシステムによって生成されたクロマトグラムの質、質量スペクトル、または他の分析データ、既定の操作条件下でMSシステムによって生成されたクロマトグラムの信号対雑音比、質量スペクトル、または他の分析データ、調整モードで操作する間に取られた1つ以上の選択された質量対電荷比のイオン存在量の測定値、カラムの固定相担体から分離された固定相材料の存在、およびそれらの2つ以上の組み合わせから成る群から選択される、実施形態16に記載のMSシステム。
【0133】
18.分析モードで操作するための手段が、MSシステムを調整モードで操作すべきか否かの決定に基づいて、アクションを取るために構成され、アクションは、MSシステムの操作を調整モードに切り替えることと、MSシステムの操作を調整モードに切り替えるための時間を予定することと、MSシステムの操作を調整モードに切り替えるための事前に予定された時間を修正することと、MSシステムを調整モードで操作すべきであるというユーザが読める表示を生成することと、それらの2つ以上の組み合わせから成る群から選択される、実施形態16に記載のMSシステム。
【0134】
19.電離箱と連通する質量分析器と、質量分析器と連通するイオン検出器とを備え、調整モードで操作するための手段が、調整モードで操作しながら、イオン検出器から生成されたクロマトグラム、質量スペクトル、または他の分析データを監視するための手段を備える、実施形態1に記載のMSシステム。
【0135】
20.質量分析計(MS)システムを操作するための方法であって、
試料およびキャリアガスをMSシステムの電離箱の中に導入することによって、MSシステムを分析モードで操作することと、
試料の流れを止めることによって、MSシステムを分析モードで操作するのを中止することと、
キャリアガスとは異なる調整ガスを質量分析計の中に流すことによって、MSシステムを調整モードで操作して、MSシステムの質量分析計の1つ以上の構成要素を調整することと、を含む、方法。
【0136】
21.キャリアガスが、ヘリウム、窒素、およびアルゴンから成る群から選択される、実施形態20に記載の方法。
【0137】
22.調整ガスが、調整ガスと、調整ガスとは異なる補助ガスのブレンドを含有する源から流される、実施形態20または21に記載の方法。
【0138】
23.源中の調整ガスと補助ガスとの比率は、0容量%〜100容量%未満の範囲である、実施形態22に記載の方法。
【0139】
24.補助ガスは、キャリアガスと同一である、実施形態22に記載の方法。
【0140】
25.分析モードでの操作を中止することは、キャリアガスの流れを止めることを含む、実施形態20〜24に記載の方法。
【0141】
26.分析モードでの操作を中止することは、キャリアガスの流量を減少させることを含み、調整モードでの操作は、減少した流量でキャリアガスを流し続けることを含む、実施形態20〜24に記載の方法。
【0142】
27.調整ガスを質量分析計の中に流すことは、調整ガスをキャリアガスとともに、電離箱と連通するカラムのカラム入口の中に流すことと、カラムのカラム入口とカラム出口との間のカラムのセクションの中に調整ガスを流すことと、カラムが通って伸長するMSシステムの試料インターフェースの導管の中に調整ガスを流すことであって、導管およびカラムが電離箱と別個に連通することと、カラムから分離したガスラインを介して、調整ガスを質量分析計の中に直接流すことと、それらの2つ以上の組み合わせから成る群から選択されるステップを含む、実施形態20〜26に記載の方法。
【0143】
28.調整ガスがカラムを通って、電離箱の中に流され、カラム入口に流入するキャリアガスの比率が0%〜100%未満となるように、キャリアガスおよび調整ガスのそれぞれの流れを調節することを含む、実施形態20〜27に記載の方法。
【0144】
29.カラムが電離箱と連通し、調整ガスがカラムのカラム入口とカラム出口との間のカラムのセクションの中に入り、カラムを通って電離箱の中に流され、セクションへの調整ガスおよび補助ガスの流れを調節することを含む、実施形態20〜27に記載の方法。
【0145】
30.補助ガスは、キャリアガスと同一であり、実施形態29に記載の方法。
【0146】
31.MSシステムが、カラムが通って伸長する試料インターフェースを備え、インターフェースが、電離箱と連通する導管を備え、調整モードで操作することは、導管を通して電離箱の中に調整ガスを流すことを含み、分析モードで操作することは、導管を通して電離箱の中に試薬ガスを流し、化学イオン化を行うことを含み、分析モードでの操作を中止することは、調整ガスとは異なる試薬ガスの導管への流入を止めることを含む、実施形態20〜27のうちのいずれか1つに記載の方法。
【0147】
32.調整モードで操作することは、電離箱を−20〜800℃の範囲の温度で維持することを含む、実施形態20〜31のうちのいずれか1つに記載の方法。
【0148】
33.調整モードで操作することは、電離箱内の調整ガスを励起することを含む、実施形態32に記載の方法。
【0149】
34.調整モードで操作することは、カラムが配置されるハウジングの温度(カラムは電離箱と連通する)、カラムの温度、カラムが通って伸長する試料インターフェースの温度、電離箱の温度、質量分析器の温度、質量分析計の検出器の温度、およびそれらの2つ以上の組み合わせから成る群から選択される温度を制御することを含む、実施形態20〜33のうちのいずれか1つに記載の方法。
【0150】
35.MSシステムのパラメータを評価することと、パラメータに基づいて、MSシステムを調整モードで操作すべきか否かを決定することを含む、実施形態20〜34のうちのいずれか1つに記載の方法。
【0151】
36.パラメータは、パラメータを評価する前に、MSシステムの構成要素を分析モードで操作した回数、パラメータを評価する前に経過した時間量、既定の操作条件下でMSシステムによって生成されたクロマトグラムの質、質量スペクトル、または他の分析データ、既定の操作条件下でMSシステムによって生成されたクロマトグラムの信号対雑音比、質量スペクトル、または他の分析データ、調整モードで操作する間に取られた1つ以上の選択された質量対電荷比のイオン存在量の測定値、カラムの固定相担体から分離された固定相材料の存在、およびそれらの2つ以上の組み合わせから成る群から選択される、実施形態35に記載の方法。
【0152】
37.MSシステムを調整モードで操作すべきであることが決定される場合、MSシステムの操作を分析モードから調整モードに切り替えることと、MSシステムの操作を調整モードに切り替えるための時間を予定することと、MSシステムの操作を調整モードに切り替えるために事前に予定された時間を修正することと、MSシステムを調整モードで操作すべきであるというユーザが読める表示を生成することと、それらの2つ以上の組み合わせから成る群から選択されるステップを行う、実施形態36に記載の方法。
【0153】
38.試料およびキャリアガスの流れをカラムの固定相を通して流し、キャリアガスおよび試料の分離した構成要素の混合体を生成することと、電離箱の中に配向される第1の出力流と、電離箱と関連付けられたイオン検出器から分離したガス検出器に配向される第2の流れとに混合体を分割することと、イオン検出器およびガス検出器からそれぞれのクロマトグラムまたは他の分析データを生成することと、それぞれのクロマトグラムまたは他の分析データの比較に基づいて、MSシステムを調整モードで操作すべきか否かを決定することと、を含む、実施形態20〜37のうちのいずれか1つに記載の方法。
【0154】
39.調整モードで操作しながら、MSシステムによって生成されたクロマトグラム、質量スペクトル、または他の分析データを監視することを含む、実施形態20〜38のうちのいずれか1つに記載の方法。
【0155】
40.
試料インターフェースと、試料インターフェースと連通する電離箱とを備える、質量分析計と、
調整ガス源と連通するため、および質量分析計に向かって調整ガスを配向するために構成された調整ガスラインと、
質量分析計の中に入るキャリアガスおよび調整ガスのそれぞれの流れを調節するための手段と、
を備える、質量分析計(MS)システム。
【0156】
41.それぞれの流れを調節するための手段は、質量分析計に流入する調整ガスの比率が0%〜100%未満となるように調節するために構成される、実施形態40に記載のMSシステム。
【0157】
42.試料インターフェースと連通するガスクロマトグラフ(GC)ハウジングを備え、調整ガスラインは、GCハウジングの位置から試料インターフェースと連通する、実施形態40に記載のMSシステム。
【0158】
43.カラム入口とカラム出口とを備えるカラムを備え、カラム入口が調整ガスラインと連通し、カラム出口が試料インターフェースを介して電離箱と連通する、実施形態40に記載のMSシステム。
【0159】
44.カラムが試料インターフェースを通って伸長し、試料インターフェースは、電離箱と連通する導管を備え、調整ガスラインは、導管と連通する、実施形態43に記載のMSシステム。
【0160】
45.化学イオン化のために試薬ガスを供給するための導管と連通する補助ガスラインと、補助ガスラインと連通する流れ制御デバイスとを備え、調整ガスラインは、流れ制御デバイスと連通し、それぞれの流れを調節するための手段は、流れ制御デバイスを操作して、補助ガスラインを通る調整ガスおよび試薬ガスのそれぞれの流れを制御するために構成される、実施形態44に記載のMSシステム。
【0161】
46.調整ガスラインが、カラムとは別に質量分析計と直接連通する、実施形態43に記載のMSシステム。
【0162】
47.カラムと連通する流れ分割器と、流れ分割器と連通するガス出口ラインと、ガス出口ラインと連通するガス検出器と、電離箱と連通する質量分析器と、質量分析器と連通するイオン検出器とを備え、流れ分割器は、カラム内の試料/ガスの流れを、電離箱の中に配向される第1の出力流と、ガス出口ラインを介してガス検出器の中に配向される第2の出力流とに分割するために構成され、それぞれの流れを調節するための手段は、試料の分析においてイオン検出器から生成されたクロマトグラムまたは他の分析データと、同一の分析においてガス検出器から生成されたクロマトグラムまたは他の分析データとの比較に基づいて調節するために構成される、実施形態43に記載のMSシステム。
【0163】
48.カラム入口とカラム出口とを備えるカラムを備え、カラム出口が試料インターフェースを介して電離箱と連通し、調整ガスラインが、カラム入口とカラム出口との間のカラムのセクションと連通する、実施形態40に記載のMSシステム。
【0164】
49.調整ガスとは異なる補助ガスを供給するための調整ガスラインと連通する補助ガス源を備え、それぞれの流れを調節するための手段は、補助ガスおよび調整ガスのそれぞれの流れを調節するために構成され、調整ガスラインを通って流される補助ガスの比率は、0%〜100%未満の範囲である、実施形態48に記載のMSシステム。
【0165】
50.それぞれの流れを調節するための手段は、MSシステムのパラメータを評価するため、およびパラメータに基づいて、調整ガスの流れを調節するために構成される、実施形態40に記載のMSシステム。
【0166】
51.パラメータは、パラメータを評価する前に、MSシステムの構成要素を操作して試料分析を行った回数、パラメータを評価する前に経過した時間量、既定の操作条件下でMSシステムによって生成されたクロマトグラム、質量スペクトル、または他の分析データの質、既定の操作条件下でMSシステムによって生成されたクロマトグラム、質量スペクトル、または他の分析データの信号対雑音比、MSシステムを操作して試料を分析する間に取られた1つ以上の選択された質量対電荷比のイオン存在量の測定値、MSシステムのカラム内で固定相担体から分離された固定相材料の存在、カラムを通って流される試料マトリクスの組成、カラム内で担持される固定相の組成、カラムの内径、試料マトリクスの1つ以上の構成要素と調整ガスとの反応性、およびそれらの2つ以上の組み合わせから成る群から選択される、実施形態50に記載のMSシステム。
【0167】
52.温度プロファイルに従ってカラムの温度またはハウジング内の温度を変動させるために構成された加熱デバイスを備え、ハウジングは、試料インターフェースと連通し、それぞれの流れを調節するための手段は、温度が変動する間、調整ガスの流れを一定流量に維持するために構成される、実施形態40に記載のMSシステム。
【0168】
53.電離箱内で操作されるイオン化デバイスと、電離箱と連通する質量分析器と、質量分析器と連通するイオン検出器とを備え、それぞれの流れを調節するための手段は、イオン化デバイス、質量分析器、およびイオン検出器を操作することによって測定されるように、調整ガスイオンの存在量とキャリアガスイオンの存在量の所望の比に基づいて調節するために構成される、実施形態40に記載のMSシステム。
【0169】
54.それぞれの流れを調節するための手段は、調整ガスイオンの存在量とキャリアガスイオンの存在量との測定された比率を、所望の比と比較して、測定された比率と所望の比との間の比率差が望ましい範囲外であるか否かを決定し、電離箱への調整ガスの流れをキャリアガスに対して調整して、比率差を望ましい範囲内に維持するために構成される、実施形態53に記載のMSシステム。
【0170】
55.質量分析計(MS)システムを操作するための方法であって、
試料およびキャリアガスをMSシステムの電離箱の中に導入することと、
試料およびキャリアガスを導入しながら、キャリアガスとは異なる調整ガスを、MSシステムの質量分析計の中に流すことと、
電離箱内の試料の構成要素をイオン化することと、を含み、
質量分析計内の調整ガスが、試料の検体の質量スペクトル特性を実質的に変化させない、方法。
【0171】
56.キャリアガスが、ヘリウム、窒素、およびアルゴンから成る群から選択される、実施形態55に記載の方法。
【0172】
57.調整ガスが、調整ガスおよび調整ガスとは異なる補助ガスのブレンドを含有する源から流される、実施形態55または56に記載の方法。
【0173】
58.源内の補助ガスの比率が、0容量%〜100容量%未満の範囲である、実施形態57に記載の方法。
【0174】
59.補助ガスが、キャリアガスと同一である、実施形態57に記載の方法。
【0175】
60.電離箱の上流地点で、キャリアガスの流れを調整ガスの流れと混合することを含み、混合することは、調整ガスをキャリアガスとともにカラムのカラム入口の中に流すことと、カラムのカラム入口とカラム出口との間のカラムのセクションの中に調整ガスを流すことと、それらの両方の組み合わせから成る群から選択されるステップを含む、実施形態55〜59のうちのいずれか1つに記載の方法。
【0176】
61.質量分析計においてキャリアガスの流れを調整ガスの流れと混合することを含み、混合することは、カラムが通って伸長するMSシステムの試料インターフェースの導管の中に調整ガスを流すことであって、導管およびカラムは別個に電離箱と連通することと、カラムとは別のガスラインを介して、調整ガスを質量分析計の中に直接流すことと、それらの両方の組み合わせとから成る群から選択されるステップを含む、実施形態55〜59のうちのいずれか1つに記載の方法。
【0177】
62.調整ガスおよびキャリアガスは、カラムを通って電離箱の中に流れ、カラムを通って流れるキャリアガスと調整ガスとの比率が、0%〜100%未満の範囲であるように、カラム入口の中に入るキャリアガスおよび調整ガスのそれぞれの流れを調節することを含む、実施形態55〜59のうちのいずれか1つに記載の方法。
【0178】
63.調整ガスが、カラムのカラム入口とカラム出口との間のカラムのセクションに流入し、カラムを通って電離箱の中に流され、補助ガスを調整ガスとともにセクションの中に流し、セクションに流入する補助ガスの比率が、0%〜100%未満の範囲であるように、補助ガスの流れを調整ガスの流れに対して調節することを含む、実施形態55〜59のうちのいずれか1つに記載の方法。
【0179】
64.補助ガスがキャリアガスと同一である、実施形態63に記載の方法。
【0180】
65.MSシステムは、カラムが通って伸長する試料インターフェースを備え、試料インターフェースは、電離箱と連通する導管を備え、調整ガスは、導管を通って電離箱の中に流され、調整ガスとは異なる試薬ガスを、導管を通じて電離箱の中に流して、化学イオン化を行うことを含む、実施形態55〜59のうちのいずれか1つに記載の方法。
【0181】
66.電離箱に流入するキャリアガスの比率が、0容量%〜100容量%未満の範囲であるように、キャリアガスおよび調整ガスの流れを調節することを含む、実施形態55〜65のうちのいずれか1つに記載の方法。
【0182】
67.MSシステムのパラメータを評価することと、パラメータに基づいて、調整ガスの流れを調節することと、を含む、実施形態55〜66のうちのいずれか1つに記載の方法。
【0183】
68.パラメータは、パラメータを評価する前に、MSハウジングの構成要素を操作して試料分析を行った回数、パラメータを評価する前に経過した時間量、既定の操作条件下でMSシステムによって生成されたクロマトグラム、質量スペクトル、または他の分析データの質、既定の操作条件下でMSシステムによって生成されたクロマトグラム、質量スペクトル、または他の分析データの信号対雑音比、MSシステムを操作して試料を分析する間に取られた1つ以上の選択された質量対電荷比のイオン存在量の測定値、MSシステムのカラム内で固定相担体から分離された固定相材料の存在、カラムを通って流される試料マトリクスの組成、カラム内で担持される固定相の組成、カラムの内径、試料マトリクスの1つ以上の構成要素と調整ガスとの反応性、およびそれらの2つ以上の組み合わせから成る群から選択される、実施形態67に記載の方法。
【0184】
69.カラムの温度またはカラムが温度プロファイルに従って配置されるハウジング内の温度を変動させることと、温度を変動させながら、調整ガスを一定流量に維持することと、を含む、実施形態55〜68のうちのいずれか1つに記載の方法。
【0185】
70.MSシステムは、電離箱内で操作されるイオン化デバイスと、電離箱と連通する質量分析器と、質量分析器と連通するイオン検出器とを備え、イオン化デバイス、質量分析器、およびイオン検出器を操作することによって測定されるように、調整ガスイオンの存在量とキャリアガスイオンの存在量との所望の比率に基づいて、電離箱の中に入るキャリアガスに対して調整ガスの流れを調節することを含む、実施形態55〜69のうちのいずれか1つに記載の方法。
【0186】
71.調整ガスイオンの存在量とキャリアガスイオンの存在量の測定された比率を所望の比率と比較して、測定された比率と所望の比率との間の比率差が望ましい範囲外であるか否かを決定することと、電離箱の中に入るキャリアガスに対する調整ガスの流れを調整して、比率差を望ましい範囲内に維持することと、を含む、実施形態70に記載の方法。
【0187】
72.試料およびキャリアガスの流れをカラムの固定相を通じて流し、キャリアガスと試料の分離された構成要素との混合体を生成することと、混合体をイオン源の中に配向される第1の出力流と、イオン源と関連付けられたイオン検出器から分離されたガス検出器に配向される第2の流れとに分割することと、それぞれのクロマトグラムまたは他の分析データをイオン検出器およびガス検出器から生成することと、それぞれのクロマトグラムまたは他の分析データの比較に基づいて、電離箱の中に入るキャリアガスに対する調整ガスの流れを調節することと、を含む、実施形態55〜71のうちのいずれか1つに記載の方法。
【0188】
73.試料インターフェースと、試料インターフェースと連通する電離箱とを備える、質量分析計と、
試料インターフェースと連通し、水素、アルゴン、アンモニア、およびメタンから成る群から選択されるキャリアガスを供給するために構成されたキャリアガスラインと、
キャリアガスとは異なる補助ガスを、キャリアガスに添加するために構成された補助ガスラインと、
電離箱の中に入るキャリアガスおよび補助ガスのそれぞれの流れを調節するための手段と、
を備える、質量分析計(MS)システム。
【0189】
74.補助ガスが、ヘリウム、窒素、およびアルゴンから成る群から選択される、実施形態73に記載のMSシステム。
【0190】
75.キャリアガスラインが、キャリアガスとは異なる別のガスとブレンドされたキャリアガスを供給するために構成される、実施形態73に記載のMSシステム。
【0191】
76.ブレンド中の他のガスの比率が、0容量%〜100容量%未満の範囲である、実施形態75に記載のMSシステム。
【0192】
77.キャリアガスとブレンドされる他のガスが、補助ガスと同一である、実施形態75に記載のMSシステム。
【0193】
78.質量分析計(MS)システムを操作するための方法であって、
試料およびキャリアガスをMSシステムの電離箱の中に流すことであって、キャリアガスは、水素、アルゴン、アンモニア、およびメタンから成る群から選択されることと、
試料およびキャリアガスを流しながら、キャリアガスとは異なる補助ガスを電離箱の中に流すことと、
電離箱内の試料の構成要素をイオン化することと、
を含む、方法。
【0194】
79.補助ガスが、ヘリウム、窒素、およびアルゴンから成る群から選択される、実施形態78に記載の方法。
【0195】
80.キャリアガスが、キャリアガスと、キャリアガスとは異なる別のガスとのブレンドを含有する源から流される、実施形態78に記載の方法。
【0196】
81.それに伴うブレンド中の他のガスの比率が、0容量%〜100容量%未満の範囲である、実施形態80に記載の方法。
【0197】
82.キャリアガスとブレンドされる他のガスが、補助ガスと同一である、実施形態80に記載の方法。
【0198】
83.質量分析計(MS)システムを操作するための方法であって、
試料および水素を、カラムを通じてMSシステムの電離箱の中に流すことと、
試料および水素を流しながら、ヘリウム、窒素、およびアルゴンから成る群から選択される、補助ガスをMSシステムの質量分析計の中に流すことと、
試料の構成要素を電離箱内でイオン化することと、
を含む、方法。
【0199】
84.補助ガスがヘリウムである、実施形態83に記載の方法。
【0200】
85.水素が、水素および補助ガスのブレンドを含有する源から、補助ガスとともに流される、実施形態83に記載の方法。
【0201】
86.補助ガスを質量分析計の中に流すことは、補助ガスを水素とともにカラムのカラム入口の中に流すことと、補助ガスをカラムのカラム入口とカラム出口との間のカラムのセクションの中に流すことと、補助ガスをMSシステムの試料インターフェースの導管の中に流すことと(導管およびカラムは別個に電離箱と連通する)、カラムとは別のガスラインを介して、補助ガスを質量分析計の中に直接流すことと、それらのうちの2つ以上の組み合わせから成る群から選択されるステップを含む、実施形態83に記載の方法。
【0202】
87.補助ガス流の比率が、0容量%〜100容量%未満の範囲であるように、電離箱の中に入る水素の流れに対して質量分析計内の補助ガスの流れを調節することを含む、実施形態83に記載の方法。
【0203】
88.質量分析計を操作して、キャリアガスイオンの存在量と補助ガスイオンの存在量との比率を測定することと、測定された比率に基づいて、質量分析計の中に入る補助ガスの流れを調節することと、を含む、実施形態83に記載の方法。
【0204】
89.実施形態83に記載の方法を行うために構成された質量分析計(MS)システム。
【0205】
90.質量分析計(MS)システムを操作するための方法であって、質量分析計の中に試料を流すことなく、MSシステムの質量分析計の中に調整ガスを流すことを含む、方法。
【0206】
91.調整ガスを流しながら、質量分析計内の1つ以上の分子をイオン化することを含む、実施形態90に記載の方法。
【0207】
92.調整ガスが、電離箱の中に直接流される、前述の請求項のうちのいずれか1項に記載の方法。
【0208】
93.質量分析計(MS)システムを操作するための方法であって、試料およびキャリアガスをMSシステムの中に導入することを含み、キャリアガスが、ヘリウムおよび水素のブレンドである、方法。
【0209】
94.MSシステムが、プラズマイオン源を備えていない、前述の請求項のうちのいずれか1項に記載のMSシステムまたは方法。
【0210】
95.MSシステムが、イオン移動性スペクトロメータ(IMS)を備え、調整ガスがIMSの中に導入されない、前述の請求項のうちのいずれか1項に記載のMSシステムまたは方法。
【0211】
96.MSシステムがIMSを備えていない、請求項1〜94のうちのいずれか1項に記載のMSシステムまたは方法。
【0212】
97.前述の請求項のうちのいずれか1項に記載の方法を行うための指示を含む、コンピュータ可読媒体。
【0213】
98.実施形態97のコンピュータ可読媒体を備えるMSシステム。
【0214】
前述から、本明細書に記載の実施形態が、汚染された部品の除去、移動洗浄、および再インストール等の従来のMSサービスタスクを排除するか、またはその頻度を著しく低下させ、MSシステムの性能を回復または改善し得ることがわかる。本明細書に記載されるようなオフライン、オンライン、またはオフラインとオンライン調整プロセスの両方を適用することは、MSシステムの背景を急速に改善し得、そうでなければ非常に遅い排除速度を有する、水等の化学的に吸収される種に関して、従来の洗浄中に空気に曝露されると、MS構成要素上で吸収される溶媒または炭化水素等の種を含む。
【0215】
本明細書に記載のプロセス、サブプロセス、およびプロセスステップの1つ以上は、ハードウェア、ファームウェア、ソフトウェア、またはそれらの2つ以上の組み合わせによって、1つ以上の電子またはデジタル制御デバイス上で行われてもよいことが理解されるであろう。ソフトウェアは、例えば、図1に概略的に表されるシステムコントローラ168等の適切な処理構成要素またはシステムにおいて、ソフトウェアメモリ(図示せず)内に常駐し得る。ソフトウェアメモリは、論理関数を実装するための実行可能な命令の秩序一覧を含み得る(つまり、デジタル回路またはソースコード等のデジタル形態、またはアナログ電子、サウンド、またはビデオ信号等のアナログ形態で実装され得る「論理」)。命令は、例えば、1つ以上のマイクロプロセッサ、汎用プロセッサ、プロセッサ、デジタル信号プロセッサ(DSP)、または特定用途向け集積回路(ASIC)の組み合わせを含む、処理モジュール内で実行されてもよい。さらに、概略図は、関数のアーキテクチャまたは物理レイアウトによって制限されない物理的(ハードウェアおよび/またはソフトウェア)実装を有する、関数の論理的分割を説明する。本明細書に記載されるシステムの実施例は、多様な構成で実装されてもよく、単一のハードウェア/ソフトウェアユニット、または別個のハードウェア/ソフトウェアユニット内で、ハードウェア/ソフトウェア構成要素として動作する。
【0216】
実行可能な命令は、電子システムの処理モジュール(例えば、図1のシステムコントローラ168)によって実行されるとき、命令を実行するように電子システムに指示する、そこに保存された命令を有するコンピュータプログラム製品として実装され得る。コンピュータプログラム製品は、任意の非一過性コンピュータ可読記憶媒体において、電子コンピュータベースのシステム、プロセッサ含有システム、または命令実行システム、装置、またはデバイスから命令を選択的にフェッチして、命令を実行し得る、他のシステム等の命令実行システム、装置、またはデバイスによる使用または併用するために選択的に具体化され得る。本開示の文脈では、コンピュータ可読記憶媒体は、命令実行システム、装置、またはデバイスによって使用または併用するためのプログラムを保存し得る、任意の非一過性手段である。非一過性コンピュータ可読記憶媒体は、選択的に、例えば、電子、磁気、光学、電磁、赤外線、または半導体システム、装置、またはデバイスであり得る。非一過性コンピュータ可読媒体のより具体的な例の包括的でない一覧としては、1つ以上のワイヤ(電子)を有する電気接続、携帯用コンピュータディスク(磁気)、ランダムアクセスメモリ(電子)、読み取り専用メモリ(電子)、例えば、フラッシュメモリ(電子)等の消去可能プログラム可能読み取り専用メモリ(PROM)、例えば、CD−ROM、CD−R、CD−RW(光学)等のコンパクトディスクメモリ、およびデジタル多用途ディスクメモリ、すなわちDVD(光学)が挙げられる。プログラムは、例えば、紙または他の媒体の光学走査を介して電子的に捕捉された後、コンパイル、解釈され得るか、またはそうでなければ必要に応じて、適切な方法で処理され、次にコンピュータメモリまたは機械メモリ内に保存されるため、非一過性コンピュータ可読記憶媒体は、プログラムが印刷される紙または別の適切な媒体であってもよいことに留意されたい。
【0217】
本明細書で使用する「信号連通する」という用語はまた、2つ以上のシステム、デバイス、構成要素、モジュール、またはサブモジュールが、いくつかの種類の信号経路を超えて移動する信号を介して、お互いに通信できることを意味することが理解されるであろう。信号は、通信、電力、データ、またはエネルギー信号であってもよく、第1のシステム、デバイス、構成要素、モジュール、またはサブモジュールからの情報、電力、またはエネルギーを、第1および第2のシステム、デバイス、構成要素、モジュール、またはサブモジュール間の信号経路に沿って、第2のシステム、デバイス、構成要素、モジュール、またはサブモジュールに通信し得る。信号経路は、物理的、電気的、磁気的、電磁的、電気化学的、光学的、有線、または無線接続を含み得る。信号経路はまた、第1および第2のシステム、デバイス、構成要素、モジュール、またはサブモジュールの間に追加のシステム、デバイス、構成要素、モジュール、またはサブモジュールを含んでもよい。
【0218】
より一般的に、「連通する」および「〜と連通する」という用語は(例えば、第1の構成要素が第2の構成要素と「連通する」または「連通状態にある」)、本明細書において、2つ以上の構成要素またはヨウ素間の構造的、機能的、機械的、電気的、信号的、光学的、磁気的、電磁的、イオン的、または流体関係を示すように使用される。そのようにして、1つの構成要素が第2の構成要素と連通すると言われる事実は、追加の構成要素が、第1の構成要素と第2の構成要素との間に存在してもよく、および/または操作的に関連付けられるか、または係合され得る可能性を除外することを意図しない。
【0219】
本発明の様々な態様または詳細は、本発明の範囲から逸脱することなく変更されてもよいことが理解されるであろう。さらに、前述の説明は、単なる例示目的であり、請求項によって定義される本発明を限定するものではない。

【特許請求の範囲】
【請求項1】
質量分析計、MS、システム(100、700、1100、1500、1900)を操作するための方法であって、
試料およびキャリアガスを前記MSシステム(100、700、1100、1500、1900)の電離箱(136)の中に導入することと、
調整ガスを前記MSシステム(100、700、1100、1500、1900)の質量分析計(104)の中に流すことと、を含み、前記質量分析計(104)内の前記調整ガスが、前記試料の検体の質量スペクトル特徴を実質的に変化させず、前記調整ガスが、前記キャリアガスとは異なる、方法。
【請求項2】
前記調整ガスが、水素、アルゴン、または水素およびアルゴンの両方を含む、請求項1に記載の方法。
【請求項3】
前記調整ガスを流すことは、前記調整ガスをキャリアガスとともに前記質量分析計(104)の中に流すことを含み、前記質量分析計(104)に流入する前記調整ガスの比率が、0.02%〜50%の範囲であるように、前記調整ガスおよび前記キャリアガスのそれぞれの流れを調節することをさらに含む、請求項1または2に記載の方法。
【請求項4】
前記MSシステム(100、700、1100、1500、1900)のパラメータを評価することと、前記パラメータに基づいて、前記調整ガスの流れを調節することと、を含む、請求項1〜3のいずれかに記載の方法。
【請求項5】
前記パラメータは、前記パラメータを評価する前に、前記MSシステム(100、700、1100、1500、1900)の構成要素を操作して、試料分析を行った回数、前記パラメータを評価する前に経過した時間量、既定の操作条件下で、前記MSシステム(100、700、1100、1500、1900)によって生成されたクロマトグラムの質、既定の操作条件下で、前記MSシステム(100、700、1100、1500、1900)によって生成されたクロマトグラムの信号対雑音比、前記MSシステム(100、700、1100、1500、1900)を操作して試料を分析する間に取られた1つ以上の選択された質量対電荷比のイオン存在量の測定値、前記MSシステム(100、700、1100、1500、1900)のカラム(246)内の固定相担体から分離された固定相材料の存在、前記カラム(246)を通って流される試料マトリクスの組成、前記MSシステム(100、700、1100、1500、1900)のカラム(246)内で担持される固定相の組成、前記カラム(246)の内径、前記試料マトリクスの1つ以上の構成要素と前記調整ガスとの反応性、およびそれらのうちの2つ以上の組み合わせから成る群から選択される、請求項4に記載の方法。
【請求項6】
前記試料を導入することは、前記試料をキャリアガスとともに前記質量分析計(104)の中に流すことを含み、前記質量分析計(104)を操作して、調整ガスイオンの存在量とキャリアガスイオンの存在量の比率を測定することと、前記測定された比率に基づいて、電離箱(136)の中への前記キャリアガスの流れに対して、前記質量分析計(104)の中への前記調整ガスの流れを調節することと、をさらに含む、請求項1〜5のいずれかに記載の方法。
【請求項7】
質量分析計、MS、システム(100、700、1100、1500、1900)を操作するための方法であって、
前記質量分析計(104)の中に試料を導入せずに、前記MSシステム(100、700、1100、1500、1900)の調整ガスによって調整される質量分析計(104)の中に、前記調整ガスを流すことと、
前記調整ガスとは異なるキャリアガスとともに、前記調整された質量分析計(104)の中に試料を導入し、分析データを前記試料から収集することと、を含む、方法。
【請求項8】
前記調整ガスを流しながら、前記質量分析計(104)内でイオンを生成することと、前記イオンの測定値を監視することと、を含む、請求項7に記載の方法。
【請求項9】
前記調整ガスを流すことが、前記調整ガスを前記電離箱(136)の中に流すことを含み、前記調整ガスを前記電離箱(136)内で励起させることをさらに含む、請求項1〜8のいずれかに記載の方法。
【請求項10】
請求項1〜9のいずれかに記載の方法を実行するように構成される、質量分析計システム(100、700、1100、1500、1900)。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図5E】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2013−61324(P2013−61324A)
【公開日】平成25年4月4日(2013.4.4)
【国際特許分類】
【出願番号】特願2012−177238(P2012−177238)
【出願日】平成24年8月9日(2012.8.9)
【出願人】(399117121)アジレント・テクノロジーズ・インク (710)
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
【Fターム(参考)】