説明

速度張力制御装置

【課題】 糸巻ビームの現時点での巻径値が不明でも、その時点における糸巻ビームを含む制御区間にある糸に作用する糸張力を目標糸張力に一致するように調整することができる糸搬送装置の速度張力制御装置を提供することにある。
【解決手段】
この速度張力制御装置によれば、糸張力偏差に基づいて糸巻ビームの巻径を仮想的に調整するための仮想操作量が演算され、その仮想操作量が糸巻ビームの仮想巻径の補正値に換算され、その補正値を前回使用した糸巻ビームの仮想巻径に加算することで新たな仮想巻径が演算出力され、その仮想巻径をD1c[m]、制御区間の糸の基準速度をV0[m/min]としたときに、糸巻ビーム駆動手段への回転数指令N1[rpm]が、次の第1式、即ち、
N1=V0/(πD1c) ……… (第1式)
を満たすように演算出力される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、搬送ラインに沿って搬送される糸に糊付けを行う糸糊付け装置に装備され、所定の搬送ラインに沿って糸を上流側から下流側へ搬送するための糸搬送装置に用いられる制御装置に関するものである。
【背景技術】
【0002】
繊維製品用の糸糊付け装置は、多数の細糸を搬送しながら当該細糸に糊付けを施すものであり、糸を搬送するための糸搬送装置を備えている。この糸搬送装置は、多数の細糸が外周に巻回される送出ビームと、この送出ビームから送り出された多数の細糸に糊付けを施したものを外周に巻回して巻き取る巻取ビームと、これらの送出ビーム及び巻取ビーム間の搬送ライン上に回転可能に複数配設され、多数の細糸が掛架された状態で回転駆動されることで当該細糸を搬送ラインに沿って搬送する複数の搬送ロールとを備えている。
【0003】
この糸糊付け装置によれば、多数の細糸は、送出ビームから送り出され、筬によって整列され、その下流側にあるフィードロールへ搬送され、このフィードロールを介して更に下流側にある糊付け用のサイジングロールへ向けて搬送される。多数の細糸は、サイジングロールによって糊付けされ、熱風乾燥装置の内部へ送り込まれ、この熱風乾燥装置内を通過する間に、細糸に付着した糊表面が熱風によって乾燥させられる。
【0004】
熱風乾燥装置を通過した多数の細糸は、次に、乾燥用の複数のシリンダーロールの外周面に接触した状態で巻き掛けられて搬送される。これらのシリンダーロールは、その内部に供給される蒸気によって加熱されており、これらのシリンダーロールによって、糊付けされた多数の細糸は、所定水分率に仕上げ乾燥される。このシリンダーロールによって乾燥された糸は、次にシリンダーロールの下流側にあるクーリング装置へ搬送され、このクーリング装置を通過することで冷却される。
【0005】
このクーリング装置により冷却された多数の細糸は、その下流側に配設されるテイクアップロールによって巻取ビームへと搬送され、この巻取ビームの外周に巻回されることで巻き取られる。なお、フィードロール、サイジングロール、シリンダーロール及びテークアップロールには、これらの各ロールの外周面に多数の細糸を接触させて搬送するためのガイドロールが付設されている。
【0006】
なお、本明細書では、送出ビーム、巻取ビームを「糸巻ビーム」と総称し、フィードロール、サイジングロール、シリンダーロール、テークアップロールを「搬送ロール」と総称する。
【0007】
また、糸糊付け装置の糸搬送装置には、上記した送出ビーム、フィードロール、サイジングロール、シリンダーロール、テークアップロール、及び、巻取ビームを、それぞれ個別に回転駆動するための複数の駆動サーボモータが装備されており、これらのサーボモータによって各糸巻ビーム及び各搬送ロールが回転駆動されることで、多数の細糸が搬送ライン上に沿って上流側から下流側へ搬送移動されるように構成されている。
【0008】
ところで、このような糸搬送装置を有する糸糊付け装置においては、細糸に作用する張力(以下「糸張力」という。)をできるだけ均一な低張力に調整維持することが求められ、搬送対象である多数の細糸に作用する糸張力を適正値(適正な目標値)に調整することが極めて重要な課題とされている。
【0009】
なぜなら、過大な糸張力が細糸に作用すると、細糸の強伸度が低下して、糸切れの原因となる一方、過小な糸張力が細糸に作用すると、例えば、多数の細糸同士が絡まり合ったり、又は、熱風乾燥装置内で底ずれした結果、細糸の糊落ちや毛羽立ちの原因となるからである。しかも、このような不具合が細糸に生じた場合には、かかる不具合を解消するため、糸糊付け装置の稼働を停止しなければならず、その復旧に多大な労力を要してしまうからである。
【0010】
このため、糸搬送装置については、搬送ラインに沿って搬送される糸の糸張力や伸張量を調整しながら糸を搬送するために各種の制御方式や制御方法が提案されており、その中の一つとして、いわゆる同期比率制御方式が知られている。
【0011】
この同期比率制御方式は、簡潔に言えば、所定の制御区間、例えば、送出ビーム及びフィードロール間(以下「送出区間」という。)、又は、テークアップロール及び巻取ロール間(以下「巻取区間」という。)について、その上流側にある糸巻ビーム又は搬送ロールの回転数と、下流側にある搬送ロール又は糸巻ロールの回転数との回転数比を調整することで、かかる制御区間を所定の速度で移動する糸に所定の糸張力を付与しようとするものである。
【0012】
例えば、この同期比率制御方式によれば、送出ビームの回転数をフィードロールの回転数より小さく、又は、巻取ビームの回転数をテークアップロールの回転数より大きく調整することによって、送出区間または巻取区間を移動する糸にテンション(伸張)が付与され、その結果、送出区間または巻取区間を移動する糸に必要な糸張力が付与されるのである。
【特許文献1】特許3312664号公報
【発明の開示】
【発明が解決しようとする課題】
【0013】
しかしながら、上記した同期比率制御方式では、糸巻ビームの回転数指令を演算する場合に、その糸巻ビームの実際の巻径値が用いられることがあり、かかる糸巻ビームの巻径値が既知である必要がある。この糸巻ビームの巻径は、送出ビームからの糸の送り出しや巻取ビームによる糸の巻き取りに伴って経時的に変化するものであり、一定値ではない。
【0014】
このため、糸張力を目標糸張力に一致させるために、糸巻ビームの適正な回転数指令を演算するには、糸巻ビームの現時点における巻径値を、上記特許文献1に記載するように送出ビームに対して糸の巻き付けを行う前処理工程において予め送出ビームの総回転数と巻径値との相関データを収集したり、或いは、計測器により測定したりする必要がある。
【0015】
特に、前者の送出ビームの総回転数及び巻径値の相関データを収集する方式については、異なる送出ビームについてそれぞれ個別に相関データを収集しなければならず、結果的に作業が極めて煩雑となるという問題点があった。また、後者の巻径値を測定する方式については、例えば、計測器の測定精度が低い場合や計測器による測定環境が劣悪な場合には巻径値の測定誤差に起因した制御性能の低下を招来してしまう恐れがあるという問題点があった。
【0016】
そこで、本発明は、上述した問題点を解決するため、糸巻ビームの現時点での巻径値が不明でも、その時点における糸巻ビームを含む制御区間にある糸に作用する糸張力を目標糸張力に一致するように調整することができる糸搬送装置の速度張力制御装置を提供することを目的としている。
【課題を解決するための手段】
【0017】
この目的を達成するために請求項1の速度張力制御装置は、所定の搬送ライン上に回転可能に配設され外周に糸が巻回される糸巻ビームと、その糸巻ビームのための回転数指令が入力され、この入力された回転数指令を実現するようにその糸巻ビームを回転駆動する糸巻ビーム駆動手段と、その糸巻ビームから所定間隔を隔てて搬送ライン上に回転可能に配設される搬送ロールと、その搬送ロールのための回転数指令が入力され、この入力された回転数指令を実現するようにその搬送ロールを回転駆動する搬送ロール駆動手段とを備えている糸搬送装置に関する制御装置であって、前記糸巻ビームから供給される糸又は前記糸巻ビームにより巻き取られる糸を、当該糸巻ビーム及び搬送ロール間に設定される制御区間にて基準速度V0で搬送し、かつ、その制御区間における糸張力を、目標糸張力に一致するように調整するためのものであり、前記搬送ロールを基準速度V0に相当する回転数にて回転させる回転数指令を生成し、その回転数指令を前記搬送ロール駆動手段へ出力する搬送ロール回転数指令手段と、前記糸巻ビームの巻径が制御量であって当該巻径を前記制御区間における糸張力と目標糸張力との偏差である糸張力偏差に基づいて調整する仮想的な制御系を仮定した場合に、その糸張力偏差が入力量として入力され、その入力量に基づいて前記糸巻ビームの巻径を仮想的に調整するための仮想操作量を演算して出力する仮想操作量演算手段と、その仮想操作量演算手段から出力される仮想操作量を前記糸巻ビームの仮想巻径の補正値である仮想巻径補正値に換算し、その仮想巻径補正値を前回使用した前記糸巻ビームの仮想巻径に加算することで、新たな仮想巻径を演算して出力する仮想巻径演算手段と、その仮想巻径演算手段から出力される仮想巻径をD1c[m]、円周率をπ、前記制御区間における糸の基準速度をV0[m/min]としたときに、前記糸巻ビーム駆動手段への回転数指令N1[rpm]を、次の第1式、即ち、
N1=V0/(πD1c) ……………………………………………… (第1式)
を満たすように演算し、その回転数指令N1を前記糸巻ビーム駆動手段へ出力する糸巻ビーム回転数指令手段とを備えている。
【0018】
この請求項1の速度張力制御装置によれば、制御区間にある糸を基準速度V0で搬送する場合、搬送ロールを回転させるための回転数指令として基準速度V0に相当する回転数が、搬送ロール回転数指令手段により演算されて、搬送ロール駆動手段へ出力される。この搬送ロール駆動手段によって、搬送ロールは、基準速度V0に相当する回転数で回転駆動される。
【0019】
また、糸が搬送ロールによって制御区間を基準速度V0で搬送される場合に、その糸に目標糸張力を加えるには、糸巻ビームの回転数を、搬送ロールの回転数(基準速度V0に相当する回転数)に比べて、制御区間の糸張力偏差に相当する分だけ減少させ、これによって、糸巻ビームによる糸の送り出し量と搬送ロールによる糸の搬送量との間に差を与えて、制御区間にある糸を伸張させる必要がある。
【0020】
ここで、糸巻ビームが搬送ロールと同様に基準速度V0に相当する回転数で回転されるとき、即ち、制御区間の糸に糸張力が加わらない状態(糸張力がゼロの状態)のときを考えると、糸巻ビームによる糸の送り速度(単位時間当たりの糸送り長さ)は基準速度V0と一致することなる。
【0021】
そうした場合に、基準速度V0で糸を送り出している糸巻ビームの回転数[rpm]をN1V0=0としたとき、この回転数N1V0=0は、次式(1)、即ち、
N1V0=0=V0/(πD1) ……………………………………………… (1)
の関係を満たすこととなる。
【0022】
ただし、上記式(1)において、V0は基準速度[m/min]、πは円周率、D1は糸巻ビームの実際の巻径[m]、πD1は糸巻ビームの円周長さ[m]である。
【0023】
これに対し、制御区間の糸張力が目標糸張力に等しいときにおける糸巻ビームの回転数(以下「目標回転数」という。)[rpm]をN1refとしたとき、この目標回転数N1refは、次式(2)、即ち、
N1ref =κV0/(πD1)
=V0/(π(D1/κ)) …………………………………… (2)
の関係を満たすものとなる。
【0024】
ただし、上記式(2)において、κ(=N1ref/N1V0=0)は、糸巻ビームの目標回転数N1refを、糸巻ビームから基準速度V0で糸が送り出されるときの糸巻ビームの回転数N1V0=0で割り算した比率(以下「回転数比」という。)である。
【0025】
つまり、上記(2)式を演算すれば、形式上は、制御区間の糸張力偏差がゼロとなるような糸巻ビームの回転数指令が求められることとなる。
【0026】
ところが、糸巻ビームの実際の巻径D1は、糸の送り出し量(長さ)に応じて時々刻々と変化する変数であり、糸の搬送中に逐次計測しなければならない。しかも、このような計測は極めて煩雑であり、当然に計測誤差が伴ってしまう。
【0027】
そこで、本発明では、上記式(2)中のD1/κの部分、即ち、糸巻ビームの実際の巻径D1を上記した回転数比κで割り算したものを、糸巻ビームの仮想的な巻径である仮想巻径D1c[m]と考えて、この仮想巻径D1cを仮想的に調整することによって、糸巻ビームの回転数指令N1を求める方式又は方法を採用している。
【0028】
具体的には、糸巻ビームの回転数指令N1[rpm]は、糸巻ビーム回転数指令手段によって、次式(3)、即ち、
N1=V0/(πD1c) …………………………………………………… (3)
を満たすように演算される。
【0029】
また、上記式(3)における糸巻ビームの仮想巻径D1cは、以下のようにして演算される。
【0030】
ここで、仮想巻径D1cの演算手段は、糸巻ビームの仮想巻径Dc1を仮想的な制御量とする仮想的な制御系を構成しており、当該仮想巻径D1cを制御区間の糸張力偏差に基づいて仮想的に調整するものであり、主に、仮想操作量演算手段と、仮想巻径演算手段とを備えている。
【0031】
この仮想操作量演算手段は、制御区間の糸張力偏差が入力量として入力され、その入力量に基づいて糸巻ビームの仮想巻径D1cの操作量(変更量)である仮想操作量を演算して出力するものであり、上記した仮想的な制御系の制御器(制御要素)に相当するものである。
【0032】
また、仮想巻径演算手段は、上記した仮想的な制御系の制御対象(プラント)に相当するものであり、仮想操作量演算手段から出力される仮想操作量を糸巻ビームの仮想巻径D1cの補正値である仮想巻径補正値に換算し、その仮想巻径補正値を前回使用した糸巻ビームの仮想巻径D1cに加算することで、新たな仮想巻径D1cを演算して出力するものである。
【0033】
この仮想巻径演算手段により演算出力される新たな仮想巻径D1cが糸巻ビーム回転数指令手段へ入力されると、この仮想巻径D1cに基づいて、上記した式(3)によって、糸巻ビームの回転数指令N1が演算されて、糸巻ビーム駆動手段へ出力される。この糸巻ビーム駆動手段によって、糸巻ビームは、入力された糸巻ビームの回転数指令N1を実現するように回転駆動される。
【0034】
さすれば、糸巻ビームの回転数は、基準速度V0に相当する回転数から制御区間の糸張力偏差に相当する分だけ増減された回転数、即ち、目標回転数N1refに一致するように変更され、この糸巻ビームの回転数の変更によって、制御区間を基準速度V0で搬送される糸の糸張力が目標糸張力に一致するように制御される。
【0035】
請求項2の速度張力制御装置は、請求項1の速度張力制御装置において、前記仮想操作量演算手段は、前記制御区間の糸張力偏差が入力されることによって、前記糸巻ビームの巻径の仮想操作量を演算して出力するPI制御器又はPID制御器などのプロセス制御器である。
【0036】
このため、仮想操作量演算手段は、PI制御器やPID制御器などのように産業界で幅広く用いられているプロセス制御器によって実現されるので、比較的容易に制御パラメータの決定をすることもでき、かつ、容易に制御系のロバスト安定性も確保できる。
【0037】
請求項3の速度張力制御装置は、請求項1又は2の速度張力制御装置において、前記仮想巻径演算手段は、離散時間系の時刻をk、前記仮想操作量演算手段により演算される仮想操作量をΔMV(k)としたときに、前記糸巻ビームの仮想巻径D1c(k)[m]を、次の第2式、即ち、
D1c(k)=(1+ΔMV(k))D1c(k−1) ……………… (第2式)
を満たすように算出するものであり、
前記糸巻ビーム回転数指令手段は、前記仮想巻径演算手段により演算される仮想巻径D1c(k)[m]、及び、糸の基準速度V0[m/min]を用いるとともに、円周率をπとしたときに、前記糸巻ビーム駆動手段への回転数指令N1(k)[rpm]を、次の第3式、即ち、
N1(k)=V0/(πD1c(k)) ……………………………… (第3式)
を満たすように算出し、その回転数指令N1(k)を前記糸巻ビーム駆動手段へ出力するものである。
【0038】
請求項4の速度張力制御装置は、請求項1から3のいずれかの速度張力制御装置において、前記糸張力偏差演算手段は、離散時間系の時刻をk、前記制御区間を移動する糸の糸張力をf(k)、その制御区間を移動する糸の目標糸張力をf0としたときに、これらの偏差である糸張力偏差e(k)を、次の第4式、即ち、
e(k)=f0−f(k) ………………………………………………… (第4式)
を満たすように算出するものであり、
前記仮想操作量演算手段は、前記糸張力偏差演算手段により演算された糸張力偏差e(k)を用い、かつ、比例ゲインをKp、微分時間をTd、積分時間をTiとしたときに、前記糸巻ビームの巻径に対する仮想操作量ΔMV(k)を、次の第5式、即ち、
ΔMV(k)=Kp{e(k)−e(k−1)}
+KpTd{e(k)−2e(k−1)−e(k−2)}
+(Kp/Ti)e(k) ……………………………… (第5式)
を満たすように算出するものである。
【0039】
請求項5の速度張力制御装置は、請求項1から4のいずれかの速度張力制御装置において、前記糸巻ビーム駆動手段は、前記糸巻ビームを回転させる駆動力を付与する駆動サーボモータと、その駆動サーボモータの回転制御を行うためのモータ制御器とを備えており、そのモータ制御器は、離散時間系の時刻をk、制御周期をΔt[sec]、前記糸巻ビームの回転数指令をN1(k)[rpm]、前記駆動サーボモータから前記糸巻ビームへの駆動力の伝達比をγ1、円周率をπ、1パルス分の駆動パルスによる前記駆動サーボモータの回転角度をδθ1[rad]、駆動パルスの発生する時間間隔であるパルス間隔をτ1[sec]としたときに、そのパルス間隔τ1を、次の第6式、即ち、
τ1=δθ1Δt/(2πγ1N1(k)Δt) …………………… (第6式)
を満たすように演算し、このパルス間隔τ1で駆動パルスを制御周期Δtに等しい時間発生させて、この駆動パルスの信号列に基づいて前記駆動サーボモータを回転させることで、前記糸巻ビームを回転数指令N1(k)で回転させるものである。
【0040】
このように、駆動サーボモータは、実質的にパルス制御によって駆動制御されるので、速度制御やトルク制御を用いる場合のように大重量の糸巻ビームの回転に伴う慣性力に起因した制御性能の低下が防止される。
【0041】
つまり、速度制御系やトルク制御系による場合は、糸巻ビームが概ね200kgf以上もある大重量物であることから、かかる糸巻ビームの慣性力の影響がその他の要素(減衰性や弾性)に比べて大きくなる結果、糸張力やストレッチ率の速応性を重視すると定常偏差が増加したり減衰性が低下し、逆に、糸張力又はストレッチ率の定常偏差や減衰性を重視すると速応性が低下してしまうが、パルス制御による場合は、これらの制御性能の低下が回避される。
【0042】
このため、例えば、糸巻ビームに糸太さ10〜30デニールの約1000本程度の極細糸が巻回された状態であっても、これらの糸を約20〜50Nmの糸張力を加えて安定的に搬送することが十分に可能となるのである。
【0043】
なお、請求項1から5のいずれかの速度張力制御装置において、前記搬送ロール回転数指令手段は、離散時間系の時刻をk、円周率をπ、前記搬送ロールの外径をD2[m]としたときに、糸の基準速度V0[m/min]を用いて、前記搬送ロールの回転数指令N2(k)[rpm]を、次の第7式、即ち、
N2(k)=V0/(πD2) ………………………………………… (第7式)
を満たすように算出し、その回転数指令N2(k)を前記搬送ロール駆動手段へ出力するものであっても良い。
【発明の効果】
【0044】
本発明の速度張力制御装置によれば、糸巻ビームの巻径が糸の搬送状態に伴って経時的に変化するような場合でも、かかる糸巻ビームの回転数指令を演算するにあたって、糸巻ビームの現時点における巻径値を計測器により測定する必要がないので、測定誤差に起因した制御性能の低下を回避できるという効果がある。しかも、糸巻ビームの巻径を推定するために、予め糸巻ビームの総回転数と巻径値との相関データを個々の糸巻ビーム毎に収集する手間も省略でき、作業効率を向上できるという効果がある。
【発明を実施するための最良の形態】
【0045】
以下、本発明の好ましい実施例について、添付図面を参照して説明する。図1は、本発明の一実施例である制御装置20を備えた繊維糸用の糊付け装置1の構成を示した概略図である。この糊付け装置1は、いわゆるサイザーと呼ばれるものであり、糸に糊付けを施す装置である。なお、搬送ラインは、図1中に図示した糸λの軌跡に相当するものであり、図1では糸λと一致している。
【0046】
図1に示すように、糊付け装置1は、糸λの搬送ライン上に配設される複数の回転体11〜19を回転させることによって、この搬送ラインに沿って上流側(図1左側)から下流側(図1右側)へと多数の糸λを搬送する搬送装置2を備えており、多数の糸λを搬送する過程で、これらの糸λに対し、糊付け、乾燥および冷却を施した後、これらの糸λを巻き取って回収するものである。
【0047】
なお、この搬送装置2は、多数の糸λを図1の紙面に対する垂直方向に並列させた状態で同時搬送する構造となっている(図示せず。)。
【0048】
送出ビーム11は、上記した搬送装置2の回転体11〜19の一つであり、糸λの搬送ラインの最上流側(図1左側)に回転可能に配設されている。この送出ビーム11は、その外周に多数の糸λが巻回可能に形成されており、巻回された糸λは、この送出ビーム11の回転によって搬送ラインの下流側へ送出される。
【0049】
また、送出ビーム11の下流側には、筬(図示せず)、テンションロール17、フィードロール12、サイジングロール13、熱風乾燥装置3、複数のシリンダーロール14,14,・・・、クーリング装置4、テークアップロール15、テンションロール18及び巻取ビーム16が、この順番で糊付け装置1の搬送ライン上に配設されている。
【0050】
フィードロール12、サイジングロール13、各シリンダーロール14,14,・・・、テークアップロール15及びテンションロール17,18は、上記した搬送装置2の回転体11〜19に含まれるものであり、いずれも搬送ライン上に回転可能に配設されている。これらの回転体11〜18の回転によって、送出ビーム11から送出された糸λが搬送ラインに沿って搬送される。
【0051】
なお、フィードロール12、サイジングロール13、第1段目及び第5段目のシリンダーロール14,14、テークアップロール15、及び、各テンションロール17,18には、それらの外周面に多数の糸λを接触させて搬送するため、ガイドロール19,19,・・・が回転可能な状態で付設されている。各ガイドロール19は、搬送装置2の回転体11〜19の一つである。
【0052】
巻取ビーム16は、上記した搬送装置2の回転体11〜19の一つであり、搬送ラインの最下流側(図1右側)に回転可能に配設されている。この巻取ビーム16は、その外周に多数の糸λが巻回可能に形成されており、糊付け、乾燥および冷却の各処理が施された糸λは、この巻取ビーム16の回転に伴って巻取ビーム16の外周に巻回されて巻き取られる。
【0053】
テンションロール17は、搬送ライン上における送出ビーム11とフィードロール12との間の区間(以下「送出区間」という。)7に配設されており、このテンションロール17の回転軸の端部にはロードセル5が連結されている。このロードセル5は、送出区間7内にある糸λに作用する糸張力を検出するための張力センサ(張力検出手段)である。
【0054】
テンションロール18は、搬送ライン上におけるテークアップロール15と巻取ビーム16との間の区間(以下「巻取区間」という。)8に配設されており、このテンションロール18の回転軸の端部には別のロードセル6が連結されている。このロードセル6は、巻取区間8内にある糸λに作用する糸張力を検出するための張力センサである。
【0055】
ところで、送出ビーム11、フィードロール12、サイジングロール13、各シリンダーロール14,14,・・・、テークアップロール15、及び、巻取ビーム16は、いずれもサーボモータM1〜M6から付与される回転力(駆動力)によって回転駆動される原動型の回転体(以下「原動体」ともいう。)DBである。
【0056】
具体的には、送出ビーム11がサーボモータM1によって、フィードロール12がサーボモータM2によって、サイジングロール13がサーボモータM3によって、複数のシリンダーロール14,14,・・・がサーボモータM4によって、テークアップロール15がサーボモータM5によって、巻取ビーム16がサーボモータM6によって、それぞれ回転駆動されるように構成されている。
【0057】
なお、以下の説明において、サーボモータM1のことを送出モータM1、サーボモータM2のことをフィードモータM2、サーボモータM5のことをテークアップモータM5、サーボモータM6のことを巻取モータM6ともいう。
【0058】
これに対し、各テンションロール17,18やガイドロール19,19,・・・などは、サーボモータM1〜M6によって直接的に回転駆動されない従動型の回転体(以下「従動体」ともいう。)FBであって、搬送移動される糸λとの摩擦接触、又は、いずれかの原動体との摩擦接触を介して回転されるものである。
【0059】
原動体DB(シリンダーロール14を除く。)は、その回転軸が伝達機構(図示せず。)を介して各サーボモータM1〜M3,M4,M5と連結されている。また、複数のシリンダーロール14,14,・・・は、その回転軸が伝達機構(図示せず。)を介して1台のサーボモータM4と連結され、このサーボモータM4から付与される回転力が各シリンダーロール14に分岐伝達されることで同期回転される。
【0060】
また、各サーボモータM1〜M6の回転軸には、パルスエンコーダ(ロータリーエンコーダ)EN1〜EN6がそれぞれ連結されている。パルスエンコーダEN1〜EN6は、サーボモータM1〜M6の回転軸の回転数を検出するための回転センサであり、下記する制御装置20は、これらのパルスエンコーダEN1〜EN6による検出結果に基づいて各原動体DBを回転制御し、結果、糸λの搬送速度、糸張力を調整する。
【0061】
図2は、制御装置20を備えた糊付け装置1の電気的構成を示すブロック図である。図2に示すように、糊付け装置1は、その各部の動作の制御を行う制御装置20を備えており、この制御装置20の内部には、演算装置であるCPU21が搭載されている。このCPU21は、一定の制御周期(サンプリング周期)Δt[sec]毎に制御演算を行い、糊付け装置1の各部に対する制御指令を更新するものである。
【0062】
この制御装置20は、その内部に下記する搬送ロール駆動制御ユニット40、及び、糸巻ビーム駆動制御ユニット50が構成されており、これらの各駆動制御ユニット40,50には離散時間コントローラにより連続時間プラントを制御するサンプル値制御方式が用いられている。よって、これらの駆動制御ユニット40,50には、図3及び図6では図示を省略してはいるが、実際にはサンプラ及びホールド要素(サンプルホールド)が含まれる。
【0063】
また、制御装置20のCPU21は、制御周期Δt毎にタイマー割込処理を実行して、糊付け装置1の各部に対する制御指令を出力する。ここで、制御周期Δtは、離散時間系の時刻k(k=1,2,…)から時刻k+1までの時間間隔である。したがって、実際の時刻tはt=kΔtによって表される。なお、本実施例では、制御周期Δtとして、例えば略10μsecを用いることができる。
【0064】
さらに、制御装置20の内部には、基本プログラムや各種の固定データを記憶した書換え不能な不揮発性メモリであるROM22と、CPU21により演算される各種データを一時的に記憶したり各種プログラムを展開するためのワークエリアとなる書換可能な揮発性メモリであるRAM23と、設定変更可能な各種データや、糊付け装置1の各部を制御する各種制御プログラムを記憶する書換可能な不揮発性メモリであるEEPROM24とが搭載されている。
【0065】
このEEPROM24には、例えば、原動体11〜16の回転数や糸λの糸張力などを調整する各種処理を実行するための制御プログラムが記憶されており、これらの制御プログラムは、RAM23上に展開されて実行される。この制御プログラムの中には、制御装置20を構成するハードウェアと協働して搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50として機能する制御プログラムも含まれている。
【0066】
また、EEPROM24には、後述する糊付け装置1の各部の制御に必要な各種のパラメータ値が記憶されており、特に、搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50による制御において用いられる各種の制御パラメータ(数値データ)が設定記憶されている。
【0067】
例えば、後述する搬送装置2の設定速度Vset、各原動体11〜16の加速時間及び減速時間、制御周期Δt、伝達比γ1,γ2、単位パルス回転角度δθ1,δθ2、円周率π、比例ゲインKpm、目標糸張力f0、仮想操作量演算器53で用いられる比例ゲインKp、微分時間Td及び積分時間Tiなどが、EEPROM24には記憶されている。
【0068】
さらに、EEPROM24には、熱風乾燥装置3の設定温度、各シリンダーロール14,14,・・・の設定温度、及び、クーリング装置4の設定温度等の数値データも記憶されている。
【0069】
また、これらの他にも制御装置20には、各種の設定値を入力するために操作される操作表示パネル25、熱風乾燥装置3の加熱装置3a、各シリンダーロール14,14,・・・の加熱装置14a、クーリング装置4の冷却装置4a、熱風乾燥装置3内の温度を検出する温度センサTS1、各シリンダーロール14,14,・・・内の温度を検出する温度センサTS2、クーリング装置4内の温度検出する温度センサTS3などが、それぞれ接続されている。
【0070】
操作表示パネル25は、ディスプレイ機能を有したタッチパネルであり、糊付け装置1の稼働状況を示す各種情報が画面上に表示可能となっている。また、この操作表示パネル25が操作されることによって、上記したEEPROM24に記憶される各種の数値データが入力設定される。
【0071】
また、制御装置20には、上記したロードセル5,6、6個のパルスエンコーダEN1〜EN6、及び、6台のサーボモータM1〜M6も、それぞれ接続されている。さらに、制御装置20の内部にはサーボアンプ31〜36が内蔵されており、これらが各サーボモータM1〜M6と個々に接続されている。各サーボモータM1〜M6は、各サーボアンプ31〜36から出力される3相電圧に応じて回転駆動される。
【0072】
なお、サーボモータM1はサーボアンプ31によって、サーボモータM2はサーボアンプ32によって、サーボモータM3はサーボアンプ33によって、サーボモータM4はサーボアンプ34によって、サーボモータM5はサーボアンプ35によって、サーボモータM6はサーボアンプ36によって、それぞれ駆動される。
【0073】
次に、図3から図6を参照して、糊付け装置1の送出区間7を移動する糸λに関する搬送速度及び糸張力を調整する制御要素、即ち、搬送ロール駆動制御ユニット40と、糸巻ビーム駆動制御ユニット50とについて説明する。
【0074】
(A)搬送ロール駆動制御ユニット
図3は、搬送ロール駆動制御ユニット40について示したブロック図である。この搬送ロール駆動制御ユニット40は、フィードロール12の回転駆動制御を行うために制御装置20の内部に構成されるものである。
【0075】
図3に示すように、搬送ロール駆動ユニット40は、主として、搬送ロール制御器41と、フィードロール12を回転させる駆動力を付与するフィードモータM2と、そのフィードモータM2を搬送ロール制御器41からの指令に基づいて駆動するサーボアンプ32とを備えている。
【0076】
(A−1)搬送ロール制御器
搬送ロール制御器41は、フィードロール12の回転駆動を制御するための制御器であって、基準速度生成器42と、基準回転数指令器43と、パルス発生器44とを備えている。
【0077】
(A−1−1)基準速度生成器
基準速度生成器42は、搬送装置2による糸λの搬送速度の設定値である設定速度Vset[m/min]に従って、フィードロール12の加速時、減速時および定常運転時における基準速度V0(k)(加減速カーブ)[m/min]を生成して基準回転数指令器43へ出力するものである。
【0078】
この基準速度生成器42によれば、搬送装置2の設定速度Vset、加速時間及び減速時間に基づいて、フィードロール12の基準速度V0(k)が生成されて基準回転数指令器43へ出力される。なお、定常運転時におけるフィードロール12による糸λの送り速度(搬送速度)は、搬送装置2の設定速度Vsetと一致する。
【0079】
(A−1−2)基準回転数指令器
基準回転数指令器43は、その入力端が基準速度生成器42の出力端と接続されており、この基準速度生成器42から入力される基準速度V0(k)に基づいて、基準回転数指令N2(k)[rpm]を生成してパルス発生器44へ出力するものである。この基準回転数指令N2(k)は、制御周期Δtの間にフィードロール12が出力すべき回転数の指令値であって、基準速度V0(k)に基づいて決定される。
【0080】
具体的には、フィードロール12の外径(一定値)をD2[m]、円周率をπとしたとき、基準回転数指令N2(k)は、基準速度V0(k)を用いて、次式(4)を満たすように演算される。
N2(k)=V0(k)/(πD2) ……………………………………… (4)
【0081】
(A−1−4)パルス発生器
パルス発生器44は、その入力端が基準回転数指令器43の出力端と接続されており、この基準回転数指令器43から基準回転数指令N2(k)が入力される。このパルス発生器44は、入力されるフィードロール12の基準回転数指令N2(k)に基づいて、その回転動力源であるフィードモータM2を回転させるための駆動パルス信号列(以下「基準パルス指令」という。)PL2(k)を生成して、サーボアンプ32(の偏差カウンタ30a)へ出力するものである。
【0082】
なお、図4は、本実施例における駆動パルス信号列PL(k)の概念図である。この図4に示すように、駆動パルス信号列PL(k)は、離散時間系の時刻kから時刻k+1までの時間間隔に等しい制御周期Δtの間に、駆動パルスPがパルス間隔τ[sec]毎に立ち上がる信号列である。なお、「駆動パルス信号列PL(k)」とあるのは、上記した基準パルス指令PL2(k)又は下記するビームパルス指令PL1(k)を意味しており、「パルス間隔τ」とあるのは、下記するフィードモータM2に関するパルス間隔τ2及び送出モータM1に関するパルス間隔τ1を意味している。
【0083】
このパルス発生器44によれば、フィードロール12を基準回転数指令N2(k)に等しい回転数で制御周期Δtの間回転させるため、次式(5)に基づいて、基準回転数指令N2(k)がフィードモータM2の回転数指令Nm2(k)[rpm]に換算される。ここで、γ2は、フィードモータM2からフィードロール12への駆動力の伝達比である。
Nm2(k)=γ2N2(k) …………………………………………… (5)
【0084】
そして、このフィードモータM2の回転数指令Nm2(k)に相当する数の駆動パルスを制御周期Δt内に含んだ駆動パルス信号列が、基準パルス指令PL2(k)として生成される。
【0085】
具体的には、まず、制御周期Δt、基準回転数指令N2(k)、円周率π、1パルス分の駆動パルスによるフィードモータM2の単位パルス回転角度δθ2[rad]を用いて、駆動パルスの発生時間間隔であるパルス間隔τ2[sec]が、次式(6)に基づいて演算される。
τ2=δθ2Δt/(2πγ2N2(k)Δt) ………………………… (6)
【0086】
さすれば、制御周期Δtに等しい時間が経過するまで、パルス発生器44によって、そのパルス間隔τ2毎に駆動パルスの発生が繰り返されることで、基準パルス指令PL2(k)がサーボアンプ32の偏差カウンタ30aへ出力される。
【0087】
なお、上記した伝達比γ2の導出方法を例示すると、以下のようになる。例えば、糸λの基準速度V0が設定速度Vsetと等しくて当該設定速度Vset=100m/minで、フィードモータM2の最大回転数N2maxが4200rpmで、フィードロール12の外径がD2=0.2mである場合、フィードロール12の必要回転数N2は159.2rpm(≒100/(π×0.2))となり、かかる値とフィードモータM2の最大回転数との比、即ち、伝達比γ2(=N2max/N2)は26.4rpm(≒4200/159.2)となる。
【0088】
(A−2)サーボアンプ
図5は、サーボアンプ30の内部構造を示すブロック図である。ここで、以下に説明するサーボアンプ30は、上記した送出モータM1用のサーボアンプ31及びフィードモータM2用のサーボアンプ32として用いられるものであり、このサーボアンプ30の内部構造についての説明は、実質的にはサーボアンプ31、サーボアンプ32の内部構造を説明したものである。
【0089】
図5に示すように、サーボアンプ30は、主に、偏差カウンタ30aと、位置制御器30bと、速度制御器30cと、電流制御器30dとを備えている。なお、以下の説明中において、「サーボモータM」とあるのは、送出モータM1又はフィードモータM2を意味しており、「パルスエンコーダEN」とあるのは、送出モータM1用のパルスエンコーダEN1又はフィードモータM2用のパルスエンコーダEN2を意味している。
【0090】
(A−2−1)偏差カウンタ
偏差カウンタ30aは、その入力端が搬送ロール制御器41のパルス発生器44の出力端(図3参照。)とサーボモータM用のパルスエンコーダENの出力端とにそれぞれ接続されており、その出力端が位置制御器30bの入力端と接続されている。
【0091】
この偏差カウンタ30aによれば、搬送ロール制御器41のパルス発生器44(図3参照。)から入力される基準パルス指令PL(k)のパルス数が計数され、そのパルス数に相当するサーボモータMの回転角度指令Δθm(k)(=サーボモータMの単位パルス回転角度δθ2×基準パルス指令PL(k)のパルス数)が演算される。
【0092】
また、偏差カウンタ30aによれば、サーボモータMに連結されるパルスエンコーダENから入力されるパルス信号列PL(k)のパルス数が計数され、サーボモータMの実際の回転量(以下「検出回転量」ともいう。)Δθm(k)が検出される。そして、このサーボモータMに関する検出回転量Δθm(k)と上記した回転量指令Δθm(k)との偏差Em(k)(=Δθm(k)−Δθm(k))が演算されて位置制御器30bへ出力される。
【0093】
(A−2−2)位置制御器
位置制御器30bは、その入力端が偏差カウンタ30aの出力端と接続されており、この偏差カウンタ30aから入力される偏差Em(k)に基づいて、サーボモータMの速度指令vm(k)を、次式(7)に基づいて演算して出力するものである。但し、Kpmは、位置制御器30bの比例ゲインである。
vm(k)=KpmEm(k) …………………………………………… (7)
【0094】
(A−2−3)速度制御器
速度制御器30cは、その入力端が位置制御器30bの出力端と接続されており、この位置制御器30bから入力されるサーボモータMの速度指令vm(k)に基づいて、モータ電流指令im(k)を演算し、このモータ電流指令im(k)を電流制御器30dへ出力するものである。
【0095】
ここで、速度制御器30cとしては、例えば、PID制御器が用いられており、かかる制御器に含まれる比例制御要素や積分制御要素及び微分制御要素の比例ゲイン、積分時間及び微分時間などの制御パラメータ値は、操作表示パネル25の操作によって、上記したEEPROM24に入力設定及び設定変更可能となっている。なお、速度制御器30cとしてPI制御器を用いても良い。
【0096】
(A−2−4)電流制御器
電流制御器30dは、その入力端が速度制御器30cの出力端と接続されており、この速度制御器30cから入力されるモータ電流指令im(k)に基づいて、所定の3相電圧をサーボモータMに印加することによってサーボモータMを回転駆動させるものである。
【0097】
以上のように構成される搬送ロール駆動制御ユニット40によれば、搬送ロール制御器41によって、フィードロール12を基準速度V0(k)に相当する回転数にて回転させるための基準回転数指令N2(k)が生成され、この基準回転数指令N2(k)に等しい回転数で回転するようにフィードロール12がサーボアンプ32によって制御される。すると、フィードロール12による糸λの搬送速度は、基準速度V0(k)に一致するように調整される。
【0098】
(B)糸巻ビーム駆動制御ユニット
図6は、糸巻ビーム駆動制御ユニット50について示したブロック図である。この糸巻ビーム駆動制御ユニット50は、送出ビーム11の回転駆動制御を行うために制御装置20の内部に構成されるものである。
【0099】
図6に示すように、糸巻ビーム駆動制御ユニット50は、主として、糸巻ビーム制御器51と、送出ビーム11を回転させる駆動力を付与する送出モータM1と、その送出モータM1を糸巻ビーム制御器51からの指令に基づいて駆動するサーボアンプ31とを備えている。
【0100】
(B−1)糸巻ビーム制御器
糸巻ビーム制御器51は、送出ビーム11の回転駆動を制御するための制御器であって、糸張力偏差演算器52と、仮想操作量演算器53と、仮想巻径演算器54と、糸巻ビーム回転数指令器55と、パルス発生器56とを備えている。
【0101】
(B−1−1)糸張力偏差演算器
糸張力偏差演算器52には、制御区間である送出区間7を移動する糸λに作用させるべき目標糸張力f0と、送出区間7を移動する糸λに作用する糸張力(以下「検出糸張力」ともいう。)f(k)とが、それぞれ入力されている。この糸張力偏差演算器52は、目標糸張力f0と検出糸張力f(k)との偏差(以下「糸張力偏差」という。)e(k)を、次式(8)に基づいて演算し、
e(k)=f0−f(k) ……………………………………………………… (8)
これを仮想操作量演算器53へ出力するものである。
【0102】
ここで、送出区間7の検出糸張力f(k)は、送出区間7に配設されるロードセル5によって検出される検出信号を、アンプ57により増幅してA/D変換器58により検出糸張力を示すデータ値に変換したものであり、このA/D変換器58から糸張力偏差演算器52へ入力される。
【0103】
(B−1−2)仮想操作量演算器
仮想操作量演算器53は、その入力端が糸張力偏差演算器52の出力端と接続されており、この糸張力偏差演算器52からの入力量である糸張力偏差e(k)に基づいて、仮想操作量ΔMV(k)を演算し、その仮想操作量ΔMV(k)を仮想巻径演算器54へ出力するものである。
【0104】
ここで、仮想操作量ΔMV(k)は、糸張力偏差e(k)を入力量とし、かつ、送出ビーム11についての仮想的な巻径(以下「仮想巻径」という。)D1c(k)[m]を制御量とする仮想的な制御系(以下「仮想制御系」という。)を想定した場合において、かかる仮想巻径D1cを仮想的に調整するための操作量である。
【0105】
本実施例では、仮想操作量演算器53としてデジタルPID制御器が用いられており、仮想操作量ΔMV(k)は、糸張力偏差演算器52から入力される糸張力偏差e(k)、比例ゲインKp、微分時間Td、積分時間Tiを用いて、次式(9)に基づいて演算される。
ΔMV(k)=Kp{e(k)−e(k−1)}
+KpTd{e(k)−2e(k−1)−e(k−2)}
+(Kp/Ti)e(k) ……………………………………… (9)
【0106】
ただし、送出区間7に関する仮想操作量演算器53によって仮想操作量ΔMV(k)を求める場合、上記式(9)における比例ゲインKpが正数値とされる(Kp>0)。これは、送出区間7における糸張力偏差e(k)が正値のとき、仮想的な送出ビーム11の仮想巻径D1c(k)を増加させることで、送出区間7を移動する糸の糸延伸量が増加され、かかる送出区間7における糸張力f(k)が目標糸張力f0に一致するように増加されるという搬送装置2の構造的特徴から、仮想操作量ΔMV(k)を下記式(10)において仮想巻径D1c(k)を増加させる要素として機能させるためである。
【0107】
なお、本実施例では、仮想操作量演算器53としてデジタルPID制御器を用いたが、かかる仮想操作量演算器53は必ずしもこれに限定されるものではなく、サンプル値制御方式を用いたものであれば異なるもの、例えば、デジタルPI制御器又はその他のプロセス制御器を用いるようにしても良い。
【0108】
(B−1−3)仮想巻径演算器
仮想巻径演算器54は、その入力端が仮想操作量演算器53の出力端と接続されており、この仮想操作量演算器53から入力される仮想操作量ΔMV(k)に基づいて仮想巻径D1c(k)を演算し、その仮想巻径D1c(k)を糸巻ビーム回転数指令器55へ出力するものである。
【0109】
この仮想巻径演算器54によれば、仮想巻径D1(k)は、仮想操作量ΔMV(k)、及び、この仮想巻径演算器54により前回演算された仮想巻径D1c(k−1)を用いることで、次式(10)に基づいて演算される。
D1c(k)=(1+ΔMV(k))D1c(k−1) ………………… (10)
【0110】
つまり、今回演算される新たな仮想巻径D1c(k)は、仮想操作量演算器53から入力される仮想操作量ΔMV(k)を送出ビーム11の仮想巻径D1c(k)の補正値である仮想巻径補正値ΔMV(k)D1c(k−1)に換算し、この換算値に前回演算した送出ビーム11の仮想巻径D1c(k−1)を加算することで算出される。
【0111】
ところで、時刻がk=0の場合、即ち、初期状態の場合、前回演算した送出ビーム11の仮想巻径D1c(−1)=0mとなるので、予め、EEPROM24に仮想巻径D1c(0)の値を設定する必要がある。そこで、かかる仮想巻径の初期値であるD1c(0)については、以下のようにして導出している。
【0112】
例えば、初期状態(未使用状態)の送出ビーム11の巻径D10を実測し、その巻径実測値D10を目標糸張力f0に相当するストレッチ率εの分だけ増加させた値を、仮想巻径初期値D1c(0)(=(1+ε)D10)として設定するのである。
【0113】
具体的には、初期状態の送出ビーム11の巻径実測値がD10=0.6mであって、目標糸張力f0に相当するストレッチ率がε=0.01(=1%)であるなら、仮想巻径初期値はD1c(0)=0.606m(=(1+0.01)×0.6)に設定されることとなる。
【0114】
(B−1−4)糸巻ビーム回転数指令器
糸巻ビーム回転数指令器55は、その入力端が仮想巻径演算器54の出力端と搬送ロール制御器41の基準速度生成器42の出力端とにそれぞれ接続されている。この糸巻ビーム回転数指令器55は、これらの仮想巻径演算器54及び基準速度生成器42から入力される仮想巻径D1c(k)及び基準速度V0(k)に基づいて、糸巻ビーム回転数指令N1(k)を生成してパルス発生器56へ出力するものである。
【0115】
ここで、糸巻ビーム回転数指令N1(k)は、制御周期Δtの間に送出ビーム11が回転すべき回転数[rpm]の指令値であって、送出区間7を移動する糸λに作用する糸張力fを目標糸張力f0に一致させて糸張力偏差e(k)がゼロとなるように調整するための制御指令である。
【0116】
この糸巻ビーム回転数指令器55によれば、糸巻ビーム回転数指令N1(k)は、仮想巻径演算器54により演算される仮想巻径D1c(k)、糸の基準速度V0(k)、円周率πを用いることで、次式(11)に基づいて演算される。
N1(k)=V0(k)/(πD1c(k)) ………………………… (11)
【0117】
(B−1−5)パルス発生器
パルス発生器55は、その入力端が糸巻ビーム回転数指令器54の出力端と接続されており、この糸巻ビーム回転数指令器54から糸巻ビーム回転数指令N1(k)が入力される。このパルス発生器55は、入力される送出ビーム11の糸巻ビーム回転数指令N1(k)に基づいて、その回転動力源である送出モータM1を回転させるための駆動パルス信号列(以下「ビームパルス指令」という。)PL1(k)を生成して、サーボアンプ31(の偏差カウンタ30a)へ出力するものである。
【0118】
このパルス発生器55によれば、送出ビーム11を糸巻ビーム回転数指令N1(k)に等しい回転数で制御周期Δtの間回転させるため、次式(12)に基づいて、糸巻ビーム回転数指令N1(k)が送出モータM1の回転数指令Nm1(k)[rpm]に換算される。ここで、γ1は、送出モータM1から送出ビーム11への駆動力の伝達比である。
Nm1(k)=γ1N1(k) ………………………………………… (12)
【0119】
そして、この回転数Nm1(k)に相当する数の駆動パルスを制御周期Δt内に含んだ駆動パルス信号列が、ビームパルス指令PL1(k)として生成される。
【0120】
具体的には、まず、制御周期Δt、糸巻ビーム回転数指令N1(k)、円周率π、1パルス分の駆動パルスによる送出モータM1の単位パルス回転角度δθ1[rad]を用いて、駆動パルスの発生時間間隔であるパルス間隔τ1[sec]が、次式(13)に基づいて演算される。
τ1=δθ1Δt/(2πγ1N1(k)Δt) ……………………… (13)
【0121】
さすれば、制御周期Δtに等しい時間が経過するまで、パルス発生器55によって、そのパルス間隔τ1毎に駆動パルスの発生が繰り返されることで、ビームパルス指令PL1(k)がサーボアンプ31の偏差カウンタ30aへ出力される。
【0122】
なお、上記した伝達比γ1の導出方法を例示すると、以下のようになる。例えば、糸λの基準速度V0が設定速度Vsetと等しくて当該設定速度Vset=100m/minで、送出モータM1の最大回転数N1maxが3000rpmで、送出ビーム11の胴径がD1min=0.2mであってフランジ径がD1max=0.8mである場合、送出ビーム11の必要回転数N1は159.2rpm(≒100/(π×0.2))となり、かかる値と送出ビームモータM1の最大回転数との比、即ち、伝達比γ1(=N1max/N1)は18.8rpm(≒3000/159.2)となる。
【0123】
(B−2)サーボアンプ
送出モータM1用のサーボアンプ31については、上記したサーボアンプ30(図5参照。)を用いて既に説明しているので、ここでは説明を省略する。
【0124】
以上のように構成される糸巻ビーム駆動制御ユニット50によれば、糸巻ビーム制御器51によって、送出区間7を移動する糸λに作用する糸張力f(k)が目標糸張力f0に一致するように送出ビーム11を回転させるための糸巻ビーム回転数指令N1(k)が生成され、この糸巻ビーム回転数指令N1(k)に等しい回転数で回転するように送出モータM1がサーボアンプ31によって制御される。すると、送出ビーム11による糸λの送り出し速度は、糸張力偏差e(k)をゼロにするように基準速度V0(k)に比べて減速され、その結果、送出区間7を移動する糸λの糸張力f(k)が目標糸張力に一致するように調整される。
【0125】
以上、実施例に基づき本発明を説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
【0126】
例えば、本実施例では、送出ビーム11及びフィードロール12の間の送出区間7を移動する糸λの搬送速度及び糸張力を調整するために、搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50を用いたが、これらの各ユニット40,50の制御対象や駆動対象は必ずしもこれに限定されるものではなく、例えば、テークアップロール15及び巻取ビーム16の間の巻取区間8を移動する糸λの搬送速度及び糸張力を調整する場合について用いても良い。
【0127】
かかる場合には、上記した搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50の説明を、テークアップロール15用の搬送ロール駆動制御ユニット、及び、巻取ビーム16用の糸巻ビーム駆動制御ユニットの説明として準用する。
【0128】
この場合において、上記した搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50の説明(明細書段落0073〜0124、及び、図3から図6)中の用語及び符号について、明細書中「送出区間7」とあるのは「巻取区間8」と、「ロードセル5」とあるのは「ロードセル6」と、「送出ビーム11」とあるのは「巻取ビーム16」と、「フィードロール12」とあるのは「テークアップロール15」と、「送出モータM1」とあるのは「巻取モータM6」と、「フィードモータM2」とあるのは「テークアップモータM5」と、「サーボアンプ31」とあるのは「サーボアンプ36」と、「サーボアンプ32」とあるのは「サーボアンプ35」と、「パルスエンコーダEN1」とあるのは「パルスエンコーダEN6」と、「パルスエンコーダEN2」とあるのは「パルスエンコーダEN5」と読み替えるものとし、図3中符号「32」とあるのは「35」と、符号「M2」とあるのは「M5」と、符号「EN2」とあるのは「EN5」と読み替えるものとし、図6中「(送出区間用)」とあるのは「(巻取区間用)」と、符号「5」とあるのは「6」と、符号「31」とあるのは「36」と、符号「M1」とあるのは「M6」と、符号「EN1」とあるのは「EN6」と読み替えるものとする。
【0129】
特に、上記した搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50の説明中の段落0106については、その全文を「ただし、巻取区間8に関する仮想操作量演算器53によって仮想操作量ΔMV(k)を求める場合、上記式(9)における比例ゲインKpが負数値とされる(Kp<0)。これは、巻取区間8における糸張力偏差e(k)が正値のとき、仮想的な巻取ビーム16の仮想巻径D1c(k)を減少させることで、巻取区間8を移動する糸の糸延伸量が増加され、かかる巻取区間8における糸張力f(k)が目標糸張力f0に一致するように増加されるという搬送装置2の構造的特徴から、仮想操作量ΔMV(k)を下記式(10)において仮想巻径D1c(k)を減少させる要素として機能させるためである。」と読み替えるものとする。
【0130】
また、段落0112については、その全文を「例えば、初期状態(未使用状態)の巻取ビーム16の胴径D1minを実測し、その胴径実測値D1minを目標糸張力f0に相当するストレッチ率εの分だけ減少させた値を、仮想巻径初期値D1c(0)(=(1−ε)D1min)として設定するのである。」と読み替えるものとする。
【0131】
さらに、その次の段落0113については、その全文を「具体的には、初期状態の巻取ビーム12の胴径実測値がD1min=0.2mであって、目標糸張力f0に相当するストレッチ率がε=0.01(=1%)であるなら、仮想巻径初期値はD1c(0)=0.198m(=(1−0.01)×0.2)に設定されることとなる。」と読み替えるものとする。
【0132】
また、本実施例では、制御装置20の内部に構成される搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50としてサンプル値制御方式を用いて説明したが、かかる搬送ロール駆動制御ユニット40及び糸巻ビーム駆動制御ユニット50は必ずしもデジタル制御を目的としたサンプル値制御方式による制御器に限定されるものではなく、電気回路により構成されるアナログ制御器を用いても良い。
【0133】
また、本実施例では、糸巻ビーム回転数指令器55への入力として基準速度生成器42により演算出力される基準速度V0(k)を用いたが、この基準速度V0(k)の演算値に代えて、パルスエンコーダENにより検出されるサーボモータMの実際の回転数から求められる糸λの実際の搬送速度を、基準速度V0(k)として糸巻ビーム回転数指令器55へ入力するようにしても良い。
【0134】
また、本実施例では、本発明の搬送ロールとしてフィードロール12やテークアップロール15を用いて説明したが、かかる搬送ロールは必ずしもこれに限定されるものではなく、糸搬送装置の構成に応じて適宜変更しても良く、例えば、サイジングロール13、シリンダーロール14などであっても良い。
【図面の簡単な説明】
【0135】
【図1】本発明の一実施例である制御装置を備えた繊維糸用の糊付け装置の構成を示した概略図である。
【図2】制御装置を備えた糊付け装置の電気的構成を示すブロック図である。
【図3】搬送ロール駆動制御ユニットについて示したブロック図である。
【図4】駆動パルス信号列の概念図である。
【図5】サーボアンプの内部構造を示すブロック図である。
【図6】糸巻ビーム駆動制御ユニットについて示したブロック図である。
【符号の説明】
【0136】
1 糊付け装置(糸糊付け装置)
2 搬送装置(糸搬送装置)
7 送出区間(制御区間)
8 巻取区間(制御区間)
11 送出ビーム(糸巻ビーム)
12 フィードロール(搬送ロール)
15 テークアップロール(搬送ロール)
16 巻取ビーム(糸巻ビーム)
31,36 サーボアンプ(モータ制御器の一部、糸巻ビーム駆動手段の一部)
32,35 サーボアンプ(搬送ロール駆動手段の一部)
40 搬送ロール駆動制御ユニット(速度張力制御装置の一部)
44 パルス発生器(搬送ロール駆動手段の一部)
50 糸巻ビーム駆動制御ユニット(速度張力制御装置の一部)
52 糸張力偏差演算器(糸張力偏差演算手段)
53 仮想操作量演算器(仮想操作量演算手段)
54 仮想巻径演算器(仮想巻径演算手段)
55 糸巻ビーム回転数指令器(糸巻ビーム回転数指令手段)
56 パルス発生器(モータ制御器の一部、糸巻ビーム駆動手段の一部)
M1 送出ビーム用のサーボモータ(駆動サーボモータ、糸巻ビーム駆動手段の一部)
M2 フィードロール用のサーボモータ(搬送ロール駆動手段の一部)
M5 テークアップロール用のサーボモータ(搬送ロール駆動手段の一部)
M6 巻取ビーム用のサーボモータ(駆動サーボモータ、糸巻ビーム駆動手段の一部)

【特許請求の範囲】
【請求項1】
所定の搬送ライン上に回転可能に配設され外周に糸が巻回される糸巻ビームと、
その糸巻ビームのための回転数指令が入力され、この入力された回転数指令を実現するようにその糸巻ビームを回転駆動する糸巻ビーム駆動手段と、
その糸巻ビームから所定間隔を隔てて搬送ライン上に回転可能に配設される搬送ロールと、
その搬送ロールのための回転数指令が入力され、この入力された回転数指令を実現するようにその搬送ロールを回転駆動する搬送ロール駆動手段とを備えている糸搬送装置に関する制御装置であって、
前記糸巻ビームから供給される糸又は前記糸巻ビームにより巻き取られる糸を、当該糸巻ビーム及び搬送ロール間に設定される制御区間にて基準速度V0で搬送し、かつ、その制御区間における糸張力を、目標糸張力に一致するように調整するための速度張力制御装置において、
前記搬送ロールを基準速度V0に相当する回転数にて回転させる回転数指令を生成し、その回転数指令を前記搬送ロール駆動手段へ出力する搬送ロール回転数指令手段と、
前記糸巻ビームの巻径が制御量であって当該巻径を前記制御区間における糸張力と目標糸張力との偏差である糸張力偏差に基づいて調整する仮想的な制御系を仮定した場合に、その糸張力偏差が入力量として入力され、その入力量に基づいて前記糸巻ビームの巻径を仮想的に調整するための仮想操作量を演算して出力する仮想操作量演算手段と、
その仮想操作量演算手段から出力される仮想操作量を前記糸巻ビームの仮想巻径の補正値である仮想巻径補正値に換算し、その仮想巻径補正値を前回使用した前記糸巻ビームの仮想巻径に加算することで、新たな仮想巻径を演算して出力する仮想巻径演算手段と、
その仮想巻径演算手段から出力される仮想巻径をD1c[m]、円周率をπ、前記制御区間における糸の基準速度をV0[m/min]としたときに、前記糸巻ビーム駆動手段への回転数指令N1[rpm]を、次の第1式、即ち、
N1=V0/(πD1c) ……………………………………………… (第1式)
を満たすように演算し、その回転数指令N1を前記糸巻ビーム駆動手段へ出力する糸巻ビーム回転数指令手段とを備えていることを特徴とする速度張力制御装置。
【請求項2】
前記仮想操作量演算手段は、前記制御区間の糸張力偏差が入力されることによって、前記糸巻ビームの巻径の仮想操作量を演算して出力するPI制御器又はPID制御器などのプロセス制御器であることを特徴とする請求項1記載の速度張力制御装置。
【請求項3】
前記仮想巻径演算手段は、離散時間系の時刻をk、前記仮想操作量演算手段により演算される仮想操作量をΔMV(k)としたときに、前記糸巻ビームの仮想巻径D1c(k)[m]を、次の第2式、即ち、
D1c(k)=(1+ΔMV(k))D1c(k−1) ……………… (第2式)
を満たすように算出するものであり、
前記糸巻ビーム回転数指令手段は、前記仮想巻径演算手段により演算される仮想巻径D1c(k)[m]、及び、糸の基準速度V0[m/min]を用いるとともに、円周率をπとしたときに、前記糸巻ビーム駆動手段への回転数指令N1(k)[rpm]を、次の第3式、即ち、
N1(k)=V0/(πD1c(k)) ……………………………… (第3式)
を満たすように算出し、その回転数指令N1(k)を前記糸巻ビーム駆動手段へ出力するものであることを特徴とする請求項1又は2に記載の速度張力制御装置。
【請求項4】
前記糸張力偏差演算手段は、離散時間系の時刻をk、前記制御区間を移動する糸の糸張力をf(k)、その制御区間を移動する糸の目標糸張力をf0としたときに、これらの偏差である糸張力偏差e(k)を、次の第4式、即ち、
e(k)=f0−f(k) ………………………………………………… (第4式)
を満たすように算出するものであり、
前記仮想操作量演算手段は、前記糸張力偏差演算手段により演算された糸張力偏差e(k)を用い、かつ、比例ゲインをKp、微分時間をTd、積分時間をTiとしたときに、前記糸巻ビームの巻径に対する仮想操作量ΔMV(k)を、次の第5式、即ち、
ΔMV(k)=Kp{e(k)−e(k−1)}
+KpTd{e(k)−2e(k−1)−e(k−2)}
+(Kp/Ti)e(k) ……………………………… (第5式)
を満たすように算出するものであることを特徴とする請求項1から3のいずれかに記載の速度張力制御装置。
【請求項5】
前記糸巻ビーム駆動手段は、前記糸巻ビームを回転させる駆動力を付与する駆動サーボモータと、その駆動サーボモータの回転制御を行うためのモータ制御器とを備えており、
そのモータ制御器は、離散時間系の時刻をk、制御周期をΔt[sec]、前記糸巻ビームの回転数指令をN1(k)[rpm]、前記駆動サーボモータから前記糸巻ビームへの駆動力の伝達比をγ1、円周率をπ、1パルス分の駆動パルスによる前記駆動サーボモータの回転角度をδθ1[rad]、駆動パルスの発生する時間間隔であるパルス間隔をτ[sec]としたときに、そのパルス間隔τ1を、次の第6式、即ち、
τ=δθ1Δt/(2πγ1N1(k)Δt) ……………………… (第6式)
を満たすように演算し、このパルス間隔τで駆動パルスを制御周期Δtに等しい時間発生させて、この駆動パルスの信号列に基づいて前記駆動サーボモータを回転させることで、前記糸巻ビームを回転数指令N1(k)で回転させるものであることを特徴とする請求項1から4のいずれかに記載の速度張力制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−64875(P2010−64875A)
【公開日】平成22年3月25日(2010.3.25)
【国際特許分類】
【出願番号】特願2008−234335(P2008−234335)
【出願日】平成20年9月12日(2008.9.12)
【出願人】(300072266)有限会社エィブィアール (8)
【Fターム(参考)】