説明

車両用ステアリング装置

【課題】車両用ラックアンドピニオン式ステアリング装置の小型化を図ること。
【解決手段】操舵トルクをステアリングホイールからラックアンドピニオン機構15を介して操舵車輪21,21に伝える車両用ステアリング装置10は、ラック32が形成されているラック軸16と、ピニオン31の位置に対してラック軸の軸長手方向の両側に位置する2個のラック支持部50,50と、2個のラック支持部の間に位置する付勢部60とを備える。2個のラック支持部は、操舵の中立位置に位置している状態のラック軸の、ラックが形成されている部位の背面16aのみを、軸長手方向にスライド可能に支持するように、互いに接近して位置している。付勢部の付勢方向は、ラック軸を少なくともラック以外の方向へ付勢することが可能に設定されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両に搭載されているラックアンドピニオン式ステアリング装置の改良技術に関する。
【背景技術】
【0002】
ラックアンドピニオン式ステアリング装置は、ステアリングホイールを操舵することによって発生した操舵トルクを、ステアリングホイールからラックアンドピニオン機構を介して操舵車輪に伝えるものである。ラックアンドピニオン機構は、ステアリングホイールの回転運動を直線方向への運動に変換する。このようなラックアンドピニオン式ステアリング装置としては、各種の技術が知られている(例えば、特許文献1参照。)。
【0003】
特許文献1で知られているラックアンドピニオン式ステアリング装置は、ラックアンドピニオン機構のラックが形成されているラック軸をスライド可能に支持するための、3個のラック支持部を備えている。3個のラック支持部は、ラック軸を軸長手方向にスライド可能に支持している。このラック軸は、ラックが形成されている部位の背面を、ラックガイドによって軸長手方向にスライド可能に支えられている。
【0004】
しかしながら、特許文献1で知られているラック軸の長さは、ラックが直線方向へ運動する範囲の2倍以上必要である。このため、ラックアンドピニオン機構はラックの長手方向に大型にならざるを得ない。ラックアンドピニオン機構を収納するためのハウジングも大型化になってしまうので、ステアリング装置の小型化及び軽量化を図る上で不利である。特に、このようなステアリング装置を、車幅が小さい小型車に搭載する場合には、配置上の制約が大きく、ラック軸の両端に連結されるタイロッドの長さの制約もある。車両の設計の自由度を高めるには、一層の改良の余地がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−088978公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、ラックアンドピニオン式ステアリング装置の小型化を図ることができる技術を提供することを課題とする。
【課題を解決するための手段】
【0007】
請求項1に係る発明では、ステアリングホイールを操舵することによって発生した操舵トルクを、前記ステアリングホイールからラックアンドピニオン機構を介して操舵車輪に伝える車両用ステアリング装置において、
前記ラックアンドピニオン機構のラックが形成されているラック軸と、前記ラックアンドピニオン機構のピニオンの位置に対して前記ラック軸の軸長手方向の両側に位置する2個のラック支持部と、この2個のラック支持部の間に位置する付勢部とを備え、
前記2個のラック支持部は、操舵の中立位置に位置している状態の前記ラック軸の、前記ラックが形成されている部位の背面のみを、軸長手方向にスライド可能に支持するように、互いに接近して位置し、
前記付勢部の付勢方向は、前記ラック軸を少なくとも前記ラック以外の方向へ付勢することが可能に設定されていることを特徴とする。
【0008】
請求項2に係る発明では、前記付勢部は、前記ラック軸の、前記ラックが形成されている部位の前記背面を、軸長手方向にスライド可能に支えるラックガイドと、このラックガイドを前記背面に向かって付勢する圧縮コイルばねと、からなり、前記ラックガイドは、前記背面を押し付けるための押し付け面を有し、この押し付け面は、前記背面のうち、前記ラック軸の中心線に直交し且つ前記ピニオンの中心線に直交するピニオン直交基準線に対して、いずれか一方の面のみに接触可能に形成されていることを特徴とする。
【0009】
請求項3に係る発明では、前記ラック軸の少なくとも前記背面は、略円弧状断面に形成され、前記押し付け面は、前記背面に沿う略円弧状断面に形成され、前記押し付け面の円弧状の半径は、前記背面の円弧状の半径よりも大きく設定され、前記押し付け面の中心は、前記ラック軸の中心線に対して、前記ラックの歯幅方向にオフセットしていることを特徴とする。
【0010】
請求項4に係る発明では、前記付勢部は、前記ラック軸の、前記ラックが形成されている部位の前記背面を、軸長手方向にスライド可能に支えるラックガイドと、このラックガイドを前記背面に向かって付勢する圧縮コイルばねと、からなり、前記ラックガイドの中心線及び前記圧縮コイルばねの中心線は、前記ラック軸の中心線に直交し且つ前記ピニオンの中心線に直交するピニオン直交基準線に対して、前記ピニオンの軸方向に傾いていることを特徴とする。
【0011】
請求項5に係る発明では、前記2個のラック支持部は、円筒状の軸受によって構成され、前記ラック軸の中心線は、前記軸受の中心線に対して、前記ピニオンから離れる方向にオフセットし且つ前記ピニオンの中心線に沿ってオフセットしていることを特徴とする。
【0012】
請求項6に係る発明では、前記ラック軸の中心線に直交し且つ前記ピニオンの中心線に平行な直線をピニオン平行基準線とし、前記2個のラック支持部は、円筒状の軸受によって構成され、前記ラック軸の外周面の同一周上には、前記2個の軸受によって支持することが可能な2個のラック反対側凸部が形成され、前記2個のラック反対側凸部は、前記ピニオン平行基準線に対して前記ラックとは反対側に位置し、且つ前記ピニオン直交基準線の両側に位置していることを特徴とする。
【0013】
請求項7に係る発明では、前記ラック軸の外周面の同一周上には、前記2個の軸受によって支持することが可能な2個のラック接近側凸部が形成され、この2個のラック接近側凸部は、前記ピニオン平行基準線と前記ラックとの間に位置し、且つ前記ピニオン直交基準線の両側に位置していることを特徴とする。
【0014】
請求項8に係る発明では、前記ラック軸は、中空材によって構成され、前記2個のラック反対側凸部と前記2個のラック接近側凸部とは、前記中空材の内部から径外方へ向かって押し出し成形されることによって形成された部分であることを特徴とする。
【0015】
請求項9に係る発明では、前記ラックガイドが前記ピニオン直交基準線周りに揺動することを規制するための揺動規制部を、更に備えていることを特徴とする。
【0016】
請求項10に係る発明では、前記ラックガイドは、前記ピニオン直交基準線を中心とする円形状の部材であって、ラックガイドハウジングに収納され、このラックガイドハウジングは、前記ラックガイドを前記ピニオン直交基準線に沿ってスライド可能に支持することが可能な円形状の支持用孔を有し、前記揺動規制部は、前記ラックガイドの外周面の周方向に形成されて前記支持用孔の内周面に接触可能な、少なくとも2個の凸部によって構成されていることを特徴とする。
【0017】
請求項11に係る発明では、前記ラックガイドは、前記ピニオン直交基準線を中心とする円形状の部材であって、ラックガイドハウジングに収納され、このラックガイドハウジングは、前記ラックガイドを前記ピニオン直交基準線に沿ってスライド可能に支持することが可能な円形状の支持用孔を有し、前記揺動規制部は、前記ラックガイドの外周面と前記支持用孔の内周面との間の隙間に充填された、液状パッキン等の粘弾性を有する充填層によって構成されていることを特徴とする。
【0018】
請求項12に係る発明では、前記ラックガイドは、前記ピニオン直交基準線を中心とする円形状の部材であって、外周面にOリングを装着するための環状溝が形成されるとともに、ラックガイドハウジングに収納され、このラックガイドハウジングは、前記ラックガイドを前記ピニオン直交基準線に沿ってスライド可能に支持することが可能な円形状の支持用孔を有し、前記揺動規制部は、前記環状溝に装着されたOリングによって構成され、このOリングの外周面は、全周にわたって前記支持用孔の内周面に接していることを特徴とする。
【0019】
請求項13に係る発明では、前記環状溝の中心は、前記ラックガイドの中心線に対してオフセットしていることを特徴とする。
【0020】
請求項14に係る発明では、前記付勢部は、前記ピニオンを前記ラックに対して噛み合う方向へ付勢していることを特徴とする。
【0021】
請求項15に係る発明では、前記ラックは、前記ラック軸に対して歯すじが直交する、すぐ歯であることを特徴とする。
【発明の効果】
【0022】
請求項1に係る発明では、2個のラック支持部は、ラック軸において、ラックが形成されている部位の背面のみを支持することが可能であって、互いに接近して位置している。背面にはラックを有していない。2個のラック支持部の間に位置する付勢部は、ラック軸を少なくともラック以外の方向へ付勢することが可能である。つまり、付勢部は、ラック軸をピニオンに向かって押し付けるとともに、さらに、ラック軸の背面を各ラック支持部に押し付ける(予圧を付加する)ことが可能である。各ラック支持部には、予圧に応じた反力が発生する。各ラック支持部はラック軸の背面を支持することになる。このラック軸支持構成は、いわゆる「2個の支点の両側から梁が張り出し、この梁の長手中央に集中荷重(ピニオンの反力)が作用している」つり合い条件の支持構成に相当する。このようにして、ラック軸の背面は、ピニオンと2個のラック支持部との3点によって、軸長手方向へのスライドが可能に確実に支持される。しかも、ラック自体が各ラック支持部によって支持されることはない(接触することはない)。ラック軸を支持するための別個の支持部材を設ける必要はなく、ラック軸を支持するための支持構成を、簡略化することができる。
【0023】
さらには、2個のラック支持部は、ラック軸において、ラックが形成されている部位の背面のみを支持することが可能なので、互いに接近して位置することができる。各ラック支持部がラックの長さの範囲内に位置することができるので、範囲外に位置している従来に比べて、ラック軸の全長を短くすることができる。このため、ラックアンドピニオン機構をラックの長手方向に小型にすることができる。ラック軸が短くなった分、このラック軸の両端に連結されるタイロッドを長くすることになる。しかし、タイロッドの径はラック軸の径に比べて細い。このため、ラック軸の重量にタイロッドの重量を加えた、総重量は減少する。また、ラックアンドピニオン機構を収納するためのハウジングは、ラック軸を短くできた分、小型化できる。このように、ステアリング装置の小型化及び軽量化を図るとともに、低コスト化を図ることができる。
【0024】
さらには、ラック軸が従来に比べて短くなった分、ラック軸に連結されているタイロッドを長くすることができる。このため、ステアリング装置及びこのステアリング装置を搭載する車両の、設計の自由度を高めることができる。例えば、ステアリング装置のタイロッドとサスペンション装置とによって形成される、サスペンションジオメトリの設計自由度を高めることができる。特に、このようなステアリング装置を、車幅が小さい小型車に搭載する場合に、配置上の制約が小さい。しかも、タイロッドを長くすれば、左右の操舵車輪がバンプやリバウンドをしたときにおいて、トーの変化の影響を抑制することができる。この結果、車両の操縦性を高めることができる。
【0025】
一般に、長いタイロッドを用いた場合には、特に停車中の車両を操舵するとき(いわゆる据え切り操舵時)のように操舵角が大きい操舵領域において、ラック軸に作用する軸長手方向の力(スラスト、軸力)を低減できる、ステアリングジオメトリに設定することは容易である。つまり、操舵角が大きい操舵領域で、ラック軸に作用するスラストを低減することが可能な、ステアリングジオメトリとすることができる。スラストを小さくすることによって、ステアリングホイールを操舵する操舵トルクが小さくなる。操舵トルクが小さくてすむので、ラックアンドピニオン機構の負担は軽減される。従って、ラックアンドピニオン機構の強度や耐久性に余裕ができるので、ラックアンドピニオン機構の信頼性が高まる。
【0026】
しかも、請求項1のステアリング装置に、操舵トルクに応じて電動モータが発生した補助トルクを、ラックアンドピニオン機構に付加するようにした、いわゆる電動パワーステアリング装置を採用した場合には、操舵トルクが小さくなった分、電動モータが発生する補助トルクを低減することができる。従って、電動モータの小型化が可能になる。このため、ステアリング装置全体の軽量化が可能になるとともに、ステアリング装置の消費電力の低減にもつながる。その分、エンジンの負担が軽減されるので、ステアリング装置を搭載した車両の燃費が高まる。
【0027】
請求項2に係る発明では、付勢部は、ラックガイドと圧縮コイルばねとによって構成される。ラックガイドの押し付け面は、ラック軸の背面の全体に接触するのではなく、ピニオン直交基準線を基準にして片側のみに接触可能に形成されている。このような極めて簡単な構成の押し付け面によって、ラック軸をピニオンへ向かって押し付けるとともに、ラック軸の背面を各ラック支持部に押し付けることができる。ラック軸の背面を各ラック支持部に押し付けるのに、別個の部品を設ける必要はない。
【0028】
しかも、ラック軸の背面に対して、ラックガイドの押し付け面の一方の略半分だけが接触し、従来のラックガイドに相当する他方の略半分はラック支持部での接触になる。つまり、従来のラックガイド1個分の摩擦抵抗しか作用しない。従来のステアリング装置には、ラックガイドの摩擦抵抗と、ラック軸を軸長手方向に支持するラック支持部の摩擦抵抗と、を合計した摩擦抵抗が作用する。これに対し、請求項2のステアリング装置には、ラックガイド1個分に相当する摩擦抵抗だけしか作用しないので、ラック軸がスライドするときの摩擦抵抗を抑制することができる。
【0029】
請求項3に係る発明では、ラックガイドの押し付け面の円弧状の半径が、ラック軸の背面の円弧状の半径よりも大きく設定されている。押し付け面の中心は、ラック軸の中心線に対してラックの歯幅方向にオフセットされている。このような極めて簡単な構成の押し付け面によって、ラック軸をピニオンへ向かって押し付けるとともに、ラック軸の背面を各ラック支持部に押し付けることができる。しかも、ラック軸を支持するための別個の支持部材を設ける必要はない。
【0030】
請求項4に係る発明では、ラックガイドの中心線は、ピニオン直交基準線に対してピニオンの軸方向に傾いている。このような極めて簡単な構成のラックガイドによって、ラック軸をピニオンへ向かって押し付けるとともに、ラック軸の背面を各ラック支持部に押し付けることができる。しかも、ラック軸を支持するための別個の支持部材を設ける必要はない。
【0031】
請求項5に係る発明では、2個のラック支持部は、円筒状の軸受によって構成されている。ラック軸の中心線は、軸受の中心線に対して、ピニオンから離れる方向にオフセットし且つピニオンの中心線に沿ってオフセットしている。このため、ラック自体が2個の軸受によって支持される(接触する)ことを、より一層確実に防ぐことができる。
【0032】
請求項6に係る発明では、ラック軸は、ラックを有している部分を除き外周面の同一周上に、円筒状の各軸受によって支持することが可能な、2個のラック反対側凸部が形成されている。この2個のラック反対側凸部は、ピニオン平行基準線に対してラックとは反対側に位置し、且つピニオン直交基準線の両側に位置している。さらに、ラックガイドの中心線は、ピニオン直交基準線に対してピニオンの軸方向に傾いている。このため、各軸受はラック軸の背面の全体を支持するのではなく、2個のラック反対側凸部の、少なくともいずれか一方を支持することができる。
【0033】
一般に、走行中に操舵するときには、路面と操舵車輪との間の摩擦力が小さいので、比較的小さい操舵力ですむ。ピニオンからラックに伝わる操舵力が小さいと、ラック軸の背面を各軸受側に押し付ける押し付け力は小さい。この場合には、ピニオン直交基準線に対してラックガイドとは反対側に位置しているラック反対側凸部が、各軸受に支持される。ラック軸のうち、各軸受によって支持される支持点が確実に決まる。
【0034】
ピニオンからラックに伝わる操舵力が大きくなってくると、ラック軸の背面を各軸受側に押し付ける押し付け力も大きくなる。この場合には、ピニオン直交基準線に対して両側に位置している2個のラック反対側凸部の両方が、各軸受に支持される。このため、各軸受の1点に過大な操舵力が作用しないので、ラック軸及び軸受の耐久性が高まる。
【0035】
請求項7に係る発明では、ラック軸の外周面の同一周上に2個のラック接近側凸部が形成されている。この2個のラック接近側凸部は、ピニオン直交基準線とラックとの間に位置し、且つピニオン直交基準線の両側に位置している。
【0036】
停車中の車両を操舵するとき、いわゆる据え切り操舵時には、路面と操舵車輪との間の摩擦力が大きい。つまり、路面反力が大きくなるので、より大きい操舵力が必要となる。より大きい操舵力はピニオンからラックに伝わる。ラック軸支持構成は、2個の軸受の両側からラック軸が張り出し、このラック軸の長手中央に集中荷重(ピニオンの押し付け力)が作用する構成である。より大きな押し付け力が、ピニオンからラック軸の長手中央に作用することによって、ラック軸の両側はラック側へ撓もうとする。このため、ラック軸に形成されているラックは、各軸受に接触しようとする。しかし、この場合には、2個のラック接近側凸部の少なくとも一方が、各軸受に先に接触するので、ラックが各軸受に接触することはない。従って、ラック軸は、より円滑にスライドすることが可能である。
【0037】
請求項8に係る発明では、2個のラック反対側凸部と2個のラック接近側凸部とは、中空材から成るラック軸の内部から径外方へ向かって押し出し成形されることによって形成されている。このため、ラック反対側凸部及びラック接近側凸部の各表面が、より滑らかになる(面粗度が良好になる)。従って、ラック軸がスライドするときの、各軸受に対する各凸部の摩擦抵抗を抑制することができる。
【0038】
また、ラック反対側凸部及びラック接近側凸部は、冷間鍛造による加工硬化によって、硬度が増す。これにより、各軸受に接触するラック反対側凸部及びラック接近側凸部のみ、つまり摺動部分のみの硬度を効果的に増すことができる。この結果、ラック反対側凸部及びラック接近側凸部は、摺動することによる摩耗を低減することができる。
【0039】
請求項9に係る発明では、ラックガイドがピニオン直交基準線周りに揺動することを、揺動規制部によって規制することができる。このため、ラック軸の背面に対するラックガイドの押し付け面の接触状態を、良好に維持することができる。また、このことから、ピニオンとラックとの良好な噛み合い状態を確保できるので、ピニオンとラックの強度や耐久性が向上する。さらに、ピニオンとラックの噛み合い状態が良好なので、噛み合いによる摩擦抵抗を低減することができる。この結果、ステアリング装置の操舵感覚を高めることができる。
【0040】
請求項10に係る発明では、揺動規制部は、ラックガイドの外周面の周方向に形成された少なくとも2個の凸部によって構成されている。このため、揺動規制部を極めて簡単な構成とすることができる。
【0041】
請求項11に係る発明では、揺動規制部は、ラックガイドの外周面と支持用孔の内周面との間の隙間に充填された、液状パッキン等の粘弾性を有する充填層によって構成されている。このため、揺動規制部を極めて簡単な構成とすることができる。
【0042】
請求項12に係る発明では、揺動規制部は、ラックガイドの外周面に形成されている環状溝にOリングが装着された構成である。ラックガイドの外周面に形成された環状溝にOリングを装着するだけの、極めて簡単な構成によって、揺動規制部を構成することができる。
【0043】
請求項13に係る発明では、環状溝の中心がラックガイドの中心線に対してオフセットしている。支持用孔にラックガイドを嵌め込んだ場合に、支持用孔の内面に対するOリングの接触圧は、このOリングの外周面の部位によって異なる。つまり、Oリングの周方向に、接触圧が異なる。接触圧がOリングの外周面の部位によって異なるので、ラックガイドがピニオン直交基準線を略中心にして揺動することを、より一層規制することができる。
【0044】
請求項14に係る発明では、付勢部はピニオンをラックに噛み合う方向へ付勢している。このため、ラックはピニオンに押し付けられる。ラック軸の背面は、ピニオンと2個のラック支持部との3点によって、軸長手方向へのスライドが可能に確実に支持される。しかも、ラック自体が各ラック支持部によって支持されることはない。このため、ラック軸を支持するための別個の支持部材を設ける必要はなく、支持構成を簡略化することができる。
【0045】
請求項15に係る発明では、ラックは「すぐ歯」である。このラックに噛み合うピニオンについては「すぐ歯」にする。または、ピニオンを「はす歯」にするとともに、ピニオン軸を「はす歯」の捩れ角に相当する角度だけ、ラック軸の軸長手方向に傾けることによって、実質的に「すぐ歯」となり得る構成と、することが可能である。このように、ピニオンとラックとの噛み合い構成は、ピニオンとラックの両方が「すぐ歯」である場合と、実質的に同等の構成である。このため、ピニオンの歯すじの方向は、ラックの歯すじの方向と合致する。
【0046】
従って、ラックに対して、ラックの歯すじの方向の外力(振動を含む)が作用したときに、ラックは「歯すじ」の方向に変位し易い。例えば、外部からラックに、このラックの歯すじの方向の振動が伝わったときに、ラックは歯すじの方向に振動し得る。このため、ラックの歯すじ方向の振動が、ピニオンの回転方向の振動に変換されてステアリングホイールに伝わり難い。この結果、運転者に与える操舵感覚が高まる。また、ピニオンの回転方向の振動に対し、「すぐ歯」のラックは規制する方向に働く。このため、ピニオンの回転方向の振動がステアリングホイールに伝わり難い。この結果、運転者に与える操舵感覚が高まる。
【0047】
また、ラックが「はす歯」の場合には、ラック軸の中心線に対して歯が斜めに形成されている。このため、ラック軸の中心線に直交するどの断面をとっても、一部にラックの歯がある。これに対し、請求項15では、ラックが「すぐ歯」であるから、ラック軸の中心線に沿ってラックを次々に断面した場合に、歯先の部位と歯底の部位とが繰り返される。つまり、断面によっては、歯底しか無い部位がある。歯底しか無い部位の断面二次モーメントは、他の部位の断面二次モーメントよりも小さい。従って、ラック軸全体をとらえると、ラックが「はす歯」の場合に比べて、比較的撓み易い。しかも、上述のように、ラックに対して、ラックの歯すじの方向の外力(振動を含む)が作用したときに、ラックは「歯すじ」の方向に変位し易い。従って、ラック軸の背面は、ピニオンと2個のラック支持部との3点によって、軸長手方向へのスライドが可能に確実に支持される。
【0048】
さらには、ラックが「すぐ歯」なので、据え切り操舵時のように大きい路面反力がラック軸が加わったときに、このラック軸はラックの「歯すじ」の方向(歯幅方向)に変位し易い。このため、ラック軸は路面反力に応じて、各ラック支持部の支持孔の面に沿って、せり上がることが可能である。つまり、ラック支持部によってラック軸を支持する支持位置が、このラック軸に加わる反力の大きさに応じて変化するという、不静定の支持構造が構成される。従って、ピニオンとラックとの噛み合い点と、各ラック支持部による支持点と、の3点でラック軸を十分に支持することができるとともに、反力を十分に且つ確実に受け止めることができる。しかも、各ラック支持部は、反力の大きさに応じた最も適切な部位で、ラック軸を支持するので、耐久性が高い。
【0049】
また、上述のようにラック軸の全長が短いので、ピニオンは車幅中央に位置することもできる。これに対し、ステアリングホイールは左又は右に偏って位置する。つまり、ピニオン軸は、ラック軸の軸長手方向に傾けることになる。ピニオン軸の傾き方向は、右ハンドル車と左ハンドル車とで逆向きになる。しかし、ラックが「すぐ歯」なので、右ハンドル車と左ハンドル車とで共用できる。ステアリング装置の部品の管理が容易となり、生産性が高まる。
【図面の簡単な説明】
【0050】
【図1】本発明に係る実施例1の車両用ステアリング装置の模式図である。
【図2】図1に示されたピニオン軸とラックアンドピニオン機構とラック軸と2個のラック支持部との組立構成を示す断面図である。
【図3】図2の3−3線断面図である。
【図4】図2に示されたラックアンドピニオン機構とラック軸と2個のラック支持部との組立構成を示す斜視図である。
【図5】図2の5−5線断面図である。
【図6】図3に示されたラックアンドピニオン機構とラック軸と付勢部との関係を模式的に表した図である。
【図7】図1に示された車両用ステアリング装置の作用を説明する図である。
【図8】本発明に係る実施例2の車両用ステアリング装置のラックアンドピニオン機構とラック軸と付勢部との組立構成を示す断面図である。
【図9】本発明に係る実施例2の車両用ステアリング装置のラック軸とラック支持部との組立構成を示す断面図である。
【図10】本発明に係る実施例3の車両用ステアリング装置のラックアンドピニオン機構とラック軸と付勢部との組立構成を示す断面図である。
【図11】本発明に係る実施例4の車両用ステアリング装置のラックアンドピニオン機構とラック軸と付勢部との組立構成を示す断面図である。
【図12】本発明に係る実施例5の車両用ステアリング装置のラック軸とラック支持部との組立構成を示す断面図である。
【図13】本発明に係る実施例6の車両用ステアリング装置のラックアンドピニオン機構とラック軸と付勢部との組立構成を示す断面図である。
【図14】図13に示されたラック軸の断面図である。
【図15】本発明に係る実施例6の車両用ステアリング装置のラック軸とラック支持部との組立構成を示す断面図である。
【図16】本発明に係る実施例7の車両用ステアリング装置のラック軸の斜視図である。
【図17】図16に示されたラック軸の製造方法を示す図である。
【図18】図17に示された半完成ラック軸を追加加工するための一対の二次成形用の割型の断面図である。
【図19】本発明に係る実施例8の車両用ステアリング装置のラックガイドの断面図である。
【図20】図19に示されたラックガイドをラックガイドハウジングに嵌合した構成を示す断面図である。
【図21】本発明に係る実施例9の車両用ステアリング装置のラック軸とラックガイドとの組立構成を示す断面図である。
【図22】図21の22−22線断面図である。
【図23】本発明に係る実施例10の車両用ステアリング装置のラックガイドにOリングを有している構成を示す断面図である。
【図24】本発明に係る実施例11の車両用ステアリング装置のラックガイドにオフセットされたOリングを有している構成を示す断面図である。
【図25】本発明に係る実施例11の車両用ステアリング装置のラック軸とラックガイドとの組立構成を示す断面図である。
【図26】本発明に係る実施例12の車両用ステアリング装置のラックアンドピニオン機構とラック軸と付勢部との組立構成を示す断面図である。
【図27】図26に示されたラックアンドピニオン機構とラック軸と2個のラック支持部との組立構成を示す斜視図である。
【図28】本発明に係る実施例12の車両用ステアリング装置のラック軸とラック支持部との組立構成を示す断面図である。
【図29】図26に示された車両用ステアリング装置の作用を説明する図である。
【図30】図29の30−30線断面図である。
【図31】本発明に係る実施例13の車両用ステアリング装置のピニオンをラックに対して噛み合う方向へ付勢部によって付勢している組立構成を示す断面図である。
【図32】図31の32−32線断面図である。
【図33】図31に示されたラックアンドピニオン機構とラック軸と2個のラック支持部との組立構成を示す斜視図である。
【図34】本発明に係る実施例13の車両用ステアリング装置のラック軸とラック支持部との組立構成を示す断面図である。
【発明を実施するための形態】
【0051】
本発明を実施するための形態を添付図に基づいて以下に説明する。
【実施例1】
【0052】
実施例1に係る車両用ステアリング装置を図1〜図7に基づき説明する。
【0053】
図1に示されるように、実施例1の車両用ステアリング装置10は、ステアリングホイール11にステアリングシャフト12及び自在軸継手13,13を介してピニオン軸14(回転軸14)を連結し、このピニオン軸14にラックアンドピニオン機構15を介してラック軸16を連結し、このラック軸16の両端にボールジョイント17,17、タイロッド18,18及びナックル19,19を介して左右の操舵車輪21,21を連結したものである。
【0054】
車両用ステアリング装置10(以下、単に「ステアリング装置10」という。)によれば、運転者がステアリングホイール11を操舵することによって発生した操舵トルクを、ステアリングホイール11からラックアンドピニオン機構15及び左右のタイロッド18,18を介して、左右の操舵車輪21,21に伝えることができる。
【0055】
ラックアンドピニオン機構15は、ピニオン軸14に形成されたピニオン31と、ラック軸16に形成されたラック32とからなる。ピニオン31及びラック32は「はす歯」に構成されている。ピニオン軸14は、車両の上下方向に延びている。ラック軸16は、車幅方向に延びた真円状断面の丸棒からなる。
【0056】
図2及び図3に示されるように、ラック軸16は少なくとも、ラック32を形成されている部位の背面16aが略円弧状断面に形成されている。ピニオン軸14とラックアンドピニオン機構15とラック軸16は、少なくとも要部がハウジング41に収納されている。このハウジング41は、車幅方向に貫通した細長い筒状の部材であって、長手中央の上端から上方に開口している。ラック軸16の両端は、ハウジング41の両端よりも車幅方向の外方へ延びている。ハウジング41の両端と左右のタイロッド18,18との間は、ブーツ42,42によって覆われている。
【0057】
ピニオン軸14は、ピニオン31を挟んで上部及び下端部を、ハウジング41内に取り付けられている2個の軸受(上の第1軸受43と下の第2軸受44)によって、回転可能に且つ軸方向移動を規制するように支持されている。2個の軸受43,44はボールベアリングによって構成されているが、第2軸受44はニードルベアリングのようなラジアル軸受であってもよい。
【0058】
ステアリング装置10は、ピニオン31の位置(ピニオン31とラック32との噛み合い位置)に対してラック軸16の軸長手方向の両側に位置する2個のラック支持部50,50と、この2個のラック支持部50,50の間に位置する付勢部60とを備えている。
【0059】
図2、図4及び図5に示されるように、2個のラック支持部50,50は、ラック軸16を支持する部材であって、円筒状の軸受(例えばブッシュ)によって構成されている。各ラック支持部50,50は、ハウジング41内に圧入(締まり嵌め)等によって取り付けられており、それぞれ真円状の支持孔51,51を有する。各支持孔51,51の径は、ラック軸16の径よりも若干大きく設定されている。このため、ラック軸16と各支持孔51,51との間の隙間は、僅かである。
【0060】
各ラック支持部50,50は、耐摩耗性を有するとともにラック軸16がスライドする際の摩擦抵抗が小さい材料によって構成されることが好ましい。例えば、各ラック支持部50,50には、表面にポリテトラフルエチレン樹脂(略記;PTFE、テフロン(登録商標))等のフッ素樹脂のコーティングが施された銅系メタル製ブッシュが用いられる。
【0061】
また、各ラック支持部50,50は、前記銅系メタルに比べて、ラック軸16を支持する支持剛性の低下を許容できる場合には、例えば、ポリアセタール樹脂又はポリアセタールを含んだ樹脂や、ポリテトラフルエチレン樹脂(略記;PTFE、テフロン(登録商標))等のフッ素樹脂などの、樹脂製品によって構成することが可能である。また、例えば、各ラック支持部50,50は、弾性変形が可能な樹脂製ブッシュによって構成することが可能である。このような樹脂製ブッシュを採用した場合には、ラック軸16と各支持孔51,51との間の隙間は、零又はほとんど零の値に設定することができる。
【0062】
図2に示されるように、ラック32の長さLerは、ステアリングホイール11(図1参照)の回転範囲、例えば約3.5回転を考慮した一定の長さに、予め設定されている。ラック32が操舵の中立位置に位置している状態において、ラック32の長さLerは、ピニオン31との噛み合い位置を基準に、軸方向両側へ概ね均等に配分される。ラック32の両端は、操舵の中立位置に位置している状態において、ハウジング41の両端よりも車幅方向の外方へ延びている。
【0063】
2個のラック支持部50,50同士は、図2及び図4に示されるように操舵の中立位置(車両が直進走行をする位置)に位置している状態のラック軸16の、ラック32が形成されている部位の背面16aのみを、軸長手方向(車幅方向)にスライド可能に支持するように、互いに接近して位置している。
【0064】
図3に示されるように、付勢部60の付勢方向は、ラック軸16を少なくともラック32以外の方向へ付勢することが可能に設定されている。詳しく述べると、付勢部60は、ラック軸16をピニオン31へ押し付ける作用をなすためのラックガイド機構によって構成されている。この付勢部60(ラックガイド機構60)は、ラック32とは反対側からラック軸16に当てるラックガイド61と、このラックガイド61をラック軸16の背面16aに向かって付勢する圧縮コイルばね62と、前記ラックガイド61を圧縮コイルばね62を介して押して付勢力を調整するための調整ボルト63とからなる。
【0065】
ラックガイド61は、ラック軸16の、ラック32が形成されている部位の背面16aを押し付けるための押し付け面61a(背面16aを支えるための支持面61a)を有する。つまり、ラックガイド61は、背面16aを軸長手方向にスライド可能に支える。このラックガイド61は、耐摩耗性を有するとともに摩擦抵抗が小さい材料からなり、例えば、ポリアセタール樹脂又はポリアセタールを含んだ樹脂や、ポリテトラフルエチレン樹脂(略記;PTFE、テフロン(登録商標))等のフッ素樹脂などの、樹脂製品が好適である。なお、ラックガイド61の押し付け面61aの部分だけを、上述の樹脂製品とすることが可能である。また、ラックガイド61を燒結金属によって構成することも可能である。
【0066】
ここで、ラック軸16について、図6に基づき次のように定義する。なお、車両用ステアリング装置10の構成を簡単に示すために、ピニオン軸14とラック軸16とが直交した図6によって説明する。但し、ピニオン軸14を、ラック軸16の軸長手方向に傾けた構成、つまりピニオン軸14とラック軸16とが直交しない交差角を有している場合についても、同様の構成が可能である。
【0067】
図6(a)は、図2に示されるラックアンドピニオン機構15を模式的に表した斜視図である。図6(b)は、図6(a)に示されたラックアンドピニオン機構15の平面図である。図6(c)は、図2に示されるラックアンドピニオン機構15とラックガイド61との関係を模式的に表した断面図である。
【0068】
図6(a)〜(c)に示されるように、ラック軸16の中心線Prに直交し且つピニオン31の中心線Ppに直交する直線Lcのことを「ピニオン直交基準線Lc」とする。また、ラック軸16の中心線Prに直交し且つピニオン31の中心線Ppに平行な直線Lpのことを「ピニオン平行基準線Lp」とする。このピニオン平行基準線Lpは、ピニオン直交基準線Lcに対して直交している。
【0069】
図3及び図6に示されるように、ラックガイド61の中心線Lg及び圧縮コイルばね62の中心線Lgは、ピニオン直交基準線Lcに対して合致している。ラックガイド61は、ピニオン直交基準線Lcを中心とする真円の円柱状の部材である。ラックガイド61及び圧縮コイルばね62はラックガイドハウジング64に収納されている。このラックガイドハウジング64は、ハウジング41に一体に形成されており、ラックガイド61をピニオン直交基準線Lcに沿ってスライド可能に支持することが可能な円形状(真円状)の支持用孔64aを有している。ラックガイド61の外周面と支持用孔64aの内面との間の隙間は、ラックガイド61がスライド可能な程度の極めて小さいものである。
【0070】
ラックガイド61の押し付け面61aは、ラック軸16の背面16aに沿う略円弧状断面に形成されている。この押し付け面61aは、ラック軸16の背面16aのうち、ピニオン直交基準線Lcに対して、いずれか一方の面のみに接触可能に形成されている。例えば、押し付け面61aは、水平なピニオン直交基準線Lcに対して、上又は下の面のみに接触可能である。
【0071】
より具体的には、押し付け面61aの円弧状の半径r1は、背面16aの円弧状の半径r2よりも大きく設定されている(r1>r2)。ラック軸16の背面16aの半径r2の中心は、ピニオン直交基準線Lc上に位置している。一方、押し付け面61aの円弧状の半径r1の中心は、ピニオン直交基準線Lcに対して上又は下に、つまり、ラック32の歯幅方向にオフセットしている。この結果、押し付け面61aは、水平なピニオン直交基準線Lcに対して、ラック軸16の背面16aの上又は下の面のみに接触する。図3及び図6では、押し付け面61aは、ピニオン直交基準線Lcに対して背面16aの上の面のみに接触している。
【0072】
図5に示されるように、ラック軸16の断面中心Pr(中心線Pr)は、2個の軸受50,50の断面中心Pj(中心線Pj)に対し、ピニオン31の中心線Ppに沿って、ラック32の歯幅方向にオフセット量Δ2だけオフセットしている。このため、ラック軸16は、各軸受50,50の断面中心Pjとラック軸16の断面中心Prとを結んだ作用線上、つまりピニオン平行基準線Lp上に、接触点Quを有する。この接触点Quは、各軸受の支持孔51,51に対して、ラック軸16の背面16aが接する点である。このように、各軸受50,50の支持孔51,51に対する、ラック軸16の接触点Quは、ピニオン平行基準線Lpと支持孔51,51との交点にある。この接触点Quは、図5及び図6(c)に示されるように、ピニオン直交基準線Lcに対してラックガイド61の押し付け面61aとは反対側に位置する。図5では、接触点Quはピニオン直交基準線Lcに対して下側にある。反力F2は、接触点Quからピニオン平行基準線Lpの方向に発生する。このように、接触点Quがラック32から遠ざけられている(遠い部位に位置する)ので、ラック32自体が2個の軸受50,50によって支持される(接触する)ことを、より一層確実に防ぐことができる。
【0073】
次に、上記実施例1のステアリング装置10の作用を図3、図5及び図7(a)〜(c)に基づいて説明する。図7(a)は、ラック32が操舵の中立位置(車両が直進走行をする位置)に位置している状態の、ステアリング装置10を平面視で模式的に表している。図7(b)は、ステアリング装置10を右へ操舵することによって、ラック32が右にスライド変位している状態のステアリング装置10を平面視で模式的に表している。図7(c)は、ステアリング装置10を左へ操舵することによって、ラック32が左にスライド変位している状態のステアリング装置10を平面視で模式的に表している。
【0074】
図3に示されるように、ラックガイド61に形成されている略円弧状断面の押し付け面61aは、ラック軸16の背面16aのうち、ピニオン直交基準線Lcに対していずれか一方の面のみに接触している。このため、ラックガイド61は、圧縮コイルばね62の付勢力F1によって、ラック軸16をピニオン31へ向かって押し付けるとともに、図5に示されるように、ラック軸16の背面16aを各軸受50,50、つまり各ラック支持部50,50に押し付けている(予圧を付加している。)。この結果、図5及び図7(a)に示されるように、各ラック支持部50,50には反力F2が発生する。各ラック支持部50,50はラック軸16の背面16aを支持することになる。このラック軸支持構成は、いわゆる「2個の支点の両側から梁が張り出し、この梁の長手中央に集中荷重(ピニオン31の反力)が作用している」つり合い条件の支持構成に相当する。
【0075】
このようにして、ラック軸16の背面16aは、ピニオン31と2個のラック支持部50,50との3点によって、軸長手方向へのスライドが可能に且つガタの無い状態で確実に支持される。しかも、ラック軸16に過大な曲げ力が作用することによって、このラック軸16の撓み量が大きくならない限り、ラック32自体が各ラック支持部50,50によって支持されることはない(接触することはない)。ラック軸16を支持するための別個の支持部材を設ける必要はなく、ラック軸16を支持するための支持構成を簡略化することができる。
【0076】
さらには、略水平なピニオン直交基準線Lc(図3参照)に対して、上下いずれか一方の面のみに接触可能に形成されただけの、極めて簡単な構成の押し付け面61aによって、ラック軸16をピニオン31へ向かって押し付けるとともに、ラック軸16の背面16aを各ラック支持部50,50に押し付けることができる。このため、ラック軸16の背面16aを各ラック支持部50,50に押し付けるのに、別個の部品を設ける必要はない。
【0077】
しかも、ラック軸16の背面16aに対して、押し付け面61aの一方の略半分(略上半分)だけが接触し、従来のラックガイドに相当する他方の略半分(略下半分)はラック支持部50,50での接触になる。つまり、従来のラックガイド分の摩擦抵抗しか作用しない。従来のステアリング装置には、ラックガイドの摩擦抵抗と、ラック軸を軸長手方向に支持するラック支持部の摩擦抵抗と、を合計した摩擦抵抗が作用する。これに対し、実施例1のステアリング装置10には、ラックガイド61分に相当する摩擦抵抗だけしか作用しないので、ラック軸16がスライドするときの摩擦抵抗を抑制することができる。
【0078】
また、ラックガイド61は上半分だけの構成になり、略下半分は必要なくなるので、軽量化できる。ラック支持部50,50は円筒状の簡単な構成なので、軽量であり、ステアリング装置10全体の重量増加はほとんど発生しない。
【0079】
また、ラック軸16を短くできるので、このラック軸16の曲げ剛性が高まる。このため、ラック支持部50,50におけるラック軸16の撓み角が小さくなり、ラック軸16と各ラック支持部50,50の支持孔51,51との接触状態は極めて良好になる。ラック軸16が短くなり、各ラック支持部50,50間の距離が短くなった分、ラック軸16に作用する曲げ力による各ラック支持部50,50の反力は大きくなるものの、各支持孔51,51の接触面を有効に使える。このため、各ラック支持部50,50の接触面積をほとんど増やす必要がないので、各ラック支持部50,50が大型化することはない。
【0080】
さらには、2個のラック支持部50,50は、ラック軸16において、ラック32が形成されている部位の背面16aのみを支持することが可能であって、互いに接近して位置している。各ラック支持部50,50がラック32の長さの範囲内に位置するので、範囲外に位置している従来に比べて、ラック軸16の全長を短くすることができる。このため、ラックアンドピニオン機構15をラック32の長手方向に小型にすることができる。ラックアンドピニオン機構15を収納するためのハウジング41(図3参照)も小型化できるので、ステアリング装置10の小型化及び軽量化を図ることができる。
【0081】
さらには、ラック軸16が従来に比べて短くなった分、ラック軸16に連結されているタイロッド18,18を長く設定することができる。このため、ステアリング装置10及びこのステアリング装置10を搭載する車両の、設計の自由度を高めることができる。例えば、ステアリング装置10のタイロッド18,18と図示せぬサスペンション装置とによって形成される、サスペンションジオメトリの設計自由度を高めることができる。
【0082】
特に、このようなステアリング装置10を、車幅が小さい小型車に搭載する場合に、配置上の制約が小さい。しかも、タイロッド18,18を長く設定すれば、左右の操舵車輪21,21がバンプやリバウンドをしたときにおいて、トーの変化の影響を抑制することができる。この結果、車両の操縦性を高めることができる。
【0083】
さらには、ラック軸16が短くなることにより、タイロッド18,18を長く設定することができる。従って、ラック軸16に対するタイロッド18,18の傾き角φ(張り角φともいう)を、小さく設定することができる。このため、図7(b)及び図7(c)に示されるように、ラック軸16が車幅方向にスライド変位したときに、ラック軸16に垂直な方向に作用する力fb(曲げ力fb)は小さくてすむ。曲げ力fbが小さいので、ラック軸16に生じる曲げモーメントは小さい。従って、ラック軸16の曲げ強度を十分に高めることができるとともに、ラック軸16の撓みを抑制することができる。ラック軸16の撓みが小さいので、操舵時における左右の操舵車輪21,21の転舵角の精度を高めることができる。しかも、ピニオン31に対するラック32の噛み合い状態を良好に保つことができ、この結果、ラックアンドピニオン機構15の耐久性を十分に確保することができる。
【0084】
一般に、長いタイロッド18,18を用いた場合には、特に操舵角が大きい操舵領域において、ラック軸16に作用する軸長手方向の力(スラスト、軸力)を低減できる、ステアリングジオメトリに設定することは容易である。つまり、操舵角が大きい操舵領域における、ラック軸16とタイロッド18,18とナックル19,19との配置関係(ステアリングジオメトリ)が良好になるように設定することが可能である。操舵角が大きい操舵領域で使用する例としては、例えば停車中の車両を操舵するとき、いわゆる据え切り操舵時がある。
【0085】
ラック軸16に作用するスラストを小さくすることによって、ステアリングホイール11を操舵する操舵トルクが小さくなる。操舵トルクが小さくてすむので、ラックアンドピニオン機構15の負担は軽減される。従って、ラックアンドピニオン機構15の強度や耐久性に余裕ができるので、ラックアンドピニオン機構15の信頼性が高まる。
【0086】
さらには、ステアリング装置10に、操舵トルクに応じて電動モータが発生した補助トルクを、ラックアンドピニオン機構15に付加するようにした、いわゆる電動パワーステアリング装置を採用した場合には、操舵トルクが小さくなった分、電動モータの小型化が可能になる。このため、ステアリング装置10全体の軽量化が可能になるとともに、ステアリング装置10の消費電力の低減にもつながる。その分、エンジンの負担が軽減されるので、ステアリング装置10を搭載した車両の燃費が高まる。
【0087】
図7(a)に示されるように、走行中に左右の操舵車輪21,21に加わる外乱、例えば路面の凹凸などに起因して発生した各操舵車輪21,21の振動は、左右の操舵車輪21,21からタイロッド18,18を介してラック軸16に伝わる。
【0088】
これに対して実施例1では、ラック32が操舵の中立位置の付近に位置している場合には、ラック軸16の背面16aから左右のラック支持部50,50に予圧が付加されている。このため、ラック軸16の背面16aと各ラック支持部50,50との間には、隙間を有していない。予圧が付加されているとともに隙間が無いので、前記振動に起因して、ラック軸16の背面16aが各ラック支持部50,50に当たる音、つまり打音の発生を十分に防止することができる。
【0089】
例えば、図7(b)に示される右操舵のときや、図7(c)に示される左操舵のときに、ラック支持部50,50が受ける反力の方向は、ラック軸16の背面16aから左右のラック支持部50,50に予圧が付加されている方向である。このため、右操舵と左操舵とを反転させるときに、ラック軸16の背面16aが各ラック支持部50,50に当たる音(打音)の発生を、十分に防止することができる。
【0090】
しかも、ラック軸16は従来に比べて短いので軽量である。仮に、予圧を上回る大きい外乱がラック軸16に伝わった場合であっても、打音を抑制することができる。従って、ステアリング装置10から車室に伝わる騒音を十分に防止することができ、この結果、車室内の環境をより高めることができる。
【実施例2】
【0091】
実施例2に係る車両用ステアリング装置を図8及び図9に基づき説明する。図8は上記図3に対応して表している。図9は上記図5に対応して表している。実施例2の車両用ステアリング装置10Aは、上記図3及び図5に示されているラック軸16とラック支持部50と付勢部60(ラックガイド機構60)とを、図8及び図9に示されたラック軸16Aとラック支持部50Aと付勢部60A(ラックガイド機構60A)とに変更したことを特徴とし、他の構成については上記図1〜図7に示す構成と同じなので、説明を省略する。
【0092】
具体的には、実施例2のラック軸16Aは、軸長手方向から見たときに、ラック32を形成されている面の背面16Aaが、略テーパ状断面に形成されている。この背面16Aaのテーパは、ピニオン直交基準線Lcに対して上下対称形に形成されている。このため、ラック軸16Aの全体の断面もピニオン直交基準線Lcに対して上下対称形である。
【0093】
ラックガイド機構60A(付勢部60A)は、ラック32とは反対側からラック軸16Aに当てるラックガイド61Aと、圧縮コイルばね62と、調整ボルト63とからなる。ラックガイド61Aの押し付け面61Aaは、ラック軸16Aの背面16Aaに沿った傾斜面に形成されている。この押し付け面61Aaは、ラック軸16の背面16Aaのうち、ピニオン直交基準線Lcに対して、いずれか一方の面のみに接触可能に形成されている。例えば、押し付け面61Aaは、水平なピニオン直交基準線Lcに対して、上又は下の面のみに接触可能である。図8では、押し付け面61Aaは、ピニオン直交基準線Lcに対して上の面のみに接触している。
【0094】
図9に示されるように、2個のラック支持部50A,50Aは、ラック軸16Aの背面16Aaを支持する部材であって、ハウジング41内に突出した突出部分によって構成されている。ラック支持部50Aの支持面50Aaは、略テーパ状の背面16Aaに対応した傾斜面である。押し付け面61Aa(図8参照)がピニオン直交基準線Lcに対して上の面のみに接触しているので、支持面50Aaはこれとは反対側、つまりピニオン直交基準線Lcに対して下の面のみに接触している。各ラック支持部50A,50Aは、ピニオン軸14がスライドする際の摩擦抵抗が小さい材料によって構成されることが好ましい。
【0095】
実施例2によれば、上記実施例1の作用、効果と同様の作用、効果を発揮する。また、このような断面形状のラック軸16Aを用いることにより、ラック軸16Aの曲げ剛性が向上するとともに、ラック軸16Aの撓み角が減少する。この結果、ラック軸16Aと各ラック支持部50A,50Aとの接触部分16Aa,50Aa(背面16Aaと支持面50Aa)の接触状態が、更に良好となる。この結果、各ラック支持部50A,50Aの軸受容量(荷重許容量)に余裕ができる。従って、実施例1と同等の軸受容量にするならば、各ラック支持部50A,50Aの小型化が可能になる。さらに、ラック軸16Aの撓み量が減少するので、ラック32の撓みによって発生する操舵車輪21,21(図1参照)の切れ角の精度が向上し、操縦性向上の寄与にもつながる。
【実施例3】
【0096】
実施例3に係る車両用ステアリング装置を図10に基づき説明する。図10は上記図3に対応して表されている。実施例3の車両用ステアリング装置10Bは、上記図3に示されている付勢部60(ラックガイド機構60)を、図10に示された付勢部60B(ラックガイド機構60B)に変更したことを特徴とし、他の構成については上記図1〜図7に示す構成と同じなので、説明を省略する。
【0097】
具体的には、実施例3のラックガイド機構60B(付勢部60B)は、ラック32とは反対側からラック軸16に当てるラックガイド61Bと、圧縮コイルばね62と調整ボルト63とからなる。ラックガイド61Bの押し付け面61Baは、ラック軸16の背面16aに沿う略円弧状断面に形成されている。この押し付け面61Baは、ラック軸16の背面16aのうち、ピニオン直交基準線Lcに対して、いずれか一方の面のみに接触可能に形成されている。例えば、押し付け面61Baは、水平なピニオン直交基準線Lcに対して、上又は下の面のみに接触可能である。
【0098】
ラックガイド機構60Bは、ラックガイド61Bの中心線Lg及び圧縮コイルばね62の中心線Lgが、ピニオン直交基準線Lcに対して上又は下に、オフセット量δ1だけオフセットしている。つまり、押し付け面61Baの中心は、ラック軸16の中心に対して、ラック32の歯幅方向にオフセットしている。押し付け面61Baの円弧状の半径r3は、背面16aの円弧状の半径r2よりも大きく設定されている(r3>r2)。
【0099】
より具体的には、ラック軸16の背面16aの半径r2の中心は、ピニオン直交基準線Lc上に位置している。一方、押し付け面61Baの円弧状の半径r3の中心は、ピニオン直交基準線Lcに対して上又は下に、つまり、ラック32の歯幅方向にオフセットしている。この結果、押し付け面61Baは、水平なピニオン直交基準線Lcに対して、上又は下の面のみに接触する。図10では、押し付け面61Baは、ピニオン直交基準線Lcに対して上の面のみに接触している。
【0100】
実施例3によれば、上記実施例1の作用、効果と同様の作用、効果を発揮する。さらに、実施例3によれば、ラックガイド61Bの押し付け面61Baの円弧状の半径r3を、ラック軸16の背面16aの円弧状の半径r2よりも大きく設定するとともに、押し付け面61Baの中心を、ラック軸16の中心に対してラック32の歯幅方向にオフセットするだけの、極めて簡単な構成の押し付け面61Baによって、ラック軸16をピニオン31へ向かって押し付けるとともに、ラック軸16の背面16aを各ラック支持部50,50に押し付けることができる。しかも、ラック軸16を支持するための別個の支持部材を設ける必要はない。
【0101】
ところで、上記図3に示される実施例1の構成では、ラックガイドハウジング64に対してラックガイド61を天地逆に組み込んでも、ステアリング装置10(図1参照)の摩擦抵抗が変わらないので、天地逆に組み込んだことを検出することはできない。
【0102】
また、上記図8及び図9に示される実施例2の構成では、ラックガイドハウジング64に対してラックガイド61Aを天地逆に組むと、各ラック支持部50A,50Aの無い方向にラック軸16Aが押されてしまう。
【0103】
これに対し、実施例3の構成では、ラックガイドハウジング64に対してラックガイド61Bを天地逆に組み込んでも、力の作用方向が同じであり、誤って組み付けられる心配がなく、生産性が高まる。
【実施例4】
【0104】
実施例4に係る車両用ステアリング装置を図11に基づき説明する。図11は上記図3に対応して表している。実施例4の車両用ステアリング装置10Cは、上記図3に示されている付勢部60(ラックガイド機構60)を、図11に示された付勢部60C(ラックガイド機構60C)に変更したことを特徴とし、他の構成については上記図1〜図7に示す構成と同じなので、説明を省略する。
【0105】
具体的には、実施例4のラックガイド機構60C(付勢部60C)は、ラック32とは反対側からラック軸16に当てるラックガイド61Cと、圧縮コイルばね62と調整ボルト63とからなる。ラックガイド61Cの押し付け面61Caは、ラック軸16の背面16aに沿う略円弧状断面に形成されている。ラックガイド61Cの中心線Lg及び圧縮コイルばね62の中心線Lgは、ラック軸16の断面中心(中心線Pr)を通るとともに、ピニオン直交基準線Lcに対してピニオン31の軸方向に傾き角θだけ傾いている。押し付け面61Caの形状は、ゴシックアーチ形状ではなく、単一の円弧状である。押し付け面61Caの円弧状の半径r4は、背面16aの円弧状の半径r2と同一又は若干大きく(略同一に)設定されている(r4≧r2)。
【0106】
実施例4によれば、上記実施例1の作用、効果と同様の作用、効果を発揮する。また、上記実施例3と同様に、ラックガイドハウジング64に対してラックガイド61Cを天地逆に組み込んでも、力の作用方向が同じであり、誤って組み付けられる心配がなく、生産性が高まる。さらに、実施例4によれば、ラックガイド61Cの中心線Lgは、ラック軸16の断面中心を通るとともに、ピニオン直交基準線Lcに対してピニオン31の軸方向に傾き角θだけ傾いている。このような極めて簡単な構成のラックガイド61Cによって、ラック軸16をピニオン31へ向かって押し付けるとともに、ラック軸16の背面16aを各ラック支持部50,50に押し付けることができる。しかも、ラック軸16を支持するための別個の支持部材を設ける必要はない。
【実施例5】
【0107】
実施例5に係る車両用ステアリング装置を図12に基づき説明する。図12は上記図5に対応して表している。実施例5の車両用ステアリング装置10Dは、上記図5に示されている軸受50,50に対するラック軸16のオフセット構成を変更したことを特徴とし、基本的な構成は上記図11に示される実施例4と同じである。このように、実施例5の他の構成については上記図1〜図7及び図11に示す構成と同じなので、説明を省略する。
【0108】
具体的には、実施例5のラック軸16の断面中心Pr(中心線Pr)は、各ラック支持部50,50の断面中心Pj(中心線Pj)に対して、ピニオン31(図6参照)から離れる方向にオフセット量Δ1だけオフセットし、且つ、ラック32の歯幅方向にオフセット量Δ2だけオフセットしている。この結果、図12に示されるように、ラック軸16は、各ラック支持部50,50の断面中心Pjとラック軸16の断面中心Prとを結んだ作用線WL上に接触点Qwを有し、この作用線WLの方向に反力F2が発生する。各ラック支持部50,50はラック軸16の背面16aを支持することになる。このラック軸支持構成は、いわゆる「2個の支点の両側から梁が張り出し、この梁の長手中央に集中荷重(ピニオン31の反力)が作用している」つり合い条件の支持構成に相当する。なお、オフセット量Δ1のオフセットは無くてもよい。その場合には、反力F2がラック下点Quから発生する。
【0109】
このようにして、ラック軸16の背面16aは、ピニオン31と2個のラック支持部50,50との3点によって、軸長手方向へのスライドが可能に確実に支持される。しかも、ラック32自体が2個の軸受50,50によって支持される(接触する)ことを、より一層確実に防ぐことができる。
【実施例6】
【0110】
実施例6に係る車両用ステアリング装置を図13〜図15に基づき説明する。図13は上記図11に対応して表している。図14は、実施例6のラック軸16Eを輪切りにした断面形状を示している。図15は、上記図12に対応して表しており、ラック軸16Eを2個の軸受50,50によって支持している構成を示す。
【0111】
実施例6の車両用ステアリング装置10Eは、上記図11及び図12に示されているラック軸16を図13〜図15に示されたラック軸16Eに変更したことを特徴とする。付勢部60C(ラックガイド機構60C)は、上記図11に示されている実施例4の構成と実質的に同じであるが、実施例1又は実施例3の構成を用いてもよい。車両用ステアリング装置10Eの他の構成については、上記図1〜図7及び図11に示す構成と同じなので、説明を省略する。
【0112】
図14に示されるように、ラック軸16Eは鍛造品であり、ラック32を有している部分を除き外周面の同一周上(図14に想像線によって示された真円状の円周面16Es)には、2個の軸受50,50(図15参照)によって支持することが可能な、2個のラック反対側凸部16Ea,16Eb及び2個のラック接近側凸部16Ec,16Edが形成されている。これらの各凸部16Ea,16Eb,16Ec,16Edは、円周面16Esから径外方へ突出した断面円弧状の突出部であり、ラック軸16Eの全長にわたって軸長手方向に延びている。
【0113】
2個のラック反対側凸部16Ea,16Ebは、ピニオン平行基準線Lpに対してラック32とは反対側に位置し、且つピニオン直交基準線Lcの両側に位置している。つまり、ラック反対側凸部16Ea,16Ebは、ラック軸16Eのラック32が形成されている部位の背面16Eeに位置している。一方、2個のラック接近側凸部16Ec,16Edは、ピニオン平行基準線Lpとラック32との間に位置し、且つピニオン直交基準線Lcの両側に位置している。
【0114】
例えば、断面円弧状のラック反対側凸部16Ea,16Ebの半径r11は、真円状の円周面16Esの半径r12よりも小さく設定されている。ラック反対側凸部16Ea,16Ebの半径r11の中心Pdは、ピニオン平行基準線Lpに対してラック32とは反対側にオフセット量Δ11だけオフセットするとともに、ピニオン直交基準線Lcの両側オフセット量Δ12だけオフセットしている。
【0115】
ここで、図14において、図右上のラック反対側凸部16Eaのことを「第1ラック反対側凸部16Ea」という。図右下のラック反対側凸部16Ebのことを「第2ラック反対側凸部16Eb」という。図左下のラック接近側凸部16Ecのことを「第1ラック接近側凸部16Ec」という。図左上のラック接近側凸部16Edのことを「第2ラック接近側凸部16Ed」という。
【0116】
図15に示されるように、軸受50,50は、第2ラック反対側凸部16Ebをラック軸16Eの軸長手方向にスライド可能に支持している。
【0117】
実施例6によれば、上記実施例1の作用、効果と同様の作用、効果を発揮する。さらに、実施例6では、ラック軸16Eは、ラック32を有している部分を除き外周面の同一周上に、円筒状の各軸受50,50によって支持することが可能な、第1ラック反対側凸部16Ea及び第2ラック反対側凸部16Ebが形成されている。この2個のラック反対側凸部16Ea,16Ebは、ピニオン平行基準線Lpに対してラック32とは反対側に位置し、且つピニオン直交基準線Lcの両側に位置している。さらに、ラックガイド61Cの中心線Lgは、ラック軸16の断面中心Pr(中心線Pr)を通るとともに、ピニオン直交基準線Lcに対してピニオン31の軸方向に傾き角θだけ傾いている。
【0118】
このため、各軸受50,50はラック軸16Eの背面の全体を支持するのではなく、2個のラック反対側凸部16Ea,16Ebの少なくともいずれか一方を支持することができる。例えば、図13に示されている実施例6では、ピニオン直交基準線Lcに対してラックガイド61Cが上に傾いている。このため、通常では、ピニオン直交基準線Lcに対して下に位置している第2ラック反対側凸部16Ebが、各軸受50,50に支持される。
【0119】
一般に、走行中に操舵するときには、路面と操舵車輪21,21(図1参照)との間の摩擦力が小さいので、比較的小さい操舵力ですむ。このとき、操舵車輪21,21からナックル19,19を介してタイロッド18,18から作用する反力のうち、ラック軸16Eにかかる曲げ力fb(図7参照)が小さいので、ラック軸16Eの背面16Eeを各軸受50,50側に押し付ける押し付け力は小さい。この場合には、ピニオン直交基準線Lcに対してラックガイド61Cとは反対側に位置しているラック反対側凸部が、各軸受に支持される。ラック軸16Eのうち、各軸受50,50によって支持される支持点が確実に決まる。
【0120】
操舵車輪21,21からナックル19,19を介してタイロッド18,18から入力される反力のうち、ラック軸16Eに作用する曲げ力fb(図7参照)が大きくなると、ラック軸16Eの背面16Eeを各軸受50,50側に押し付ける押し付け力も大きくなる。この場合には、ピニオン直交基準線Lcに対して両側に位置している2個のラック反対側凸部16Ea,16Ebの両方が、各軸受50,50に支持され、横荷重fbによる各軸受50,50にかかる反力が2箇所に分散される。このため、各軸受50,50の1点に過大な操舵力が作用しないので、ラック軸16E及び軸受50,50の耐久性が高まる。
【0121】
さらに、実施例6では、ラック軸16Eの外周面の同一周上に、2個の軸受50,50によって支持することが可能な第1ラック接近側凸部16Ec及び第2ラック接近側凸部16Edが形成されている。この2個のラック接近側凸部16Ec,16Edは、ピニオン平行基準線Lpとラック32との間に位置し、且つピニオン直交基準線Lcの両側に位置している。
【0122】
停車中の車両を操舵するとき、いわゆる据え切り操舵時には、路面と操舵車輪21,21(図1参照)との間の摩擦力が大きい。つまり、路面反力が大きくなるので、より大きい操舵力が必要となる。より大きい操舵力はピニオン31からラック32に伝わる。ラック軸支持構成は、2個の軸受50,50の両側からラック軸16Eが張り出し、このラック軸16Eの長手中央に集中荷重(ピニオン31の押し付け力)が作用する構成である。より大きな押し付け力が、ピニオン31からラック軸16Eの長手中央に作用することによって、ラック軸16Eの両側はラック32側へ撓もうとする。このため、ラック軸16Eに形成されているラック32は、各軸受50,50に接触しようとする。しかし、この場合には、2個のラック接近側凸部16Ec,16Edの少なくとも一方が、各軸受50,50に先に接触するので、ラック32が各軸受50,50に接触することはない。従って、ラック軸16Eは、より円滑にスライドすることが可能である。
【0123】
このような構成なので、ハウジング40や各軸受50,50の中心Pjをオフセットさせる必要がない。また、ラックガイド61Cの押し付け面61Caの円弧の中心は単一ですむ。このため、車両用ステアリング装置10Eの生産性が高まる。
【実施例7】
【0124】
実施例7に係る車両用ステアリング装置を図16〜図18に基づき説明する。実施例7の車両用ステアリング装置10Fは、上記図14に示されているラック軸16Eを図16に示されたラック軸16Fに変更したことを特徴とし、他の構成については、上記図1〜図7及び図13〜図15に示す構成と同じなので、説明を省略する。
【0125】
図16に示されるように、実施例7のラック軸16Fは、中空材を塑性加工することによって構成されている。この中空材は鋼管等の金属製パイプから成る。2個のラック反対側凸部16Ea,16Eb及び2個のラック接近側凸部16Ec,16Edは、中空材16F(ラック軸16F)の内部から径外方へ向かって押し出し成形されることによって形成された部分である。
【0126】
ラック軸16Fの製造方法の一例を説明すると、次の通りである。先ず、鋼管から成る所定長さのパイプ材を準備する(第1ステップ)。次に、このパイプ材の長手途中をプレスによって平坦状に潰して、平坦部を形成する(第2ステップ)。次に、この平坦部を塑性加工、例えば転造加工することによってラックを形成する(第3ステップ)。このようにパイプ材にラックが形成された半完成品のラック軸16Fh(半完成ラック軸16Fh)を図17及び図18に示す。
【0127】
なお、前記第1ステップから第3ステップまでの手順、つまりパイプ材から半完成ラック軸16Fhを製造する製造方法については、例えば特公平3−5892号公報や特開2001−163228号公報に示されるように周知であり、しかも各種あり、任意の方法を採用することができるので、詳細な説明を省略する。
【0128】
次に、図17及び図18に示されるように、半完成ラック軸16Fhを追加加工するための一対の二次成形用の割型71A,71Bとポンチ72とを準備する。一対の割型71A,71Bは、組み合わされることによって全体が円筒状に構成され、内周面には、図16に示される各凸部16Ea,16Eb,16Ec,16Edを形成するための凹部71a,71b,71c,71dを有している。一方、ポンチ72の外周面には、各凸部16Ea,16Eb,16Ec,16Edを形成するための凸部72a,72b,72c,72dが形成されている。
【0129】
一対の割型71A,71B内に半完成ラック軸16Fhをセットして型締めした後に、この半完成ラック軸16Fh内にポンチ72を強制的に圧入することによって、半完成ラック軸16Fhの外周面に各凸部16Ea,16Eb,16Ec,16Edを形成する。この結果、図16に示されるように、各凸部16Ea,16Eb,16Ec,16Edを有したラック軸16Fが完成する。
【0130】
以上、説明のために分割加工した例を示したが、実際には成形後のラック歯形や各凸部16Ea,16Eb,16Ec,16Edの精度を向上するために、第3ステップの工程と各凸部16Ea,16Eb,16Ec,16Edの成形工程とは、ポンチ72にラック歯形成型用の凸部を設けて同時成形を行うことが可能である。
【0131】
実施例7によれば、上記実施例6の作用、効果と同様の作用、効果を発揮する。さらに、実施例7では、2個のラック反対側凸部16Ea,16Eb及び2個のラック接近側凸部16Ec,16Edは、中空材から成るラック軸16Fの内部から径外方へ向かって押し出し成形されることによって形成されている。このため、ラック反対側凸部16Ea,16Eb及びラック接近側凸部16Ec,16Edの各表面がより滑らかになる(面粗度が良好になる)。従って、ラック軸16Fがスライドするときの、各軸受50,50に対する凸部16Ea〜16Edの摩擦抵抗を抑制することができる。
【0132】
また、各ラック反対側凸部16Ea,16Eb及び各ラック接近側凸部16Ec,16Edは、冷間鍛造による加工硬化により硬度が増す。これにより、各軸受50,50に接触する各ラック反対側凸部16Ea,16Eb及び各ラック接近側凸部16Ec,16Edのみ、つまり摺動部分のみの硬度を効果的に増すことができる。この結果、各ラック反対側凸部16Ea,16Eb及び各ラック接近側凸部16Ec,16Edは、摺動することによる摩耗を低減することができる。
【0133】
さらに、ラック軸16Fの重量が低減するので、操舵車輪21,21(図1参照)からの外乱に対して発生する打音が低減する。また、ラック軸16Fの重量が低減することにより、ラックガイド機構60C(図13参照)の圧縮コイルばね62の予圧荷重を低減できる。これによって、ステアリング装置10Fの摩擦抵抗が低減し、良好なステアリング特性が得られる。
【実施例8】
【0134】
実施例8に係る車両用ステアリング装置を図19及び図20に基づき説明する。実施例8の車両用ステアリング装置10Gは、図3及び図6に示された付勢部60(ラックガイド機構60)のラックガイド61を、図19及び図20に示された付勢部60G(ラックガイド機構60G)のラックガイド61Gに変更したことを特徴とし、他の構成については、上記図1〜図7に示す構成と同じなので、説明を省略する。
【0135】
一般に、ラックガイド61Gの外面と支持用孔64aの内面(孔を形成している壁面)との間には、静摩擦力が発生している。一方、ラック軸16(図3参照)がスライドすることによって、このラック軸16とラックガイド61Gとの間には、前記静摩擦力よりも大きい動摩擦力が発生する。このため、ラック軸16がスライドするときの、静摩擦力と動摩擦力との大きさの違いによって、ラックガイド61Gには、ピニオン直交基準線Lc周りに揺動(首振り)させようとする力、いわゆる揺動力が作用し得る。この結果、ラックガイド61Gは断続的に振動しようとする(自励振動)。このような現象は、ラック軸16の円滑なスライド作動を維持して、ピニオン31に対するラック32の良好な噛み合い状態を維持する上で、不利である。
【0136】
これに対して実施例8では、ラックガイド61Gは、ピニオン直交基準線Lcに対するラックガイド61Gの揺動を規制するための揺動規制部81Gを備えている。このため、支持用孔64aに嵌め込まれているラックガイド61Gに、ピニオン直交基準線Lc周りに揺動させようとする揺動力が作用した場合に、揺動規制部81Gによってラックガイド61Gの揺動を規制することができる。従って、ラック軸16の円滑なスライド作動を維持して、ピニオン31に対するラック32の良好な噛み合い状態を十分に維持できるとともに、ラックアンドピニオン機構15の耐久性を高めることができる。さらに、ラックガイド61G自体の耐久性も高めることができる。
【0137】
さらに、この揺動規制部81Gは、ラックガイド61Gの外周面の周方向に形成された少なくとも2個の凸部81Ga,81Gaによって構成されている。各凸部81Ga,81Gaは、ラックガイド61Gをピニオン直交基準線Lcに沿って見たときに、半径r21の円弧状に形成されている。各凸部81Ga,81Gaの半径r21は、ラックガイド61Gの半径r22よりも小さい。このように、ラックガイド61Gの外周面に少なくとも2個の凸部81Ga,81Gaを設けるだけで、揺動規制部81Gを極めて簡単な構成とすることができる。しかも、ラックガイド61Gを燒結金属や樹脂等によって構成することにより、ラックガイド61Gに凸部81Ga,81Gaを形成することは、極めて容易である。
【0138】
実施例8によれば、上記実施例1の作用、効果と同様の作用、効果を発揮する。
【実施例9】
【0139】
実施例9に係る車両用ステアリング装置を図21及び図22に基づき説明する。実施例9の車両用ステアリング装置10Hは、図19及び図20に示された付勢部60G(ラックガイド機構60G)のラックガイド61Gと揺動規制部81Gとを、図21及び図22に示された付勢部60H(ラックガイド機構60H)のラックガイド61Hと揺動規制部81Hに変更したことを特徴とし、他の構成については、上記図1〜図7、図19及び図20に示す構成と同じなので、説明を省略する。
【0140】
具体的には、実施例9のラックガイド61Hは、ピニオン直交基準線Lcに対するラックガイド61Hの揺動を規制するための揺動規制部81Hを備えている。この揺動規制部81Hは、ラックガイド61Hの外周面とラックガイドハウジング64の支持用孔64aの内周面との間の隙間に充填された、液状パッキン等の粘弾性を有する充填層81Haによって構成されている。隙間に充填層81Haを設けるだけで、揺動規制部81Hを極めて簡単な構成とすることができる。
【実施例10】
【0141】
実施例10に係る車両用ステアリング装置を図23に基づき説明する。実施例10の車両用ステアリング装置10Iは、図21及び図22に示された付勢部60H(ラックガイド機構60H)のラックガイド61Hと揺動規制部81Hとを、図23に示された付勢部60I(ラックガイド機構60I)のラックガイド61Iと揺動規制部81Iに変更したことを特徴とし、他の構成については、上記図21及び図22に示す構成と同じなので、説明を省略する。
【0142】
具体的には、実施例10のラックガイド61Iは、ピニオン直交基準線Lc周りのラックガイド61Iの揺動を規制するための揺動規制部81Iを備えている。ラックガイド61Iは、外周面にOリング82を装着するための環状溝61Iaが形成されるとともに、ラックガイドハウジング64に収納される。環状溝61Iaは、例えばラックガイド61Iに切削加工を施すことによって設けることができる。ラックガイドハウジング64には、Oリング82が装着されたラックガイド61Iをスライド可能に支持する支持用孔64aが形成されている。
【0143】
揺動規制部81Iは、環状溝61Iaに装着されたOリング82によって構成されている。このOリング82の外周面は、全体にわたって前記支持用孔64aの内面に接している。このように、ラックガイド61Iの外周面に形成された環状溝61Iaに、Oリング82を装着するだけの、極めて簡単な構成によって、揺動規制部81Iを構成することができる。
【0144】
しかも、ラックガイド61Iの外周面と支持用孔64aの内周面との間の狭い隙間に揺動規制部81Iを設けるのに、ラックガイド61Iの外周面に環状溝61Iaを形成する工程と、この環状溝61IaにOリング82を装着する工程と、Oリング82を装着した状態のラックガイド61Iを支持用孔64aに嵌め込む工程だけの、簡単な工程によって、達成できる。
【実施例11】
【0145】
実施例11に係る車両用ステアリング装置を図24及び図25に基づき説明する。実施例11の車両用ステアリング装置10Jは、図23に示された付勢部60I(ラックガイド機構60I)のラックガイド61Iと揺動規制部81Iとを、図24及び図25に示された付勢部60J(ラックガイド機構60J)のラックガイド61Jと揺動規制部81Jとに変更したことを特徴とし、他の構成については、上記図23に示す構成と同じなので、説明を省略する。
【0146】
具体的には、実施例11の揺動規制部81Jは、図23に示された揺動規制部81Iと同様に、環状溝61Iaに装着されたOリング82によって構成されている。さらに、実施例11のラックガイド61Jの環状溝61Iaの中心61Ibは、ラックガイド61Jの中心線Lgに対してオフセット量Δ21だけオフセットしている。このため、環状溝61Iaの深さは、ラックガイド61Jの円周方向の位置によって異なる。従って、環状溝61Iaに嵌め込まれているOリング82が、ラックガイド61Jの外周面から突出する突出量は、ラックガイド61Jの円周方向の位置によって異なる。オフセットの方向は、ラックガイド61Jの中心線Lgに対して、押し付け面61aがラック軸16の背面16aに接触する部位とは反対側である。
【0147】
このようにすることで、支持用孔64aにラックガイド61Jを嵌め込んだ場合に、支持用孔64aの内周面に対する、Oリング82の接触圧は、このOリング82の外周面の部位によって異なる。つまり、Oリング82の周方向に、接触圧が異なる。接触圧がOリング82の外周面の部位によって異なるので、ラックガイド61Jがピニオン直交基準線Lc周りに揺動することを、より一層規制することができる。このため、ラックガイドハウジング64によってラックガイド61Jを適切な位置に保持する保持性能が高まる。この結果、ラック軸16の円滑なスライド作動を維持して、ピニオン31に対するラック32の良好な噛み合い状態を十分に維持できる。車両用ステアリング装置10Jは、ラックアンドピニオン機構15の動作の応答遅れがない、良好な操舵間隔を確保することができる。
【0148】
さらには、環状溝61Iaのオフセットの方向は、ラックガイド61Jの中心線Lgに対して、押し付け面61aがラック軸16の背面16aに接触する部位とは反対側である。中心線Lgに対して、押し付け面61aが背面16aに接触する部位側の溝深さは、最も大きい。このため、支持用孔64aにラックガイド61Jを嵌め込んだ場合に、溝深さが大きい部位でのOリング82の弾性変形量は大きい。Oリング82は、弾性変形量が大きい部位でのバネ特性が大きい。
【0149】
しかも、Oリング82がラックガイド61Jにオフセットして装着されているので、支持用孔64aにラックガイド61Jを嵌め込むときに、嵌め込み方向を目視によって確認し易い。このため、ラックガイド61Jの組み付け信頼性が高まる。
【実施例12】
【0150】
実施例12に係る車両用ステアリング装置を図26〜図30に基づき説明する。図26は上記図3に対応して表している。図27は上記図4に対応して表している。図28は上記図5に対応して表している。実施例12の車両用ステアリング装置10Kは、上記図3〜図5に示されているラックアンドピニオン機構15及び付勢部60(ラックガイド機構60)を、図26〜図28に示されたラックアンドピニオン機構15K及び付勢部60K(ラックガイド機構60K)に変更したことを特徴とし、他の構成については上記図1〜図7に示す構成と同じなので、説明を省略する。
【0151】
具体的には、図26及び図27に示されるように、実施例12のラックアンドピニオン機構15Kは、ピニオン31Kとラック32Kとから成る。ピニオン31K及びラック32Kは、上記図3に示されるピニオン31及びラック32に相当する。但し、実施例12のピニオン31K及びラック32Kは、共に「すぐ歯」の構成である。つまり、ピニオン31Kは、このピニオン31Kの中心線Ppに対して歯すじが直交する「すぐ歯」の構成である。ラック32Kは、ラック軸16に対して(ラック軸16の中心線Prに対して)歯すじが直交する「すぐ歯」の構成である。この場合に、ピニオン軸14とラック軸16とは互いに直交している。つまり、ピニオン軸14はラック軸16の軸長手方向に傾いていない。
【0152】
なお、ラック32Kだけを「すぐ歯」とし、このラック32Kに噛み合うピニオン31Kは、歯すじが所定の捩れ角を有している「はす歯」の構成とすることも可能である。この場合には、ピニオン軸14は、ピニオン31Kの「はす歯」の捩れ角に相当する角度だけ、ラック軸16の軸長手方向に傾いている、いわゆる斜交している。このため、ピニオン31Kとラック32Kとの噛み合い構成は、ピニオン31Kとラック32Kの両方が「すぐ歯」である場合と、実質的に同等の構成である。
【0153】
図26に示されるように、実施例12のラックガイド機構60K(付勢部60K)は、ラック32Kとは反対側からラック軸16に当てるラックガイド61Kと、圧縮コイルばね62と調整ボルト63とからなる。
【0154】
ラックガイド61Kは、スライド方向の中心線Lgを中心とする真円の円柱状の部材である。スライド方向の中心線Lgは、ピニオン直交基準線Lcに平行である。つまり、ラックガイド61Kは、中心線Lgを基準とした円形状断面に形成されている。ラックガイド61K及び圧縮コイルばね62はラックガイドハウジング64に収納されている。このラックガイドハウジング64は、ハウジング41に一体に形成されており、ラックガイド61Kを中心線Lgに沿ってスライド可能に支持することが可能な円形状(真円状)の支持用孔64aを有している。
【0155】
ラックガイド61Kの押し付け面61Kaは、ラック軸16の背面16aに沿う略円弧状断面に形成されている。この押し付け面61Kaは、ラック軸16の背面16aのうち、ピニオン直交基準線Lcに対して、いずれか一方の面のみに接触可能に形成されている。例えば、押し付け面61Kaは、水平なピニオン直交基準線Lcに対して、上又は下の面のみに接触可能である。
【0156】
より具体的には、押し付け面61Kaの円弧状の半径r5は、背面16aの円弧状の半径r2よりも大きく設定されている(r5>r2)。ラック軸16の背面16aの半径r2の中心は、ピニオン直交基準線Lc上に位置している。一方、押し付け面61Kaの円弧状の半径r5の中心は、ピニオン直交基準線Lcに対して上又は下に、つまり、ラック32Kの歯幅方向(歯すじ方向)にオフセットしている。この結果、押し付け面61Kaは、水平なピニオン直交基準線Lcに対して、ラック軸16の背面16aの上又は下の面のみに接触する。図26では、押し付け面61Kaは、ピニオン直交基準線Lcに対して背面16aの上の面のみに接触している。
【0157】
上述のように、「r5>r2」の関係があるので、ラック軸16の背面16aに対して、押し付け面61Kaは1つの接触部位Qsでのみ接触する。背面16aに対する押し付け面61Kaの接触部位Qsは、ラック軸16の軸長手方向に直線状に延びるとともに、ラックガイド61Kの大きさがラック軸16の軸長手方向に最大となるように位置している。より具体的には、ラックガイド61Kのスライド方向の中心線Lg及び圧縮コイルばね62の中心線Lgは、ピニオン直交基準線Lcに対し、押し付け面61Kaが背面16aに接触する方にオフセット量δ2だけオフセットしている。つまり、押し付け面61Kaの中心は、ラック軸16の中心に対して、ラック32Kの歯幅方向にオフセットしている。
【0158】
次に、実施例12の作用を説明する。図26及び図27に示されるように、ラック32Kは「すぐ歯」である。このラック32Kに噛み合うピニオン31Kについては「すぐ歯」にする。または、ピニオン31Kを「はす歯」にするとともに、ピニオン軸14を「はす歯」の捩れ角に相当する角度だけ、ラック軸16の軸長手方向に傾けることによって、実質的に「すぐ歯」となり得る構成と、することが可能である。このように、ピニオン31Kとラック32Kとの噛み合い構成は、ピニオン31Kとラック32Kの両方が「すぐ歯」である場合と、実質的に同等の構成である。このため、ピニオン31Kの歯すじの方向は、ラック32Kの歯すじの方向と合致する。
【0159】
従って、ラック32Kに対して、ラック32Kの歯すじの方向の外力(振動を含む)が作用したときに、ラック32Kは「歯すじ」の方向(歯幅方向)に変位し易い。例えば、外部からラック32Kに、このラック32Kの歯すじの方向の振動が伝わったときに、ラック32Kは歯すじの方向に振動し得る。このため、ラック32Kの歯すじ方向の振動が、ピニオン31Kの回転方向の振動に変換されてステアリングホイール11(図1参照)に伝わり難い。この結果、運転者に与える操舵感覚が高まる。また、ピニオン31Kの回転方向の振動に対し、「すぐ歯」のラック32Kは規制する方向に働く。このため、ピニオン31Kの回転方向の振動がステアリングホイール11に伝わり難い。この結果、運転者に与える操舵感覚が高まる。
【0160】
図7(a)に示されるように、ステアリング装置が操舵されていないときには、操舵に伴って操舵車輪21,21からタイロッド18,18を介してラック軸16に伝わる反力はない。このため、図26に示されるように、ラックガイド61Kは、ラック軸16の背面16aに1つの接触部位Qsでのみ接触し、圧縮コイルばね62の付勢力F1によって、ラック軸16をピニオン31Kへ向かって押し付けるとともに、図27及び図28に示されるように、ラック軸16の背面16aを各ラック支持部50,50に押し付けている(予圧を付加している。)。
【0161】
ラック軸16の断面中心Pr(中心線Pr)は、2個の軸受50,50の断面中心Pj(中心線Pj)に対し、ピニオン31Kの中心線Ppに沿って、ラック32Kの歯幅方向にオフセット量Δ2だけオフセットしている。このため、ラック軸16は、各軸受50,50の断面中心Pjとラック軸16の断面中心Prとを結んだ作用線上、つまりピニオン平行基準線Lp上に、接触点Quを有する。この接触点Quは、各軸受50,50の支持孔51,51に対して、ラック軸16の背面16aが接する点である。この結果、各軸受50,50には反力F2が発生する。各軸受50,50はラック軸16の背面16aを支持することになる。このようにして、ラック軸16の背面16aは、ピニオン31と2個の軸受との3点によって、軸長手方向へのスライドが可能に支持されている。
【0162】
その後、ステアリング装置を操舵した場合には、次のようになる。図29は、ステアリング装置10Kを右へ操舵することによって、ラック32Kが右にスライド変位している状態のステアリング装置10Kを平面視で模式的に表している。タイロッド18,18はラック軸16に対して車両前後方向に傾き角φ(図7(a)参照)だけ傾いている。このため、ラック軸16が車幅方向にスライド変位したときに、ラック軸16には、このラック軸16に垂直な方向に力fb,fb(曲げ力fb,fb)が作用する。
【0163】
例えば、ステアリング装置10Kを右へ操舵した場合には、路面と操舵車輪21,21との間の摩擦力に従って路面反力が発生する。この路面反力は、操舵車輪21,21からタイロッド18,18を介してラック軸16に作用する。このため、ラック軸16の左端には車両後方への曲げ力fbが作用し、ラック軸16の右端には車両前方への曲げ力fbが作用する。
【0164】
この曲げ力fbが小さいときには、ラック軸16の背面16aは、ピニオン31と2個の軸受50,50との3点によって、軸長手方向へのスライドが可能に支持されている。ラック軸16がスライドするときの摩擦力は、図26に示されるラックガイド61Kがラック軸16を押し付ける付勢力F1に対応した、比較的小さい摩擦力のみである。従って、摩擦力が小さい良好な摩擦特性のステアリング装置10Kとなる。
【0165】
一方、曲げ力fbが付勢力F1に応じた摩擦力を上回って大きくなったときであっても、各軸受50,50によってラック軸16の背面16aを軸長手方向へのスライドが可能に、確実に支持できることが好ましい。つまり、ラック軸16の背面16aを支持するとともに、ラック32Kが反力の影響を極力受けないようにする。そのために、実施例12では、曲げ力fbが大きくなったときに、ピニオン31Kとラック32Kとの噛み合い点と、各軸受50,50による支持点と、の3点での不静定の支持形態が形成されるようにした。
【0166】
詳しく述べると、大きい曲げ力fbを受けたラック軸16は、ピニオン31Kとラック32Kとの噛み合い点を支点として、左端が後退するとともに右端が前進する方向(図29で反時計回り方向)に、前後スイング運動をしようとする。つまり、ラック軸16は、車幅方向右側にスライドしつつ左側が後退しようとする。このときに、図28に示されている状態のラック軸16の左側の部位は、左の軸受50の支持孔51の面に沿って後上方(矢印Up方向)へ、せり上がりながら後退しようとする。ラック軸16がせり上がる、いわゆる「せり上がり量」は、曲げ力fbが大きくなるにつれて、大きくなる。
【0167】
上述のように、ピニオン31Kとラック32Kとの噛み合い構成は、ピニオン31Kとラック32Kの両方が「すぐ歯」である場合と、実質的に同等の構成である。このため、ピニオン31Kの歯すじの方向は、ラック32Kの歯すじの方向と合致する。従って、ラック32Kに対して、せり上がり方向の外力、つまりラック32Kの歯すじの方向の外力が作用したときに、ラック32Kは「歯すじ」の方向(歯幅方向)に変位し易い。このように、ラック32Kが「すぐ歯」なので、ラック軸16のせり上がり運動は容易である。
【0168】
ラック軸16がせり上がりながら後退した結果を図30に示す。図30は、ラック軸16がせり上がることにより、各軸受50,50の支持孔51,51に対して、ラック軸16の背面16aが接する接触点Qrは、ピニオン直交基準線Lc上に位置している状態を示している。ラック軸16の背面16aの後端が左の軸受50の支持孔51の後面に接しているので、軸受50はラック軸16を十分に支持することができるとともに、反力を十分に且つ確実に受け止めることができる。
【0169】
以上のように、ラック軸16に大きい反力が加わったときには、この反力の大きさに応じて曲げ力fbが大きくなる。この曲げ力fbに応じて、ラック軸16は軸受50の支持孔51の面に沿って滑りながら、後上方に、せり上がる。つまり、軸受50(ラック支持部50)によってラック軸16を支持する支持位置が、このラック軸16に加わる反力の大きさに応じて変化するという、不静定の支持構造が構成される。軸受50は、ラック軸16の背面16aのうち、反力の大きさに応じた最も適切な部位、例えば接触点Qrを堅固に支持することができる。この結果、ラック軸16は、ピニオン31Kとラック32Kとの噛み合い点と、各軸受50,50による支持点と、の3点で支持される。しかも、軸受50は、反力の大きさに応じた最も適切な部位で、ラック軸16の背面16aを支持するので、耐久性が高い。
【0170】
ところで、ラック32Kが「はす歯」の場合には、ラック軸16の中心線Prに対して歯が斜めに形成されている。このため、ラック軸16の中心線Prに直交するどの断面をとっても、一部にラック32Kの歯がある。これに対し、実施例12では、ラック32Kが「すぐ歯」であるから、ラック軸16の中心線Prに沿ってラック32Kを次々に断面した場合に、歯先の部位と歯底の部位とが繰り返される。つまり、断面によっては、歯底しか無い部位がある。歯底しか無い部位の断面二次モーメントは、他の部位の断面二次モーメントよりも小さい。従って、ラック軸16の全体をとらえると、ラック32Kが「はす歯」の場合に比べて、比較的撓み易い。しかも、上述のように、ラック32Kに対して、ラック32Kの歯すじの方向の外力(振動を含む)が作用したときに、ラック32Kは「歯すじ」の方向に変位し易い。従って、ラック軸16の背面は、ピニオン31Kと2個のラック支持部50,50との3点によって、軸長手方向へのスライドが可能に確実に支持される。
【0171】
このように、ラック軸16は、大きい反力が加わったときであっても、左右の軸受50,50とピニオン31Kとの3点によって十分に支持される。
【0172】
ラック軸16の右端の変位は、左端の変位に対して前後逆向きであり、説明を省略する。なお、ラック軸16については、図14及び図15に示されている実施例6のラック軸16Eの構成とすることが好ましい。なぜなら、ラック軸16Eがピニオン31K側へ接近した場合に、2個のラック接近側凸部16Ec,16Edの少なくとも一方が、各軸受50,50に先に接触するので、ラック32Kが各軸受50,50に接触することはないからである。
【0173】
さらには、上述のようにラック軸16の全長が短いので、ピニオン31Kは車幅中央に位置することもできる。これに対し、ステアリングホイール11は左又は右に偏って位置する。つまり、ピニオン軸14は、ラック軸16の軸長手方向に傾けることになる。ピニオン軸14の傾き方向は、右ハンドル車と左ハンドル車とで逆向きになる。しかし、ラック32Kが「すぐ歯」なので、右ハンドル車と左ハンドル車とで共用できる。ステアリング装置10Kの部品の管理が容易となり、生産性が高まる。
【0174】
実施例12によれば、さらに上記実施例1の作用、効果と同様の作用、効果を発揮する。
【実施例13】
【0175】
実施例13に係る車両用ステアリング装置を図31〜図34に基づき説明する。実施例13の車両用ステアリング装置10Lは、上記図3に示されている付勢部60(ラックガイド機構60)を、図31〜図34に示された付勢部91,91に変更したことを特徴とし、他の構成については上記図1〜図7に示す構成と同じなので、説明を省略する。
【0176】
具体的には、実施例13の付勢部91,91は、ピニオン31をラック32に対して噛み合う方向へ付勢している。この2個の付勢部91,91は、ハウジング41と2個の軸受43,44の外周面と、の間に設けられている帯板状の「板ばね」によって構成されている。
【0177】
板ばね91,91を、板厚方向へ弓なりに撓ませつつ、両端をハウジング41に嵌め込むことにより、板ばね91,91はハウジング41に掛け止められる。ハウジング41に取り付けられた状態の板ばね91,91は、各2個の軸受43,44の外周面を個別に包み込むように円弧状に撓んでいる。このため、板ばね91,91は軸受43,44及びピニオン軸14を介してピニオン31をラック32に対して噛み合う方向へ付勢する。このため、ピニオン31とラック32との良好な噛み合い状態を維持することができる。
【0178】
図31に示されるように、各板ばね91,91の付勢力F1,F2の合力F3は、ピニオン31からラック32を介してラック軸16に伝わる。このときに、図33に示されるように、ラック軸16の背面16aを支持している2個の軸受50,50には、それぞれ反力F11,F12が発生する。このようにして、ラック軸16の背面16aは、ピニオン31と2個の軸受50,50との3点によって、軸長手方向へのスライドが可能に確実に支持される。このラック軸支持構成は、いわゆる「2個の支点の両側から梁が張り出し、この梁の長手中央に集中荷重(合力F3)が作用している」つり合い条件の支持構成に相当する。しかも、ラック32自体が各軸受50,50によって支持されることはない。このため、ラック軸16を支持するための別個の支持部材を設ける必要はなく、支持構成を簡略化することができる。
【0179】
なお、実施例13において、ピニオン31とラック32は「はす歯」の構成であるが、ラック32をラック軸16に対して直交する「すぐ歯」にし、ピニオン31を「はす歯」にし、ピニオン軸14をラック軸16の軸長手方向に傾けた構成にすることが可能である。また、ピニオン31とラック32の両方共に「すぐ歯」にすることも可能である。
【産業上の利用可能性】
【0180】
本発明の車両用ラックアンドピニオン式ステアリング装置10〜10Lは、車幅が小さい小型車に搭載するのに好適である。
【符号の説明】
【0181】
10,10A〜10L…車両用ステアリング装置、11…ステアリングホイール、14…ピニオン軸、15…ラックアンドピニオン機構、16…ラック軸、16a…背面、16Ea,16Eb…ラック反対側凸部、16Ec,16Ed…ラック接近側凸部、16E…中空材のラック軸、21…操舵車輪、31…ピニオン、32…ラック、50…ラック支持部(円筒状の軸受)、51…支持孔、60,60A〜60J…付勢部、61,61A〜61C,61G〜61K…ラックガイド、61a…押し付け面、61Ia…環状溝、62…圧縮コイルばね、64…ラックガイドハウジング、64a…支持用孔、81G…揺動規制部、81Ga81Gb…凸部、81H…揺動規制部、81Ha…充填層、82…Oリング、91…付勢部(板ばね)、Pj…軸受の中心線、Pr…ラック軸の断面中心(ラック軸の中心)、Pp…ピニオンの中心線、Lc…ピニオン直交基準線、Lp…ピニオン平行基準線、r1,r3,r4,r5…押し付け面の円弧状の半径、r2…背面の円弧状の半径、θ…傾き角。

【特許請求の範囲】
【請求項1】
ステアリングホイールを操舵することによって発生した操舵トルクを、前記ステアリングホイールからラックアンドピニオン機構を介して操舵車輪に伝える車両用ステアリング装置において、
前記ラックアンドピニオン機構のラックが形成されているラック軸と、
前記ラックアンドピニオン機構のピニオンの位置に対して前記ラック軸の軸長手方向の両側に位置する2個のラック支持部と、
この2個のラック支持部の間に位置する付勢部とを備え、
前記2個のラック支持部は、操舵の中立位置に位置している状態の前記ラック軸の、前記ラックが形成されている部位の背面のみを、軸長手方向にスライド可能に支持するように、互いに接近して位置し、
前記付勢部の付勢方向は、前記ラック軸を少なくとも前記ラック以外の方向へ付勢することが可能に設定されていることを特徴とする車両用ステアリング装置。
【請求項2】
前記付勢部は、
前記ラック軸の、前記ラックが形成されている部位の前記背面を、軸長手方向にスライド可能に支えるラックガイドと、
このラックガイドを前記背面に向かって付勢する圧縮コイルばねと、からなり、
前記ラックガイドは、前記背面を押し付けるための押し付け面を有し、
この押し付け面は、前記背面のうち、前記ラック軸の中心線に直交し且つ前記ピニオンの中心線に直交するピニオン直交基準線に対して、いずれか一方の面のみに接触可能に形成されていることを特徴とする請求項1記載の車両用ステアリング装置。
【請求項3】
前記ラック軸の少なくとも前記背面は、略円弧状断面に形成され、
前記押し付け面は、前記背面に沿う略円弧状断面に形成され、
前記押し付け面の円弧状の半径は、前記背面の円弧状の半径よりも大きく設定され、
前記押し付け面の中心は、前記ラック軸の中心線に対して、前記ラックの歯幅方向にオフセットしていることを特徴とする請求項2記載の車両用ステアリング装置。
【請求項4】
前記付勢部は、
前記ラック軸の、前記ラックが形成されている部位の前記背面を、軸長手方向にスライド可能に支えるラックガイドと、
このラックガイドを前記背面に向かって付勢する圧縮コイルばねと、からなり、
前記ラックガイドの中心線及び前記圧縮コイルばねの中心線は、前記ラック軸の中心線に直交し且つ前記ピニオンの中心線に直交するピニオン直交基準線に対して、前記ピニオンの軸方向に傾いていることを特徴とする請求項1記載の車両用ステアリング装置。
【請求項5】
前記2個のラック支持部は、円筒状の軸受によって構成され、
前記ラック軸の中心線は、前記軸受の中心線に対して、前記ピニオンから離れる方向にオフセットし且つ前記ピニオンの中心線に沿ってオフセットしていることを特徴とする請求項1から請求項4までのいずれか1項記載の車両用ステアリング装置。
【請求項6】
前記ラック軸の中心線に直交し且つ前記ピニオンの中心線に平行な直線をピニオン平行基準線とし、
前記2個のラック支持部は、円筒状の軸受によって構成され、
前記ラック軸の外周面の同一周上には、前記2個の軸受によって支持することが可能な2個のラック反対側凸部が形成され、
前記2個のラック反対側凸部は、前記ピニオン平行基準線に対して前記ラックとは反対側に位置し、且つ前記ピニオン直交基準線の両側に位置していることを特徴とする請求項4記載の車両用ステアリング装置。
【請求項7】
前記ラック軸の外周面の同一周上には、前記2個の軸受によって支持することが可能な2個のラック接近側凸部が形成され、
この2個のラック接近側凸部は、前記ピニオン平行基準線と前記ラックとの間に位置し、且つ前記ピニオン直交基準線の両側に位置していることを特徴とする請求項6記載の車両用ステアリング装置。
【請求項8】
前記ラック軸は、中空材によって構成され、
前記2個のラック反対側凸部と前記2個のラック接近側凸部とは、前記中空材の内部から径外方へ向かって押し出し成形されることによって形成された部分であることを特徴とする請求項7記載の車両用ステアリング装置。
【請求項9】
前記ラックガイドが前記ピニオン直交基準線周りに揺動することを規制するための揺動規制部を、更に備えていることを特徴とする請求項2記載の車両用ステアリング装置。
【請求項10】
前記ラックガイドは、前記ピニオン直交基準線を中心とする円形状の部材であって、ラックガイドハウジングに収納され、
このラックガイドハウジングは、前記ラックガイドを前記ピニオン直交基準線に沿ってスライド可能に支持することが可能な円形状の支持用孔を有し、
前記揺動規制部は、前記ラックガイドの外周面の周方向に形成されて前記支持用孔の内周面に接触可能な、少なくとも2個の凸部によって構成されていることを特徴とする請求項9記載の車両用ステアリング装置。
【請求項11】
前記ラックガイドは、前記ピニオン直交基準線を中心とする円形状の部材であって、ラックガイドハウジングに収納され、
このラックガイドハウジングは、前記ラックガイドを前記ピニオン直交基準線に沿ってスライド可能に支持することが可能な円形状の支持用孔を有し、
前記揺動規制部は、前記ラックガイドの外周面と前記支持用孔の内周面との間の隙間に充填された、液状パッキン等の粘弾性を有する充填層によって構成されていることを特徴とする請求項9記載の車両用ステアリング装置。
【請求項12】
前記ラックガイドは、前記ピニオン直交基準線を中心とする円形状の部材であって、外周面にOリングを装着するための環状溝が形成されるとともに、ラックガイドハウジングに収納され、
このラックガイドハウジングは、前記ラックガイドを前記ピニオン直交基準線に沿ってスライド可能に支持することが可能な円形状の支持用孔を有し、
前記揺動規制部は、前記環状溝に装着されたOリングによって構成され、
このOリングの外周面は、全周にわたって前記支持用孔の内周面に接していることを特徴とする請求項9記載の車両用ステアリング装置。
【請求項13】
前記環状溝の中心は、前記ラックガイドの中心線に対してオフセットしていることを特徴とする請求項12記載の車両用ステアリング装置。
【請求項14】
前記付勢部は、前記ピニオンを前記ラックに対して噛み合う方向へ付勢していることを特徴とする請求項1記載の車両用ステアリング装置。
【請求項15】
前記ラックは、前記ラック軸に対して歯すじが直交する、すぐ歯であることを特徴とする請求項1から請求項14までのいずれか1項記載の車両用ステアリング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate


【公開番号】特開2012−214192(P2012−214192A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2011−99866(P2011−99866)
【出願日】平成23年4月27日(2011.4.27)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】