説明

超音波診断装置

【課題】連続波を利用した目標位置の選択に関する改良技術を提供する。
【解決手段】周波数変調処理部22は、変調信号を用いてRF波に対して周波数変調を施すことによりFM連続波を発生する。デジタル変調処理部20は、パターン発生部21から供給される信号列に基づいて、FM連続波に対してデジタル変調処理を施し、送信信号を出力する。送信信号は、遅延回路25において遅延処理され、参照信号として受信ミキサ30に供給される。受信ミキサ30は、生体内の目標位置との間の相関関係が調整された参照信号を用いて、受信信号に対して復調処理を施す。デジタル変調処理とそれに伴う受信系の処理により、超音波ビーム上に沿った複数の診断レンジの中から目標位置を含む関心レンジが選択され、さらに、周波数変調処理とそれに伴う受信系の処理により、その関心レンジ内から目標位置に対応した信号が抽出される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波診断装置に関し、特に、連続波を利用する超音波診断装置に関する。
【背景技術】
【0002】
超音波診断装置の連続波を利用した技術として、連続波ドプラが知られている。連続波ドプラでは、例えば、数MHzの正弦波である送信波が生体内へ連続的に放射され、生体内からの反射波が連続的に受波される。反射波には、生体内における運動体(例えば血流など)によるドプラシフト情報が含まれる。そこで、そのドプラシフト情報を抽出して周波数解析することにより、運動体の速度情報を反映させたドプラ波形などを形成することができる。
【0003】
連続波を利用した連続波ドプラは、パルス波を利用したパルスドプラに比べて一般に高速の速度計測の面で優れている。こうした事情などから、本願の発明者は、連続波ドプラに関する研究を重ねてきた。その成果の一つとして、特許文献1において、周波数変調処理を施した連続波ドプラ(FMCWドプラ)に関する技術を提案している。
【0004】
一方、連続波ドプラでは、連続波を利用していることにより位置計測が困難である。例えば、従来の一般的な連続波ドプラの装置(FMCWドプラを利用しない装置)では、位置計測を行うことができなかった。これに対し、本願の発明者は、特許文献2において、FMCWドプラにより選択的に生体内組織の所望の位置からドプラ情報を抽出することができる極めて画期的な技術を提案している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−253949号公報
【特許文献2】特開2008−289851号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1や特許文献2に記載されたFMCWドプラの技術は、それまでにない超音波診断の可能性を秘めた画期的な技術である。本願発明者は、この画期的な技術の改良についてさらに研究開発を重ねてきた。特に、連続波を利用して選択的に目標位置から生体内情報を抽出する技術に注目して研究開発を重ねてきた。
【0007】
本発明は、その研究開発の過程において成されたものであり、その目的は、連続波を利用した目標位置の選択に関する改良技術を提供することにある。
【課題を解決するための手段】
【0008】
上記目的にかなう好適な超音波診断装置は、周期的に周波数を変化させつつ周期的に符号化された連続波の送信信号を出力する送信信号処理部と、送信信号に対応した超音波の送信波を生体に送波してその送信波に伴う受信波を生体から受波することにより受信信号を得る送受波部と、受信信号に対して生体内の目標位置に応じた受信処理を施すことにより、当該目標位置に対応した目標信号を得る受信信号処理部と、前記目標信号から生体内情報を抽出する生体内情報抽出部と、を有することを特徴とする。
【0009】
望ましい具体例として、前記送信信号処理部は、角度変調処理により周期的に周波数を変化させつつデジタル変調処理により周期的に符号化された連続波の送信信号を出力し、前記受信信号処理部は、前記受信処理として、角度変調処理とデジタル変調処理に対応した復調処理を実行する、ことを特徴とする。この具体例において、角度変調処理には、例えば周波数変調処理と位相変調処理が含まれ、デジタル変調処理には、例えば位相シフトキーイングと周波数シフトキーイングが含まれる。
【0010】
望ましい具体例として、前記送信信号処理部は、変調の周期Taで角度変調処理されて周期Taの自然数倍である周期Tdの信号列に基づいてデジタル変調処理された連続波の送信信号を出力し、前記受信信号処理部は、生体内の目標位置との間の相関関係が調整された参照信号を用いて復調処理を実行する、ことを特徴とする。
【0011】
望ましい具体例として、前記送信信号処理部は、周期Tdで複数ビットの符号パターンを繰り返す信号列に基づいたデジタル変調処理と当該信号列の1ビットの期間を変調の周期Taとした角度変調処理とにより得られる連続波の送信信号を出力し、前記受信信号処理部は、デジタル変調処理に対応した復調処理により、複数の符号パターンに対応した複数の診断レンジの中から前記目標位置を含む関心レンジを選択し、角度変調処理に対応した復調処理により、当該関心レンジ内から前記目標位置に対応した目標信号を抽出する、ことを特徴とする。
【0012】
望ましい具体例として、前記受信信号処理部は、前記目標位置の深さに応じた遅延量だけ前記送信信号を遅延処理して得られる参照信号を用いて前記受信信号を復調処理することにより、デジタル変調処理と角度変調処理に対応した復調処理を一括して実行する、ことを特徴とする。
【0013】
望ましい具体例として、前記送信信号処理部は、周期Taの変調波信号を用いて搬送波信号を角度変調処理することにより変調連続波信号を形成し、さらに、当該変調連続波信号を周期Tdの信号列に基づいてデジタル変調処理することにより前記連続波の送信信号を形成し、前記受信信号処理部は、前記目標位置の深さに応じた符号パターンに基づいて前記受信信号を復調処理し、さらに、前記目標位置の深さに応じた遅延量だけ前記変調連続波信号を遅延処理して得られる参照信号を用いて前記復調処理後の信号を復調処理することを特徴とする。
【発明の効果】
【0014】
本発明により、連続波を利用した目標位置の選択に関する改良技術が提供される。
【図面の簡単な説明】
【0015】
【図1】本発明の実施において好適な超音波診断装置の全体構成を示す図である。
【図2】周波数変調処理された送信信号と受信信号を説明するための図である。
【図3】kβが深さdに依存して正弦波状に変化する様子を示す図である。
【図4】PSKにより得られる連続波の送信信号を説明するための図である。
【図5】PSKに利用される信号列の自己相関特性を示す図である。
【図6】関心レンジの選択と目標位置の選択を説明するための図である。
【発明を実施するための形態】
【0016】
図1は、本発明の実施において好適な超音波診断装置の全体構成を示す図である。送信用振動子10は、生体内へ送信波を連続的に送波し、また、受信用振動子12は、生体内からの反射波を連続的に受波する。このように、送信および受信がそれぞれ異なる振動子で行われて、いわゆる連続波ドプラ法による送受信が実行される。なお、送信用振動子10は複数の振動素子を備えており、これら複数の振動素子が制御されて超音波の送信ビームが形成される。また、受信用振動子12も複数の振動素子を備えており、これら複数の振動素子により得られた信号が処理されて受信ビームが形成される。
【0017】
送信ビームフォーマ(送信BF)14は、送信用振動子10が備える複数の振動素子に対して送信信号を出力する。送信ビームフォーマ14は、デジタル変調処理部20から得られる連続波の送信信号に対して、各振動素子に応じた遅延処理を施して各振動素子に対応した送信信号を形成する。なお、送信ビームフォーマ14において形成された各振動素子に対応した送信信号に対して、必要に応じて電力増幅処理が施されてもよい。こうして超音波の送信ビームが形成される。
【0018】
本実施形態における連続波の送信信号は、デジタル変調処理部20と周波数変調処理部22によって形成される。
【0019】
周波数変調処理部22は、変調信号発生部23から得られる変調信号を用いて、RF波発振器24から得られるRF波(搬送波信号)に対して周波数変調を施すことによりFM連続波を発生する。なお、周波数変調処理と同じ角度変調処理に属する位相変調処理を利用してFM連続波と同じ波形のPM連続波を形成し、FM連続波に代えてそのPM連続波を利用してもよい。
【0020】
デジタル変調処理部20は、パターン発生部21から得られる信号列に基づいて、FM連続波に対してデジタル変調処理を施し、連続波の送信信号を出力する。デジタル変調処理としては、例えば位相シフトキーイングや周波数シフトキーイングなどが好適である。
【0021】
なお、デジタル変調処理部20と周波数変調処理部22によって形成される連続波の送信信号については後にさらに詳述する。
【0022】
受信ビームフォーマ(受信BF)16は、受信用振動子12が備える複数の振動素子から得られる複数の受波信号を整相加算処理して受信ビームを形成する。つまり、受信ビームフォーマ16は、各振動素子から得られる受波信号に対してその振動素子に応じた遅延処理を施し、複数の振動素子から得られる複数の受波信号を加算処理することにより受信ビームを形成する。なお、各振動素子から得られる受波信号に対して低雑音増幅等の処理を施してから、受信ビームフォーマ16に複数の受波信号が供給されてもよい。こうして受信ビームに沿った受信RF信号が得られる。
【0023】
受信ミキサ30は受信RF信号に対して直交検波を施して複素ベースバンド信号を生成する回路であり、2つのミキサ32,34で構成される。各ミキサは受信RF信号を所定の参照信号と混合する回路である。
【0024】
受信ミキサ30の各ミキサに供給される参照信号は、デジタル変調処理部20から出力される送信信号に基づいて生成される。つまり、デジタル変調処理部20から出力される送信信号が遅延回路25において遅延処理され、ミキサ32には遅延処理された送信信号が参照信号として直接供給され、一方、ミキサ34には遅延処理された送信信号がπ/2シフト回路26を経由して参照信号として供給される。
【0025】
π/2シフト回路26は、遅延処理された参照信号の位相をπ/2だけずらす回路である。この結果、2つのミキサ32,34の一方から同相信号成分(I信号成分)が出力されて他方から直交信号成分(Q信号成分)が出力される。そして、受信ミキサ30の後段に設けられたLPF(ローパスフィルタ)36,38により、同相信号成分および直交信号成分の各々の高周波数成分がカットされ、検波後の必要な帯域のみの復調信号が抽出される。
【0026】
後に詳述するが、各ミキサで実行される受信RF信号と参照信号との混合処理の結果である受信ミキサ出力信号(復調信号)には、目標位置からの受信信号成分が多く含まれている。LPF36,38において、その目標位置からの受信信号成分に含まれている直流信号成分が抽出される。
【0027】
FFT処理部(高速フーリエ変換処理部)50は、LPF36,38から出力される復調信号(同相信号成分および直交信号成分)の各々に対してFFT演算を実行する。その結果、FFT処理部50において復調信号が周波数スペクトラムに変換される。なお、FFT処理部50から出力される周波数スペクトラムは、回路の設定条件などにより周波数分解能δfの周波数スペクトラムデータとして出力される。
【0028】
ドプラ情報解析部52は、周波数スペクトラムに変換された復調信号からドプラ信号を抽出する。図1の超音波診断装置では、遅延回路25における遅延処理により目標位置が設定され、ドプラ情報解析部52において目標位置からのドプラ信号が選択的に抽出される。ドプラ情報解析部52は、例えば時間的に変化するドプラ信号の表示波形を形成する。なお、生体内の各深さ(各位置)ごとにドプラ信号を抽出して、例えば、超音波ビーム(音線)上の各深さごとに生体内組織の速度を算出し、リアルタイムで出力してもよい。また、超音波ビームを走査させて二次元的あるいは三次元的に生体内組織の各位置の速度を算出してもよい。
【0029】
表示部54は、ドプラ情報解析部52において形成されたドプラ信号の波形などを表示する。なお、図1に示す超音波診断装置内の各部は、システム制御部60によって制御される。つまり、システム制御部60は、送信制御や受信制御や表示制御などを行う。
【0030】
以上、概説したように、図1の超音波診断装置では、周波数変調処理部22において周波数変調処理され、デジタル変調処理部20においてデジタル変調処理された連続波の送信信号が利用される。そして、デジタル変調処理とそれに伴う受信系の処理により、超音波ビーム上に沿った複数の診断レンジの中から目標位置を含む関心レンジが選択され、さらに、周波数変調処理とそれに伴う受信系の処理により、その関心レンジ内から目標位置に対応した信号が抽出される。そこで、周波数変調処理による位置選択性、デジタル変調処理の一つである位相シフトキーイングの自己相関性、位相シフトキーイングと周波数変調処理を利用した関心レンジの選択と目標位置の選択について以下に順に詳述する。なお図1に示した部分(構成)については、以下の説明においても図1の符号を利用する。
【0031】
<周波数変調処理による位置選択性>
周波数f0のRF波(搬送波)に対して、周波数fmの正弦波によりFM変調を施したFM連続波は次式のように表現できる。次式において、Δfは周波数変動幅の0−P値(ゼロピーク値:最大周波数偏移)であり、最大周波数偏移Δfと変調周波数fmの比であるβはFMの変調指数である。
【0032】
【数1】

【0033】
本実施形態においては、周波数変調処理部22で形成されるFM連続波に対してさらにデジタル変調処理部20でデジタル変調処理が実行される。そのデジタル変調処理においては、数1式に示すFM連続波の波形を維持するように処理が実行される。そこで数1式に示すFM連続波による位置選択性について説明する。
【0034】
数1式に示すFM連続波を超音波の送信波(送信信号)とした場合、ドプラシフトを伴う受信波(受信信号)は、生体における往復の減衰をαとすると次式で表現できる。なお次式においてfmに対するドプラシフトは、f0のシフト分fdに比較して小さいので無視している。
【0035】
【数2】

【0036】
図2は、周波数変調処理された送信信号と受信信号を説明するための図である。図2(a)は、送信信号の波形(数1式参照)を示しており、横軸が時間軸であり縦軸が振幅である。また、図2(b)は、送信信号と受信信号の各々についての瞬時周波数変化を示している。図2(b)の横軸は時間軸であり縦軸は周波数(瞬時周波数)である。なお、図2(a)と図2(b)の時間軸は互いに揃えられている。
【0037】
図2(b)に示されるように、FM連続波の送信信号(破線)は、周期Tm=1/fmで周波数を変化させた連続波となっている。また、受信信号(実線)は、送信信号から、位相角でφmだけ遅れている。なお、図2(b)においては、数2式で示した受信信号の減衰やドプラシフトを省略している。
【0038】
数2式で表される受信信号は、超音波振動子を介して受信される信号波形(受信RF信号)である。本実施形態においては、受信RF信号に対する復調処理において、送信信号を参照信号として受信信号と乗算を行う。図1を利用して説明したように、周波数変調処理部22から出力されるFM連続波は、デジタル変調処理部20を介して(デジタル変調処理されるがFM連続波の波形は維持されて)遅延回路25に供給される。そして、遅延回路25において遅延処理され、参照信号として、ミキサ32には遅延処理されたFM連続波が直接供給され、一方、ミキサ34には遅延処理されたFM連続波がπ/2シフト回路26を経由して供給される。したがってミキサ32へ供給される参照信号vrI(t)とミキサ34へ供給される参照信号vrQ(t)は次式のように表現できる。
【0039】
【数3】

【0040】
数3式において、φmrは、遅延回路25における遅延処理により任意に設定できる参照信号の位相を示しており、φ0rは、任意に設定した参照信号の位相に対応して決まる搬送波の位相変化量を示している。
【0041】
受信ミキサ30では、復調処理として直交検波が行われる。つまり、ミキサ32において、受信RF信号vR(t)と参照信号vrI(t)の乗算に相当する処理が実行され、また、ミキサ34において、受信RF信号vR(t)と参照信号vrQ(t)の乗算に相当する処理が実行される。
【0042】
ミキサ32における受信RF信号vR(t)と参照信号vrI(t)の乗算vDI(t)は次式のように表現される。なお、次式の計算途中において、周波数2f0の成分が消去されている。これは、LPF36によって除去される。
【0043】
【数4】

【0044】
ここで、ベッセル関数に関する次の公式を利用する。
【0045】
【数5】

【0046】
数5式の公式を用いると、数4式はさらに次式のように計算される。
【0047】
【数6】

【0048】
一方、ミキサ34における受信RF信号vR(t)と参照信号vrQ(t)の乗算vDQ(t)は次式のように表現される。なお、次式の計算途中において、周波数2f0の成分が消去されている。これは、LPF38によって除去される。
【0049】
【数7】

【0050】
ここで、数6式のvDI(t)と数7式のvDQ(t)とに基づいて、複素ベースバンド信号を定義する。まず、vDI(t)とvDQ(t)に含まれている直流(DC)成分、変調周波数fmの偶数次高調波成分を次式のように表現する。
【0051】
【数8】

【0052】
次に、vDI(t)とvDQ(t)に含まれている変調周波数fmの成分、変調周波数fmの奇数次高調波成分を次式のように表現する。
【0053】
【数9】

【0054】
数8式と数9式から、直交検波後のベースバンド信号において、ドプラシフトfdを含んだドプラ信号は、DC成分と変調周波数fmの成分と変調周波数fmの高調波成分とからなる複数の成分の各々についての両側帯波として出現することがわかる。通信工学ではこの種の信号形式を両側帯波搬送波除去変調(Double-Sideband Suppressed-Carrier, DSB-SC)と呼んでいる。
【0055】
ここで、受信信号と参照信号の位相を互いに揃えた場合、つまり、遅延回路25における遅延処理によりφmrを調整してφmと一致させた場合(φmr=φm)を考える。φmrとφmを一致させた場合には、数4式におけるkが0となる。この結果を数5式のベッセル関数に適用すると、次式のように、0次のベッセル関数の値のみが1となり、それ以外のベッセル関数の値は0となる。
【0056】
【数10】

【0057】
数10式に示す結果を数8式と数9式に適用すると次式のとおりとなる。
【0058】
【数11】

【0059】
数11式は、参照波(参照信号)の位相φmrを送受信間の位相差φmに設定すると、圧縮変換により、DC成分(直流信号成分)に対応したドプラ信号のみが抽出できることを示している。その結果として得られる複素ドプラ周波数fdの値と極性は、血流などの流体の速度とその極性を表わしている。また、ドプラ信号の振幅は、搬送波および参照波の位相に依存しないこともわかる。
【0060】
そして、図1の超音波診断装置においては、以下に説明するように、PWドプラ(パルスドプラ)と同様に特定位置のドプラ情報をCWドプラと類似の比較的良好なSNRで得ることができる。数6式から数9式において、ドプラ信号の振幅を支配するJ0(kβ)の因数であるkβについて考察する。数4式におけるkの定義からkβは次式のように表現できる。次式は、kβが深さdに依存して正弦波状に変化することを意味している。
【0061】
【数12】

【0062】
図3は、kβが深さdに依存して正弦波状に変化する様子を示す図である。第1次ベッセル関数の性質により、kβが0のときにJ0(kβ)が最大値となる。図3において実線で示されるkβの波形は、体表からの深さdが正の範囲において0となる深さが3箇所ある。これら3箇所の深さから得られるドプラ信号の振幅が最大となることを意味している。
【0063】
数12式などから、目的とする深さからの受信信号の位相φmと、参照波の位相φmrとを一致させるとkβを0とすることができ、kβが0となる深さにおいてJ0(kβ)が最大となりドプラ信号の振幅が最大となる。つまり、遅延回路25において、目的とする深さからの受信信号の位相φmと参照波の位相φmrを一致させることにより、目的とする深さからのドプラ信号の振幅が最大となるようにして、そのドプラ信号を選択的に抽出することができる。
【0064】
以上のように、ドプラ信号が選択的に抽出される目標位置は、遅延回路25における遅延処理に基づいて決定される。図1のシステム制御部60は、目標位置の深さに応じて遅延回路25における遅延時間を制御する。
【0065】
さらに、図1の超音波診断装置では、デジタル変調処理を利用して、超音波ビーム上に沿った複数の診断レンジの中から目標位置を含む関心レンジを選択している。そこで、そのデジタル変調処理として位相シフトキーイング(PSK)を利用した実施形態について説明する。
【0066】
<位相シフトキーイングの自己相関性>
図4は、位相シフトキーイング(PSK)により得られる連続波の送信信号を説明するための図である。図4のFMCW信号は、変調信号(変調波)を用いて搬送波信号(RF波)を周波数変調処理して得られる信号であり、例えば数1式により表現できることは前述したとおりである。
【0067】
図4のPN信号は、パターン発生部21が発生する信号列の一例であり、PN信号の1ビットの期間が変調波の周期Taとなっている。なお、PN信号の1ビットの期間が周期Taのn倍(nは2以上の自然数)であってもよい。
【0068】
図4のFMCW−PSK送信信号は、デジタル変調処理部20において形成される。デジタル変調処理部20は、PN信号に基づいて、FMCW信号に対して位相シフトキーイング(PSK)の変調処理を施す。デジタル変調処理部20は、PN信号の符号が「1」のビット期間においてFMCW信号の位相をそのままとし、PN信号の符号が「0」のビット期間においてFMCW信号の位相を反転する(180度ずらす)ことにより、図4のFMCW−PSK送信信号を形成する。
【0069】
図4の参照信号は、遅延回路25において送信信号が遅延処理されて得られる信号であり、図4のFMCW−PSK送信信号が遅延量τだけ遅延処理された信号である。この遅延量τは、生体内の目標位置まで超音波が送波されてその目標位置から超音波が戻ってくるまでの時間(往復の伝播時間)である。つまり、遅延量τは、目標位置に応じた遅延量である。
【0070】
図4の受信信号1は、目標位置から得られる受信信号を示している。目標位置に応じた遅延量τだけ送信信号が遅延処理されて参照信号が形成されているため、図4の参照信号と受信信号1との間には遅延時間差がない。
【0071】
図4のベースバンド信号1は、参照信号と受信信号1の乗算結果に相当し、受信ミキサ30において得られる信号(例えばミキサ32から出力される信号)に含まれる目標位置からの信号成分である。参照信号と受信信号1との間には遅延時間差がないため、ベースバンド信号1には、破線で示す直流信号成分(DC成分)が含まれている。
【0072】
これに対し、図4の受信信号2は、目標位置とは異なる位置から得られる受信信号を示している。受信信号2は、参照信号と比較して、PN信号の符号パターンがずれている。そのため、参照信号と受信信号2の乗算結果に相当するベースバンド信号2には、破線で示すように正と負の電圧がランダムに出現する。そして、このランダムな信号が時間的に平均化されてしまうため、受信ミキサ30の出力にはベースバンド信号2の成分が殆ど現れない。
【0073】
受信信号2に限らず、目標位置とは異なる位置から得られる受信信号は、参照信号と比較してPN信号の符号パターンがずれているため、ベースバンド信号2のように、正と負の電圧がランダムに出現する。そのため、受信ミキサ30の出力には、ベースバンド信号1、つまり目標位置からの信号成分が支配的に含まれることになる。
【0074】
図5は、PSKに利用される信号列の自己相関特性を示す図である。受信信号と参照信号の相関の鋭さは、パターン発生部21において形成される周期的な信号列のシーケンスに依存する。自己相関性を鋭くするためには、周期的な信号列である擬似ランダム信号の符号系列として、PN(Pseudo Noise)系列、M系列、Gorey系列など、パルス圧縮などで実用化されている符号系列を用いればよい。簡単な例として、n=3のPN符号(PN信号)を用いた場合の自己相関について説明する。
【0075】
n=3の場合のPN符号の長さは7(=23―1)ビットである。このシーケンスが際限なく繰り返され、このPN符号(PN信号)を用いて0−πの2相のPSK変調をかけると、その時間波形は、先に説明した図4のFMCW−PSK送信信号のようになる。
【0076】
図5には、参照信号の位相と乗算器出力との対応関係が示されている。図5においてはPNパターンの繰り返し周期ごとに合計値のピークが出現し、ピーク以外の位相では、電圧(合計値)は極端に小さくなっている。この例におけるPNパターンの長さは7ビットであり、約3周期分すなわち20ビットの合計である“20”が最大値となっている。一方、ピーク以外の位相では、合計は−2または−4であり、“20”に比べて極端に小さい。
【0077】
本実施形態においては、信号列の自己相関特性が利用され、超音波ビーム上に沿った複数の診断レンジの中から目標位置を含む関心レンジが選択される。また、前述した周波数変調処理に伴う位置選択性により、関心レンジ内から目標位置に対応した受信信号が抽出される。
【0078】
<関心レンジの選択と目標位置の選択>
図6は、関心レンジの選択と目標位置の選択を説明するための図である。図6の変調波1とFMCW信号1は、本実施形態に対する比較例である。この比較例においては、変調波1の周期が超音波ビーム1本の期間Tbに設定されており、変調波1を利用して搬送波信号を周波数変調処理することにより、FMCW信号1が得られる。なお、図6のドプラ信号は、目標位置から得られる受信信号に含まれるドプラ信号を示している。
【0079】
図6の変調波2以下に示す波形が本実施形態における信号である。本実施形態では、変調波の周波数が、比較例の自然数倍に設定される。例えば、図6に示すように、変調波2の周波数が変調波1の周波数の7倍に設定される。つまり、変調波2の周期Taが超音波ビーム1本の期間Tbの1/7に設定される。そして、変調波2を利用して搬送波信号を周波数変調処理することにより、FMCW信号2が得られる。
【0080】
前述した周波数変調処理の位置選択性により、FMCW信号2を利用して超音波を送受波することにより、周期Taの期間内において1つの位置を選択することができる。ところが、図6のFMCW信号2は、超音波ビーム1本の期間Tb内で、周期Taを7回繰り返すため、FMCW信号2を利用した送受波では、各周期ごとに1つの位置が選択され、超音波ビーム1本の期間Tb内では7つの位置が選択されてしまう。
【0081】
そこで、本実施形態では、1つの周期Taの長さを1つの診断レンジとし、複数の周期Taに対応した複数の診断レンジの中から、PSKの自己相関性により、1つの関心レンジが選択される。図6の例においては、7つの周期Taに対応した7つの診断レンジの中から、1つの関心レンジが選択される。
【0082】
図6に示すように、本実施形態においては、PN信号に基づいて、FMCW信号2に対して位相シフトキーイング(PSK)の処理が施され、これにより、FMCW−PSK信号が得られる。図6の例において、PN信号は、超音波ビーム1本の期間Tbと同じ周期Tdで、7ビットの符号パターンを繰り返す信号列である。また、PN信号の1ビットの期間が変調波2の周期Taとなっている。
【0083】
図6に示すFMCW−PSK信号と受信信号との間には遅延時間差がない。つまり、図6に示すFMCW−PSK信号と受信信号の関係は、目標位置との間の相関関係が調整された参照信号と目標位置から得られる受信信号との間の関係に相当する。そして、図6に示す乗算器出力は、図6のFMCW−PSK信号と受信信号と乗算結果を示しており、これは、受信ミキサ30において得られる信号(例えばミキサ32から出力される信号)に含まれる目標位置からの信号成分に相当する。
【0084】
PN信号は、符号パターンがずれている場合に、自己相関値が極端に小さくなる(図5参照)。つまり、参照信号の符号パターンと一致する符合パターンを持つ受信信号が選択的に抽出される。図6の例において、PN信号は、超音波ビーム1本の期間Tbと同じ周期Tdで、7ビットの符号パターンを繰り返している。そのため、目標位置の深さに応じて送信信号(FMCW−PSK信号)を遅延処理して得られる参照信号を利用することにより、PSKの自己相関性から、目標位置に対応した符号パターンを持つ受信信号が選択的に抽出される。すなわち、7つの周期Taに対応した7つの診断レンジの中から、目標位置を含む関心レンジ内の受信信号が選択される。さらに、関心レンジ内において、周波数変調処理の位置選択性により目標位置が選択され、目標位置からの受信信号(ベースバンド信号)が選択的に抽出される。
【0085】
このように、本実施形態においては、位相シフトキーイング(PSK)とそれに伴う受信系の処理により、超音波ビーム上に沿った複数の診断レンジの中から目標位置を含む関心レンジが選択され、さらに、周波数変調処理とそれに伴う受信系の処理により、その関心レンジ内から目標位置に対応した受信信号が抽出される。
【0086】
なお、図1に示す実施形態では、目標位置の深さに応じた遅延量だけ送信信号を遅延処理して得られる参照信号を用いることにより、受信ミキサ30において、PSKに関する復調処理と周波数変調に関する復調処理を一括して実行している。これに代えて、PSKに関する復調処理と周波数変調に関する復調処理を別々に段階的に実行してもよい。例えば、目標位置の深さに応じた符号パターンに基づいてPSKに関する復調処理を実行してから、目標位置の深さに応じた遅延量だけFM連続波(周波数変調処理部22から出力される連続波)を遅延処理して得られる参照信号を用いて、PSKに関する復調処理後の信号を復調処理(直交検波処理)してもよい。
【0087】
以上、本発明の好適な実施形態を説明したが、上述した本発明の好適な実施形態等は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。
【符号の説明】
【0088】
20 デジタル変調処理部、21 パターン発生部、22 周波数変調処理部、23 変調信号発生部、24 RF波発振器、25 遅延回路、50 FFT処理部、52 ドプラ情報解析部。

【特許請求の範囲】
【請求項1】
周期的に周波数を変化させつつ周期的に符号化された連続波の送信信号を出力する送信信号処理部と、
送信信号に対応した超音波の送信波を生体に送波してその送信波に伴う受信波を生体から受波することにより受信信号を得る送受波部と、
受信信号に対して生体内の目標位置に応じた受信処理を施すことにより、当該目標位置に対応した目標信号を得る受信信号処理部と、
前記目標信号から生体内情報を抽出する生体内情報抽出部と、
を有する、
ことを特徴とする超音波診断装置。
【請求項2】
請求項1に記載の超音波診断装置において、
前記送信信号処理部は、角度変調処理により周期的に周波数を変化させつつデジタル変調処理により周期的に符号化された連続波の送信信号を出力し、
前記受信信号処理部は、前記受信処理として、角度変調処理とデジタル変調処理に対応した復調処理を実行する、
ことを特徴とする超音波診断装置。
【請求項3】
請求項2に記載の超音波診断装置において、
前記送信信号処理部は、変調の周期Taで角度変調処理されて周期Taの自然数倍である周期Tdの信号列に基づいてデジタル変調処理された連続波の送信信号を出力し、
前記受信信号処理部は、生体内の目標位置との間の相関関係が調整された参照信号を用いて復調処理を実行する、
ことを特徴とする超音波診断装置。
【請求項4】
請求項3に記載の超音波診断装置において、
前記送信信号処理部は、周期Tdで複数ビットの符号パターンを繰り返す信号列に基づいたデジタル変調処理と当該信号列の1ビットの期間を変調の周期Taとした角度変調処理とにより得られる連続波の送信信号を出力し、
前記受信信号処理部は、デジタル変調処理に対応した復調処理により、複数の符号パターンに対応した複数の診断レンジの中から前記目標位置を含む関心レンジを選択し、角度変調処理に対応した復調処理により、当該関心レンジ内から前記目標位置に対応した目標信号を抽出する、
ことを特徴とする超音波診断装置。
【請求項5】
請求項4に記載の超音波診断装置において、
前記受信信号処理部は、前記目標位置の深さに応じた遅延量だけ前記送信信号を遅延処理して得られる参照信号を用いて前記受信信号を復調処理することにより、デジタル変調処理と角度変調処理に対応した復調処理を一括して実行する、
ことを特徴とする超音波診断装置。
【請求項6】
請求項4に記載の超音波診断装置において、
前記送信信号処理部は、周期Taの変調波信号を用いて搬送波信号を角度変調処理することにより変調連続波信号を形成し、さらに、当該変調連続波信号を周期Tdの信号列に基づいてデジタル変調処理することにより前記連続波の送信信号を形成し、
前記受信信号処理部は、前記目標位置の深さに応じた符号パターンに基づいて前記受信信号を復調処理し、さらに、前記目標位置の深さに応じた遅延量だけ前記変調連続波信号を遅延処理して得られる参照信号を用いて前記復調処理後の信号を復調処理する、
ことを特徴とする超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate