説明

超音波診断装置

【課題】超音波探触子における圧電素子が送信する超音波に含まれる高調波成分を削減し、高精細な超音波画像を構築することができる超音波診断装置を提供する。
【解決手段】第1送信用圧電素子毎に近傍に配置された第2送信用圧電素子に、第1送信用圧電素子が送信する第1超音波信号に含まれる所定次数の少なくとも一つの高調波成分に対して、逆位相の第2超音波信号を送信させ、受信用圧電素子を用いて自己チェックおよびセットアップを実施する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波診断装置に関するものであって、特に、高精細な超音波画像を構築する超音波診断装置に関する。
【背景技術】
【0002】
超音波は、通常、16000Hz以上の音波をいい、非破壊、無害および略リアルタイムでその内部を調べることが可能なことから、欠陥の検査や疾患の診断等の様々な分野に応用されている。その一つに、被検体内を超音波で走査し、被検体内から来た超音波の反射波(エコー)から生成した受信信号に基づいて当該被検体内の内部状態を画像化する超音波診断装置がある。この超音波診断装置は、医療用では、他の医療用画像装置に較べて小型で安価であり、そしてX線等の放射線被爆が無く安全性が高いこと、また、ドップラ効果を応用した血流表示が可能であること等の様々な特長を有している。このため、超音波診断装置は、循環器系(例えば心臓の冠動脈等)、消化器系(例えば胃腸等)、内科系(例えば肝臓、膵臓および脾臓等)、泌尿器系(例えば腎臓および膀胱等)および産婦人科系等で広く利用されている。
【0003】
超音波診断装置には、被検体に対して超音波(超音波信号)を送受信する超音波探触子が用いられている。超音波探触子は、圧電現象を利用することによって、送信の電気信号に基づいて機械振動して超音波(超音波信号)を発生し、被検体内部で音響インピーダンスの不整合によって生じる超音波(超音波信号)の反射波を受けて受信の電気信号を生成する複数の圧電素子を備え、これら複数の圧電素子が例えばアレイ状に2次元配列されて構成されている(例えば、特許文献1参照)。
【0004】
また、近年では、超音波探触子から被検体内へ送信された超音波の周波数(基本周波数)成分ではなく、高調波成分によって被検体内の内部状態の画像を形成するハーモニックイメージング(Harmonic Imaging)技術が研究、開発されている。このハーモニックイメージング技術は、基本周波数成分のレベルに比較してサイドローブレベルが小さく、S/N比(Signal to Noise ratio)が良くなってコントラスト分解能が向上すること、周波数が高くなることによってビーム幅が細くなって横方向分解能が向上すること、近距離では音圧が小さくて音圧の変動が少ないために多重反射が抑制されること、および、焦点以遠の減衰が基本波並みであり高周波を基本波とする場合に較べて深速度を大きく取れること等の様々な利点を有している。
【0005】
ハーモニックイメージング技術においては、単一周波数成分をもつパルスを送信し、被検体からの反射波の中の高調波成分によって被検体内の内部状態の画像(超音波画像)を構築するので、被検体からの反射波以外から送信される高調波成分の超音波はノイズ成分となり、高精細に被検体内の内部状態の画像を構築することができなくなる。一方、超音波探触子が送信する超音波(超音波信号)は、超音波探触子内に備えられた圧電素子にパルス電圧が印加されることで生成される。パルス電圧は高調波成分を有するので、圧電素子が生成する超音波自体にも高調波成分が生成されてしまう。従って、この高調波成分が被検体内の反射波と供に受信されるので、ノイズ成分となり、高精細な超音波画像の構築を妨げることとなる。
【0006】
この不具合を解決するための提案がなされている。例えば、異なる電圧値が個別に供給された複数のスイッチング素子をパルサに備え、この複数のスイッチング素子をオンオフ制御することで、その異なる電圧値に基づき少なくとも時間的に等幅な波形の駆動パルスをパルサに発生させ、より正弦波に近い超音波を生成し、高調波成分を減じるものがある(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−088056号公報
【特許文献2】特開平8−238243号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献2に記載の技術は、圧電素子に印加する電圧波形を正弦波に近づけることで超音波が単一周波数を有するごとくに単色性を高めたものである。しかし、特許文献2に記載の技術は、矩形波状の電圧波形における、時間軸の前後を矩形波で整形するというものであることから、正弦波に近づける効果は小さい。従って、圧電素子が送信する超音波に含まれる高調波成分を減じる効果は小さいことから、高精細な超音波画像を構築することは難しい。
【0009】
本発明は、超音波探触子における圧電素子が送信する超音波に含まれる高調波成分を削減し、高精細な超音波画像を構築することができる超音波診断装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
前述の目的は、下記に記載する発明により達成される。
【0011】
1.被検体内に第1超音波信号を送信する複数の第1送信用圧電素子と、
前記第1送信用圧電素子毎に近傍に配置され、前記第1送信用圧電素子が送信する前記第1超音波信号に含まれる所定次数の少なくとも一つの高調波成分に対して、逆位相の第2超音波信号を送信する複数の第2送信用圧電素子と、
前記第1超音波信号が前記被検体内において反射されて生成された第3超音波信号を受信して電気信号に変換する複数の受信用圧電素子と、
を備える超音波探触子と、
前記第1送信用圧電素子および前記第2送信用圧電素子を駆動する送信部と、
前記受信用圧電素子を駆動する受信部と、
前記電気信号から前記被検体内の超音波画像を生成する画像処理部と、
を有することを特徴とする超音波診断装置。
【0012】
2.被検体内に第1超音波信号を送信する複数の第1送信用圧電素子と、
前記第1送信用圧電素子毎に近傍に配置され、前記第1送信用圧電素子が送信する前記第1超音波信号に含まれる所定次数の少なくとも一つの高調波成分に対して、逆位相の第2超音波信号を送信し、前記第1超音波信号が前記被検体内において反射されて生成された第3超音波信号を受信する複数の送受信用圧電素子と、
を備える超音波探触子と、
前記第1送信用圧電素子を駆動する送信部と、
前記送受信用圧電素子を送信用として駆動する送信部と、
前記送受信用圧電素子を受信用として駆動する受信部と、
前記電気信号から前記被検体内の超音波画像を生成する画像処理部と、
を有することを特徴とする超音波診断装置。
【0013】
3.前記第2送信用圧電素子または前記送受信用圧電素子は、前記第1送信用圧電素子から1mm以内の距離に配置されることを特徴とする前記1または2に記載の超音波診断装置。
【0014】
4.前記所定次数は、第2次、または第3次であることを特徴とする前記1から3の何れか1項に記載の超音波診断装置。
【0015】
5.前記第2送信用圧電素子または前記送受信用圧電素子は、前記第1送信用圧電素子が被検体に超音波を送信する方向に、前記第1送信用圧電素子上に積層されていることを特徴とする前記1から4の何れか1項に記載の超音波診断装置。
【0016】
6.前記第1送信用圧電素子は無機圧電素子であり、前記送受信用圧電素子は有機圧電素子であることを特徴とする前記2に記載の超音波診断装置。
【発明の効果】
【0017】
超音波探触子における圧電素子が送信する超音波に含まれる高調波成分を削減し、高精細な超音波画像を構築することができる超音波診断装置を提供できる。
【図面の簡単な説明】
【0018】
【図1】実施形態における超音波診断装置の外観構成を示す図である。
【図2】実施形態における超音波診断装置の電気的な構成を示すブロック図である。
【図3】実施形態における超音波診断装置における超音波探触子の構成を示す図である。
【図4】実施形態の超音波探触子が送信する超音波の周波数の概要を示す概要図である。
【図5】実施形態の超音波探触子が送信する超音波の周波数の概要を示す概要図である。
【図6】実施形態の超音波診断装置における超音波探触子の他の構成を示す図である。
【図7】実施形態の超音波診断装置における超音波探触子の他の構成を示す図である。
【図8】実施形態の超音波探触子が送信する超音波の周波数の概要を示す概要図である。
【図9】実施形態の送信側と受信側の回路構成例の概要図である。
【図10】実施形態の送信側と受信側の回路構成例の概要図である。
【図11】実施形態における自己チェック機能処理のフロー図である。
【図12】実施形態における第1超音波信号と第2超音波信号が合わさった超音波の周波数スペクトルを表す概要図である。
【発明を実施するための形態】
【0019】
以下に本発明の実施形態を図面により説明するが、本発明は以下に説明する実施形態に限られるものではない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。また、本明細書において、適宜、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
【0020】
〔超音波診断装置および超音波探触子の各構成および動作〕
本実施形態に係る超音波診断装置および超音波探触子の各構成および動作について説明図1から図8を用いて説明する。図1は、実施形態における超音波診断装置の外観構成を示す図である。図2は、実施形態における超音波診断装置の電気的な構成を示すブロック図である。図3は実施形態の超音波診断装置における超音波探触子の構成を示す図である。図4と図5は、実施形態の超音波探触子が送信する超音波の周波数の概要を示す概要図である。図6、図7は実施形態の超音波診断装置における超音波探触子の他の構成を示す図である。図8は、実施形態の超音波探触子が送信する超音波の周波数の概要を示す概要図である。
【0021】
超音波診断装置Sは、図1に示すように、図略の生体等の被検体Hに対して超音波(超音波信号)を送信すると共に、被検体Hで反射した超音波の反射波(エコー、超音波信号)を受信する超音波探触子2と、超音波探触子2とケーブル3を介して接続され、超音波探触子2へケーブル3を介して電気信号の送信信号を送信することによって超音波探触子2に被検体Hに対して超音波を送信させると共に、超音波探触子2で受信された被検体H内からの超音波の反射波に応じて超音波探触子2で生成された受信信号に基づいて被検体H内の内部状態を超音波画像として画像化する超音波診断装置本体1とを備えて構成される。
【0022】
超音波診断装置本体1は、例えば、図2に示すように、診断開始を指示するコマンドや被検体Hの個人情報等のデータを入力する操作入力部11と、超音波探触子2へケーブル3を介して電気信号の送信信号を供給することで超音波探触子2に超音波を発生させるよう駆動する送信部12と、超音波探触子2からケーブル3を介して受信信号を受信する受信部13と、受信部13で受信した受信信号に基づいて被検体H内の内部状態の画像(超音波画像)を生成する画像処理部14と、受信部13で受信した受信信号に基づいて、超音波探触子2が送信する超音波から高調波成分が除去されているか、自己チェックするチェック部17と、チェック部17で得られた結果等を記憶させる記憶部18と、画像処理部14で生成された被検体H内の内部状態の画像を表示する表示部15と、これら操作入力部11、送信部12、受信部13、画像処理部14、表示部15、チェック部17および記憶部18とを該機能に応じて制御することによって超音波診断装置Sの全体制御を行う制御部16と、を備えて構成される。
【0023】
超音波探触子(超音波プローブ)2の一例を、図3を用いて説明する。超音波探触子2は、一つの有機圧電素子と二つの無機圧電素子とを備えている。
【0024】
無機圧電素子は無機圧電材料を備えて成り、有機圧電素子は有機圧電材料を備えて成り、各々圧電現象を利用することによって受信信号と超音波信号との間で相互に信号を変換することができる。
【0025】
無機圧電材料には、例えばPZTを用いることができる。有機圧電材料には、例えば、フッ化ビニリデンの重合体や、フッ化ビニリデン(VDF)系コポリマを用いることができる。
【0026】
超音波探触子2は、被検体H方向に向かって、平板状の音響制動部材23と、音響制動部材23の上に積層された音響整合層31と、無機圧電素子アレイ4aと、音響整合層26aと、無機圧電素子アレイ4bと、音響整合層26bと、有機圧電素子アレイ5と、この有機圧電素子アレイ5上に積層される音響整合層27と、を有する。
【0027】
無機圧電素子アレイ4aは、複数の無機圧電素子22aと、無機圧電素子22同士の隙間に音響分離材を充填して作製される音響分離部24と、無機圧電素子22上に積層された共通接地電極25とを有す。
【0028】
無機圧電素子アレイ4bは、複数の無機圧電素子22bと、無機圧電素子22同士の隙間に音響分離材を充填して作製される音響分離部24と、無機圧電素子22上に積層された共通接地電極25とを有す。
【0029】
音響制動部材23は、超音波を吸収する材料から構成され、複数の無機圧電素子22から音響制動部材23方向へ放射される超音波を吸収するものである。
【0030】
音響整合層31は、音響制動部材23と無機圧電素子22の各々の音響インピーダンスの中間の音響インピーダンスを有し、音響制動部材23と無機圧電素子22の音響インピーダンスの整合を図る。
【0031】
各無機圧電素子22は、無機圧電材料から構成される圧電素子101における互いに対向する両面にそれぞれ電極102、103を備えて構成される。複数の無機圧電素子22は、互いに所定の間隔を空けて平面視にて2次元状に配列され、音響制動部材23上に配置されている。
【0032】
この他、図示しないが、外部からの電気信号を受ける導電パッドが音響制動部材23の下部に設けられ、導電パッドと無機圧電素子22a、および導電パッドと無機圧電素子22bの電極とが信号線で接続されている。
【0033】
複数の無機圧電素子22は、超音波を送信するように構成されている。より具体的には、複数の無機圧電素子22には、送信部12からケーブル3と導電パッドと信号線を介して電気信号が入力される。電気信号は、無機圧電素子22の電極102と電極103との間に入力される。複数の無機圧電素子22は、この電気信号を超音波信号に変換することによって超音波信号を送信する。
【0034】
音響分離部24は、無機圧電素子22の音響インピーダンスに比して値が大きく異なる低音響インピーダンス樹脂から構成され、音響インピーダンスが大きく異なることにより、音響分離材として働き、これら複数の無機圧電素子22の相互干渉を低減する機能を有する。音響分離部24によって各無機圧電素子22間におけるクロストークの低減が可能となる。
【0035】
共通接地電極25は、導電性の材料から構成され、図略の配線によって接地されており、そして、複数の無機圧電素子22上にまたがって直線状に積層されることによってこれら無機圧電素子22における各電極103を電気的に接地している。
【0036】
音響整合層26aは、無機圧電素子アレイ4aと無機圧電素子アレイ4bの各々の音響インピーダンスの中間の音響インピーダンスを有し、無機圧電素子アレイ4aと無機圧電素子アレイ4bの音響インピーダンスの整合を図る。
【0037】
音響整合層26bは、無機圧電素子アレイ4bと有機圧電素子アレイ5の各々の音響インピーダンスの中間の音響インピーダンスを有し、無機圧電素子アレイ4bと有機圧電素子アレイ5の音響インピーダンスの整合を図る。
【0038】
音響整合層27は、有機圧電素子アレイ5の音響インピーダンスと被検体Hの音響インピーダンスとの整合をとる部材である。音響整合層27は、円弧状に膨出した形状とされ、被検体Hに向けて送信される超音波を収束する音響レンズの機能を有する。
【0039】
有機圧電素子アレイ5は、所定の厚さを持った平板状の有機圧電材料から成る圧電素子105と、この圧電素子105の一方主面に形成された互いに分離した複数の電極106と、この圧電素子105の他方主面に略全面に亘って一様に形成された電極107とを備えて構成されたシート状の圧電素子である。
【0040】
複数の電極106が圧電素子105の一方主面に形成されることによって、有機圧電素子アレイ5は、1個の電極107と圧電素子105と電極106とから成る圧電素子を2次元状に備え、各圧電素子が個別に動作する。
【0041】
有機圧電素子アレイ5における複数の圧電素子は、個別に機能させるために無機圧電素子22のように個々に分離する必要がなく、一体的なシート状で構成することが可能である。
【0042】
図3では、21で示される部分のように、電極107と圧電素子105と電極106とで形成される部分を一つの各々有機圧電素子、すなわち有機圧電素子21とみなすことができる。
【0043】
有機圧電素子21は、反射波の超音波信号を受信する受信用圧電素子であり、受信した超音波信号を電気信号に変換する。この電気信号は、有機圧電素子21における電極106と電極107とから出力される。この電気信号は、ケーブル3を介して受信部13へ出力される。
【0044】
このような構成の超音波診断装置Sでは、例えば、操作入力部11から診断開始の指示が入力されると、制御部16の制御によって送信部12で電気信号の送信信号が生成される。この生成された電気信号の送信信号は、ケーブル3を介して無機圧電素子アレイ4a内の各々の無機圧電素子22へ供給される。
【0045】
電気信号の送信信号は、例えば、所定の周期で繰り返される電圧パルスである。複数の無機圧電素子22は、それぞれ、この電気信号の送信信号が供給されることによってその厚み方向に伸縮し、この電気信号の送信信号に応じて超音波振動するよう駆動される。
【0046】
この超音波振動は超音波である第1超音波信号を発生させ、無機圧電素子アレイ4b、有機圧電素子アレイ5等を伝播して被検体H方向へ照射される。
【0047】
第1超音波信号信号には送信部からの電気信号に含まれる周波数(基本周波数)成分だけでなく、基本周波数の整数倍の高調波成分も含まれる。例えば、基本周波数の2倍、3倍および4倍などの第2高調波成分、第3高調波成分および第4高調波成分なども含まれる。これは、送信部からの電気信号自体に高調波成分が含まれることと、圧電素子の応答特性に依存する。
【0048】
超音波診断装置においては、被検体Hからの反射波である第2超音波信号における高調波成分を解析することで、高精細な超音波画像を得る。従って、無機圧電素子アレイ4aが送信する超音波に含まれる高調波成分が有機圧電素子アレイ5で受信されるとノイズになり、高精細な超音波画像を得ることができない。そこで、無機圧電素子アレイ4bにおいては、無機圧電素子アレイ4aが送信する超音波に含まれる高調波成分を相殺するような超音波である第2超音波信号を送信する。
【0049】
例えば、超音波画像を生成するに際し、2次高調波を用いる場合には、無機圧電素子アレイ4aが送信する超音波に含まれる2次高調波を相殺するように、無機圧電素子アレイ4bに2次高調波を第2超音波信号として送信させる。
【0050】
また、超音波画像を生成するに際し、3次高調波を用いる場合、無機圧電素子アレイ4aが送信する超音波に含まれる3次高調波を相殺するように、図4に示すように、無機圧電素子アレイ4bに3次高調波を第2超音波信号として送信させる。より高精細な超音波画像を得るには、次数はより高次であることが望ましい。
【0051】
図4において、超音波探触子2と、第1超音波信号強度の時間波形を示すグラフG1、第2超音波信号強度の時間波形を示すグラフG2、および第1超音波信号強度と第2超音波信号強度を重畳した時間波形を示すグラフG3を示す。図中tは時間、AMPは超音波信号強度を表す。
【0052】
グラフG1に示すように、第1超音波信号強度の時間波形における基本周波数f1と3次高調波f3とは無機圧電素子アレイ4aの表面から同相で送信される。基本周波数f1と3次高調波f3とを有する第1超音波信号は、被検体H方向に進行する。無機圧電素子アレイ4bにおいては、無機圧電素子アレイ4bから第2超音波信号を送信する面において、グラフG2に示すように、第1超音波信号に含まれる第3高調波が有する位相に対して逆位相の第3高調波を送信する。なお、送信する第3高調波は、第1超音波信号に含まれる第3高調波と同振幅で送信することが望ましい。超音波探触子2を出射する超音波信号は、グラフG3に示すように、第1超音波信号と第2超音波信号とが重畳された結果、第3高調波が相殺され、基本波成分のみ有して被検体Hへ送信されることとなる。
【0053】
第3高調波を相殺するには、無機圧電素子アレイ4aと無機圧電素子アレイ4bにおいて実際に超音波を送信する各々の無機圧電素子22が接近していることが望ましく、例えば1mm以内に各々の無機圧電素子22を配置する。
【0054】
超音波画像を生成するに際し、3次高調波を用いる場合、無機圧電素子アレイ4aが送信する超音波に含まれる2次高調波と3次高調波の両方の高調波を相殺するようにすると、さらに高精細な超音波画像を得ることができる。
【0055】
以下、図5を用いて説明する。図5において、第1超音波信号強度の時間波形を示すグラフG4、第2超音波信号強度の時間波形を示すグラフG5、および第1超音波信号強度と第2超音波信号強度を重畳した時間波形を示すグラフG6を示す。図中tは時間、AMPは超音波信号強度を表す。
【0056】
グラフG4に示すように、第1超音波信号強度の時間波形における基本周波数f1、2次高調波f2、および3次高調波f3とは図示しない無機圧電素子アレイ4aの表面から同相で送信される。基本周波数f1、2次高調波f2、および3次高調波f3とを有する第1超音波信号は、被検体H方向に進行する。無機圧電素子アレイ4bにおいては、無機圧電素子アレイ4bから第2超音波信号を送信する面において、グラフG5に示すように、第1超音波信号に含まれる第2高調波と第3高調波が各々有する位相に対して逆位相の第2高調波と第3高調波を送信する。なお、送信する第2高調波と第3高調波は、第1超音波信号に含まれる第2高調波と第3高調波と同振幅で送信することが望ましい。超音波探触子2を出射する超音波信号は、グラフG6に示すように、第1超音波信号と第2超音波信号とが重畳された結果、第2高調波と第3高調波が相殺され、基本波成分のみ有して被検体Hへ送信されることとなる。
【0057】
なお、無機圧電素子アレイ4aと無機圧電素子アレイ4bとから送信される第1超音波信号における各次数の周波数成分の強度について、予め、無機圧電素子アレイ4aと無機圧電素子アレイ4bとに入力する電気入力との関係を実験により求めておく。得られたデータを基に、上記のように、第1超音波信号と第2超音波信号とが重畳されて、第2高調波と第3高調波が相殺され、基本波成分のみ有して被検体Hへ送信されるように、無機圧電素子アレイ4aと無機圧電素子アレイ4bへの電気入力を制御する。また、無機圧電素子アレイ4aから送信される第1超音波信号における各次数の周波数成分の強度を測定する図示しないセンサを設け、そのセンサの測定値に従って、無機圧電素子アレイ4bから各次数の周波数成分を送信させてもよい。
【0058】
なお、図3に示すように、無機圧電素子アレイ4aと、無機圧電素子アレイ4bとを被検体Hの方向に積層することで、第1超音波信号と、第2超音波信号を被検体Hの方向上に重ねることができる。従って、超音波探触子2と被検体Hの間において、常に第3高調波を相殺することができ、被検体H内の測定箇所と超音波探触子2の距離に関わりなく、高精細な超音波画像を構築することができる。
【0059】
超音波探触子2は、被検体Hの表面上に当接して用いられてもよいし、被検体Hの内部に挿入して、例えば、生体の体腔内に挿入して用いられてもよい。
【0060】
この被検体Hに対して送信された超音波は、被検体H内部における音響インピーダンスが異なる1または複数の境界面で反射され、超音波の反射波である第3超音波信号となる。
【0061】
第3超音波信号には、送信された超音波の周波数(基本波の基本周波数)成分だけでなく、基本周波数の整数倍の高次高調波の周波数成分も含まれる。第3超音波信号は、超音波探触子2で受信される。より具体的には、第3超音波信号は、音響整合層27を介して受信用圧電素子である有機圧電素子21で受信され、有機圧電素子21で機械的な振動が受信信号として電気信号に変換されて取り出される。取り出された受信信号は、ケーブル3を介して制御部16で制御される受信部13で受信される。
【0062】
画像処理部14は、制御部16の制御によって、受信部13で受信した受信信号に基づいて、送信から受信までの時間や受信強度などから被検体H内の内部状態の画像(超音波画像)を生成し、表示部15は、制御部16の制御によって、画像処理部14で生成された被検体H内の内部状態の画像を表示する。
【0063】
本実施形態における超音波探触子2および超音波診断装置Sでは、上述したように基本波の高調波が受信されるので、いわゆるハーモニックイメージング技術によって超音波画像を形成することが可能となる。このため、本実施形態における超音波探触子2および超音波診断装置Sは、より高精度な超音波画像の提供が可能となる。そして、比較的パワーの大きい第2高調波や第3高調波が受信されるので、より鮮明な超音波画像の提供が可能となる。
【0064】
なお、超音波探触子2は図6に示したような構成でもよい。図6に示した超音波探触子2においては、図3で示した超音波探触子2に備えられていた無機圧電素子アレイ4bを設けず、圧電素子アレイは無機圧電素子アレイ4aと有機圧電素子アレイ5のみにした。
【0065】
この超音波探触子2は、被検体H方向に向かって、平板状の音響制動部材23と、音響制動部材23の上に積層された音響整合層31と、無機圧電素子アレイ4aと、音響整合層26bと、有機圧電素子アレイ5と、この有機圧電素子アレイ5上に積層される音響整合層27と、を有する。
【0066】
無機圧電素子アレイ4bが有していた機能である高次高調波を送信する機能は、有機圧電素子アレイ5が併せ持つ。すなわち有機圧電素子アレイ5は、第3超音波信号を受信する機能と、第2超音波信号を送信する機能の両方を有する送受信用圧電素子である。
【0067】
送信する圧電素子アレイを一つにすることで、小型の超音波探触子2を構成することができる。送受信する機能を有機圧電素子21にもたせることで、有機圧電素子の有する受信時の広帯域性を生かせるので、高精細な超音波画像を構築することができる。
【0068】
第1超音波信号強度の時間波形、第2超音波信号強度の時間波形、および第1超音波信号強度と第2超音波信号強度を重畳した時間波形は、図4に示した時間波形と同様である。従って、第1超音波信号と第2超音波信号とが重畳された結果、第3高調波が相殺され、基本波成分のみ有し、被検体Hへ送信されることとなる。
【0069】
超音波探触子2は、さらに、図7に示したような構成でもよい。図7においては、無機圧電素子22と有機圧電素子21とが被検体Hの方向に対して垂直方向に、有機圧電素子21−1、無機圧電素子22−1、有機圧電素子21−2、無機圧電素子22−2、というように交互に配列され、音響制動部材23と音響整合層26を備える構成とする。その他の構成部分は簡単化のため省略する。
【0070】
無機圧電素子22−nが第1超音波信号を送信し、有機圧電素子21−nが第2超音波信号を送信する。被検体Hからの反射波である第3超音波信号は、有機圧電素子21が受信する。
【0071】
無機圧電素子22−nと有機圧電素子21−nが送信する超音波信号について説明する。図8に、第1超音波信号強度の時間波形を示すグラフG7、第2超音波信号強度の時間波形を示すグラフG8、および第1超音波信号強度と第2超音波信号強度を重畳した時間波形を示すグラフG9を示す。図中tは時間、AMPは超音波信号強度を表す。
【0072】
グラフG7に示すように、第1超音波信号強度の時間波形における基本周波数f1と3次高調波f3とは、無機圧電素子22−nおよび有機圧電素子21−nの表面から同相で送信される。なお説明の簡易化のため、第2高調波は無視する。基本周波数f1と3次高調波f3とを有する第1超音波信号は、被検体H方向に進行する。有機圧電膜基板21−nにおいては、グラフG8に示すように、第1超音波信号に含まれる第3高調波が有する位相に対して逆位相の第3高調波が送信される。なお、送信する第3高調波は、第1超音波信号に含まれる第3高調波と同振幅で送信することが望ましい。超音波探触子2を出射する超音波信号は、グラフG9に示すように、第1超音波信号と第2超音波信号とが重畳された結果、第3高調波が相殺され、基本波成分のみ有して被検体Hへ送信されることとなる。
【0073】
〔超音波探触子の回路構成〕
超音波診断装置と超音波探触子間の電気接続について図9と図10を用いて説明する。図9と図10は、送信側と受信側の回路構成例の概要図である。
【0074】
最初に、送信時の回路動作を説明する。Vccはプラス側に電圧を持つ電源で、Vddはマイナス側に電圧を持つ電源である。
【0075】
送信側90の圧電素子Y1を駆動するため超音波診断装置本体1の端子80から送信信号が入力される。送信信号波形は、プラス側、マイナス側にも振られる正弦波でも良いし、矩形波でも良い。またインパルス波形でもよい。
【0076】
送信信号は大信号のため、ダイオードD1はONし、送信信号は圧電素子Y1に印加される。
【0077】
受信側91の圧電素子Y2には、送信波形のプラス側信号はダイオードD3を通過した後、抵抗R2を通過してVdd側に流れる。送信波形のマイナス側信号は抵抗R1を通ってVccへ、及び抵抗R2を通ってVdd側に流れるため、Y2側に信号が印加されない。
【0078】
このような動作により、受信側91の圧電素子Y2を振動させずに、送信側90の圧電素子Y1を振動させることができる。
【0079】
次に受信時の回路動作を説明する。第2超音波信号を受けて圧電素子Y2において電気信号が発生し、VccおよびVddによって常にダイオードD3はONされる。
【0080】
受信信号はダイオードD3を通過し端子80側に伝達される。送信側90においては、ダイオードD1のスレッショルド電圧によってダイオードD1はOFF状態のため、圧電素子Y1側には電気信号は流れない。以上の動作によって、図9に示す回路がスイッチを用いずとも、送受切替回路の機能を有する。
【0081】
また、図10に示す構成を有する回路でも良い。最初に、送信時の回路動作を説明する。Vccはプラス側に電圧を持つ電源で、Vddはマイナス側に電圧を持つ電源である。
【0082】
送信側90の圧電素子Y1を駆動するため超音波診断装置本体1の端子80から送信信号が入力される。送信信号波形は、プラス側、マイナス側にも振られる正弦波でも良いし、矩形波でも良い。またインパルス波形でもよい。
【0083】
送信信号は大信号のため、ダイオードD1はONし、送信信号は圧電素子Y1に印加される。
【0084】
受信側91の圧電素子Y2には、ダイオードD17、D18、D19、およびD20はVccおよびVddの電圧によって常にONしている為、送信波形のプラス側信号は抵抗R12を通過した後、Vcc側に流れる。送信波形のマイナス側信号は抵抗R14を通ってVdd側に流れるため、Y2側に信号が印加されない。
【0085】
このような動作により、受信側91の信号Y2を振動させずに、送信側90の圧電素子Y1を振動させることができる。
【0086】
次に受信時の回路動作を説明する。第2超音波信号を受けてY2から電気信号が発生し、抵抗R10、R11、R13の比率によって定まる増幅率に従ってオペアンプUが電気信号を増幅される。第2超音波信号を増幅させない場合には、第2超音波信号をダイオードD17とダイオードD19の間に直接接続する。VccおよびVddによって常にダイオードD17、D19はONされる。
【0087】
ダイオードD17とダイオードD19の間に伝達された電気信号は端子80側と接続されるダイオードD17とダイオードD19の間に同じ電圧が発生するため、超音波診断装置本体1の端子80に伝達される。
【0088】
ダイオードD16のスレッショルド電圧によってダイオードD16はOFF状態のため、送信側90の圧電素子Y1側には受信信号は流れない。以上の動作によって、図10に示す回路がスイッチを用いずとも、送受切替回路の機能を有する。
【0089】
なお、Vcc、Vddの電圧を送信時は逆の関係(Vccをマイナス側、Vddをプラス側)にする事で、ダイオードD17、D18、D19、およびD20は常にOFFになるため、送信信号が完全に抵抗R13側に流れないようにできる。
【0090】
〔超音波探触子の自己チェック機能とセットアップ機能〕
以下に本実施形態における超音波探触子の自己チェック機能について図3と図11を用いて説明する。図11は自己チェック機能処理のフロー図である。
【0091】
超音波探触子の自己チェック機能とは、第1送信用圧電素子が送信する第1超音波信号に含まれる高次高調波を、第2送信用圧電素子に送信させる高次高調波で相殺させる動作を実施した結果、超音波探触子2を出射する超音波に含まれる高次高調波が、所定の基準を満たす程度に減少しているかどうかを自己チェックする機能である。
【0092】
超音波探触子のセットアップ機能とは、超音波探触子2を出射する超音波に含まれる高次高調波が、所定の基準を満たす程度に減少していない場合に、第2送信用圧電素子に送信させる高次高調波の出力を変更することで、超音波探触子2を出射する超音波に含まれる高次高調波を、所定の基準を満たす程度に減少させる機能である。
【0093】
以下の動作は、制御部16が中心になって実施される動作であり、動作するタイミングは、術者からの操作指示の入力を受けて実施されてもよいし、超音波診断装置を立ち上げた際に自動で実施されてもよい。超音波探触子2は図3に示すものを前提とするが、図6、図7に示す他の超音波探触子2でもよい。なお、説明の簡易化のため、高次高調波は3次高調波のみとし、2次高調波は無視する。
【0094】
最初にステップS1にて、制御部16は、送信部12に第1送信用圧電素子である無機圧電素子アレイ4aの中の一つの無機圧電素子22aを駆動させて第1超音波信号を送信させる。そして、第2送信用圧電素子である無機圧電素子アレイ4bにおいて、駆動された無機圧電素子22aの被検体H方向の近傍に存在する無機圧電素子22bを駆動させて、第2超音波信号を送信させる。無機圧電素子22aと無機圧電素子22bの駆動については前述のように第3高調波を相殺させるようなタイミングで実施する。
【0095】
次にステップS2にて、第1超音波信号と第2超音波信号を、受信用圧電素子である有機圧電素子アレイ5において、送信した無機圧電素子22aと無機圧電素子22bの近傍に存在するで有機圧電素子21で受信する。
【0096】
次にステップS3にて、チェック部17は、有機圧電素子21が受信した第1超音波信号と第2超音波信号が合わさって生成された電気信号の周波数解析を実施する。第1超音波信号における第3高調波が、第2超音波信号で相殺されておれば、有機圧電素子21の出力する電気信号には第3高調波が殆ど観測されないようにすることができる。実際には第3高調波の振幅が所定の基準値を下回っているかどうかで判断する。所定の基準値は、例えば、第1超音波信号が被検体Hにおいて反射して生成された第3高調波に比べて無視できるほど小さい値に設定される。
【0097】
周波数解析の手法としては、FFT(Fast Fourier transform、高速フーリエ変換)やFIR(Finite impulse response、有限インパルス応答)等のフィルタをかける方法を採用する。周波数解析によって、第1超音波信号と第2超音波信号が合わさった超音波に含まれる周波数毎に信号振幅を算出でき例えば、図12に示すような解析結果を得ることができる。図12は第1超音波信号と第2超音波信号が合わさった超音波の周波数スペクトルを表す概要図である。
【0098】
図12においては、信号振幅値p1を有する基本周波数f1、信号振幅値p2を有する第2高調波周波数f2、信号振幅値p3を有する第3高調波周波数f3の存在が確認される。
【0099】
次にステップS4にて、チェック部17は、基準値をpcとすると、第3高調波の振幅値が基準値を下回っているか、すなわちp3<pcとなっているかを判断する自己チェックを実施する。
【0100】
第3高調波の振幅値が基準値を下回っていなければ、ステップS5に移行し、制御部16は、第3高調波の振幅値が基準値を下回るように無機圧電素子アレイ4bの送信条件を調整するセットアップを実施する。調整後、ステップS1に移り、同様に第1送信用圧電素子と第2送信用圧電素子を駆動する。調整結果は、記憶部18に記憶させ、今後の動作に用いる。なお、第3高調波の振幅値が基準値を下回まではセットアップを継続することが好ましい。
【0101】
第3高調波の振幅値が基準値を下回っていれば、ステップS6に移行し、次の無機圧電素子22a、無機圧電素子22bおよび有機圧電素子アレイ5について同様の処理を実施する。
【0102】
ステップS6にて、全ての無機圧電素子22aと無機圧電素子22bについて処理を実施した場合にはフローは終了する。
【0103】
なお、図6に示す超音波探触子2を用いた場合には、第1超音波信号は無機圧電素子22に送信させ、第2超音波信号は有機圧電素子21に送信させ、第1超音波信号と第2超音波探触子の合わさった超音波は、例えば、第2超音波信号を送信する有機圧電素子21の近傍にある有機圧電素子21で受信するようにする。図7に示す超音波探触子2を用いた場合にも、第2超音波信号を送信する有機圧電素子21−nの近傍の有機圧電素子21、例えば有機圧電素子21−(n+1)で受信するようにする。
【0104】
以上のように、本実施形態によれば、第1送信用圧電素子毎に近傍に配置された第2送信用圧電素子に、第1送信用圧電素子が送信する第1超音波信号に含まれる所定次数の少なくとも一つの高調波成分に対して、逆位相の第2超音波信号を送信させ、受信用圧電素子を用いて自己チェックおよびセットアップを実施することで、第1超音波信号に含まれる高次高調波を相殺することができ、高精細な超音波画像を構築することができる。
【0105】
また、本実施形態によれば、第2送信用圧電素子と受信用圧電素子を兼用することで、小型の構成で高精細な超音波画像を構築することができる。さらに、送受信する機能を有機圧電素子21にもたせることで、有機圧電素子の有する受信時の広帯域性を生かせるので、高精細な超音波画像を構築することができる。
【0106】
また、本実施の形態によれば、無機圧電素子アレイ4aと無機圧電素子アレイ4bにおいて超音波を送信する各々の無機圧電素子22を1mm以内に接近させて配置することで、効果的に第3高調波を相殺することができる。
【0107】
また、本実施の形態によれば、第2送信用圧電素子に、第1送信用圧電素子が送信する第1超音波信号に含まれる高調波成分の中で、より高次の高調波成分に対して、逆位相の第2超音波信号を送信させ、受信用圧電素子を用いて自己チェックおよびセットアップを実施することで、より高精細な超音波画像を得ることができる。
【0108】
また、本実施の形態によれば、無機圧電素子アレイ4aと、無機圧電素子アレイ4bとを被検体Hの方向に積層することで、第1超音波信号と、第2超音波信号を被検体Hの方向上に重ねることができる。従って、超音波探触子2と被検体Hの間において、常に第3高調波成分を相殺することができ、被検体H内の測定箇所と超音波探触子2の距離に関わりなく、高精細な超音波画像を構築することができる。
【符号の説明】
【0109】
1 超音波診断装置本体
2 超音波探触子
3 ケーブル
4 無機圧電素子アレイ
5 有機圧電素子アレイ
11 操作入力部
12 送信部
13 受信部
14 画像処理部
15 表示部
16 制御部
17 チェック部
18 記憶部
21 有機圧電素子
22 無機圧電素子
24 音響分離部
25 共通接地電極
26、27、31 音響整合層
51 有機圧電素子アレイ
80 端子
101 圧電素子
102、103、106、107 電極
105 圧電素子
H 被検体
S 超音波診断装置

【特許請求の範囲】
【請求項1】
被検体内に第1超音波信号を送信する複数の第1送信用圧電素子と、
前記第1送信用圧電素子毎に近傍に配置され、前記第1送信用圧電素子が送信する前記第1超音波信号に含まれる所定次数の少なくとも一つの高調波成分に対して、逆位相の第2超音波信号を送信する複数の第2送信用圧電素子と、
前記第1超音波信号が前記被検体内において反射されて生成された第3超音波信号を受信して電気信号に変換する複数の受信用圧電素子と、
を備える超音波探触子と、
前記第1送信用圧電素子および前記第2送信用圧電素子を駆動する送信部と、
前記受信用圧電素子を駆動する受信部と、
前記電気信号から前記被検体内の超音波画像を生成する画像処理部と、
を有することを特徴とする超音波診断装置。
【請求項2】
被検体内に第1超音波信号を送信する複数の第1送信用圧電素子と、
前記第1送信用圧電素子毎に近傍に配置され、前記第1送信用圧電素子が送信する前記第1超音波信号に含まれる所定次数の少なくとも一つの高調波成分に対して、逆位相の第2超音波信号を送信し、前記第1超音波信号が前記被検体内において反射されて生成された第3超音波信号を受信する複数の送受信用圧電素子と、
を備える超音波探触子と、
前記第1送信用圧電素子を駆動する送信部と、
前記送受信用圧電素子を送信用として駆動する送信部と、
前記送受信用圧電素子を受信用として駆動する受信部と、
前記電気信号から前記被検体内の超音波画像を生成する画像処理部と、
を有することを特徴とする超音波診断装置。
【請求項3】
前記第2送信用圧電素子または前記送受信用圧電素子は、前記第1送信用圧電素子から1mm以内の距離に配置されることを特徴とする請求項1または2に記載の超音波診断装置。
【請求項4】
前記所定次数は、第2次、または第3次であることを特徴とする請求項1から3の何れか1項に記載の超音波診断装置。
【請求項5】
前記第2送信用圧電素子または前記送受信用圧電素子は、前記第1送信用圧電素子が被検体に超音波を送信する方向に、前記第1送信用圧電素子上に積層されていることを特徴とする請求項1から4の何れか1項に記載の超音波診断装置。
【請求項6】
前記第1送信用圧電素子は無機圧電素子であり、前記送受信用圧電素子は有機圧電素子であることを特徴とする請求項2に記載の超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2010−201014(P2010−201014A)
【公開日】平成22年9月16日(2010.9.16)
【国際特許分類】
【出願番号】特願2009−50572(P2009−50572)
【出願日】平成21年3月4日(2009.3.4)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】