説明

部品入りケークをレーザ焼結するための制御冷却方法および装置

【課題】不均一な冷却のために、部品入りケーク内の構築部品の幾何学歪みが許容できなくなり、構築部品の機械的性質に一貫性がなくなることを防ぐ。
【解決手段】未溶融粉末195および層毎の構築プロセス中に形成される1つ以上の構築部品210をその中に有する部品入りケーク106の少なくとも一部分を制御冷却する。部品入りケーク106の少なくとも一部分内に1つ以上の熱伝達ダクト200を選択的に形成する。ダクト200は1枚壁ダクトであり、その中から未溶融粉末が除去されている。熱伝達ダクト200に冷却媒体を導入する。冷却媒体は液体であっても気体であってもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ焼結装置における、未溶融粉末および溶融粉末の構築部品を含有する部品入りケークの冷却速度を制御するための方法および装置に関する。
【背景技術】
【0002】
固体自由形状製造プロセスが、自由形状の複雑な構造部材を製造するために益々用いられている。特に、選択的レーザ焼結は、自動化様式でデジタルデータ(例えば、コンピュータ支援設計(CAD)データベース、医療走査イメージング・ファイルなど)から直接三次元物体を作製するのに有用である。物体は、出発粉末から完成部品の断面を連続的に積み重ねることによって作製される。その粉末は、一度に一層だけ走査レーザビームにより溶融され、走査された各層は、最終的な物体の数学的に区分化されたデジタルデータ・モデルの断面に対応する。
【0003】
選択的レーザ焼結技法の詳細な説明が、全てザ・ユニバーシティー・オブ・テキサス・システム(The University of Texas System)の評議会に譲渡された特許文献1、2および3、並びにハウショルダー(Housholder)に発行された特許文献4に与えられている。
【0004】
レーザ焼結は熱を用いるプロセスである。熱エネルギーの供給源は一般に、部品床のためのヒータ、シリンダ、粉末供給シリンダ内の粉末を予熱するためのヒータ、およびレーザである。レーザは一般に、所望の区域にある粉末粒子を選択的に溶融するために新たな粉末層を走査するCO2レーザである。粉末は通常、部品を溶融するためにレーザに要求される熱が最小になり、構築中の温度勾配が最小になるように、特定の粉末の溶融温度近くに維持される。層毎の構築プロセスが完了した後に残っている部品入りケーク(part-cake)(溶融粉末のブロックと未溶融粉末から実質的になる)は熱い。
【0005】
新たな部品または一連の部品を構築するためにレーザ焼結プロセスを再始動できるようになる前に、その部品入りケークは、装置を取り扱う作業員にとって安全であり、構築部品に損傷を与えずにその部品を取り出すのに許容される取扱温度まで冷却される。レーザ焼結に通常用いられる粉末材料は、比較的乏しい熱伝導率を有し、それゆえ、特に部品入りケークの内部で、作業可能な温度まで冷却するのに長い時間かかることがある。部品入りケークの冷却に要求される時間は、より大きな構築区域が用いられる(すなわち、部品入りケークのX、Y、またはZ寸法の1つ以上が増加する)につれてさらに増加する。増加した冷却時間のために、部品が構築される各セッションの滞在時間が増加することによりレーザ焼結プロセスの効率が減少し、それによって、レーザ焼結システムのスループットが減少してしまう。
【特許文献1】米国特許第4863538号明細書
【特許文献2】米国特許第4944817号明細書
【特許文献3】米国特許第5132143号明細書
【特許文献4】米国特許第4247508号明細書
【発明の開示】
【発明が解決しようとする課題】
【0006】
レーザ焼結プロセスの冷却過程は、冷却が部品入りケーク全体に亘り不均一で、その中に未制御の温度勾配が生じる場合には、構築部品にとって有害となり得る。不均一な冷却のために、部品入りケーク内の構築部品の幾何学歪みが許容できなくなり、構築部品の機械的性質に一貫性がなくなることがある。
【課題を解決するための手段】
【0007】
本発明のある態様において、レーザ焼結システムにおける、未溶融粉末および溶融粉末の1つ以上の構築部品を含有する部品入りケークの少なくとも一部分の冷却速度を制御する方法が提供される。本発明のこの態様のある実施の形態において、この方法は、部品入りケークの少なくとも一部分に1つ以上の熱伝達通路を選択的に形成する工程を有してなる。熱伝達通路は、1枚壁のダクトから構成することができる。それらのダクトは、層毎の構築プロセス中のレーザ焼結により形成することができる。あるいは、それらダクトは、トンネル形成法によって構築プロセス後に挿入しても差し支えない。ダクトはまた、固体の冷却媒体を挿入するときに、構築プロセス後に形成しても差し支えない。例えば、通路は、部品入りケーク内の未溶融粉末中に固体の熱伝導性プローブを挿入することによって形成しても差し支えない。熱伝達通路は、全体に亘って実質的に固体である材料から構成されていても差し支えない。ある好ましい実施の形態において、熱伝達通路は、溶融粉末の固体冷却フィンから構成され、そのフィンは、層毎の構築プロセス中にレーザ焼結によって形成される。
【0008】
別の実施の形態において、本発明の方法は、レーザ焼結によって、層毎の構築プロセス中に部品入りケークの少なくとも一部分内に1つ以上のダクトを形成する工程を含む。この方法はさらに、ダクトから未溶融粉末を除去し、冷却媒体をダクト中に導入する各工程を含む。これらダクトは1枚壁または多壁であって差し支えなく、各ダクトは、部品入りケークの開いた頂面に2つの末端部分を有することが好ましい。特に好ましい実施の形態において、層毎の構築プロセス中のレーザ焼結によりダクト内に粉末除去器具が形成される。粉末除去器具は、冷却を促進するためにダクトからの未溶融粉末の除去を補助するために有益な様々な形態をとることができる。
【0009】
本発明の別の実施の形態によれば、本発明の方法は、層毎の構築プロセス中のレーザ焼結によって部品入りケークの少なくとも一部分内に1つ以上の多壁ダクトを形成する工程を有してなる。多壁ダクトは内壁と1つ以上の外壁を有し、内壁が外壁内の未溶融粉末のコアを画成することが優先される。この方法はさらに、未溶融粉末のコアを除去し、外壁内に形成されて残っているダクト中に冷却媒体を導入する各工程を有する。特に好ましい実施の形態において、2つのダクトが形成され、各ダクトは、部品入りケークの頂面で開いており、部品入りケーク内で下方に対角線上に延在し、部品入りケーク内のある点で接触している。この実施の形態によれば、2つのダクトのそれぞれに形成されたコアの除去によって、実質的にV形の1つの連続ダクトが形成される。
【0010】
本発明のさらに別の実施の形態において、本発明の方法は、層毎の構築プロセス中のレーザ焼結によって部品入りケークの少なくとも一部分内に1つ以上のダクトを形成する工程を有してなり、ダクトは、部品入りケークの頂部の開いた末端部分、および部品入りケーク内の閉じた末端部分を有する。この方法はさらに、ダクトから未溶融粉末を除去し、冷却媒体をダクト中に導入する各工程を含む。ある特別な実施の形態において、冷却媒体は気体媒体である。この実施の形態によれば、形成されたダクトは少なくともある程度ガス透過性であることが優先される。さらに、開いた末端部分は、ガス供給接続手段の形成または取付け後に封止される。次いで、ダクトから、未溶融粉末を通り、部品入りケーク内の構築部品の周りで、雰囲気に開いた部品入りケークの部分を通る雰囲気への気体冷却媒体の移動を促進するのに十分な圧力下で気体冷却媒体をダクト中に導入することができる。別の特別な実施の形態において、冷却媒体は液体冷却媒体である。この実施の形態によれば、ダクトは実質的に、冷却媒体のための、優先的に液密のリザーバである。液体は、熱交換器としても機能することが好ましい外部の再循環装置の使用によりリザーバ内で再循環させ、リザーバから暖まった液体を除去し、冷却された液体を戻してその中を循環させることができる。この実施の形態によれば、形成されたダクトが多壁であることが有益であり、未溶融粉末は、内壁によって画成された空間からは除去されるが、内壁と1つ以上の外壁との間の環状空間内には残されたままである。
【0011】
本発明の別の実施の形態によれば、未溶融粉末および1つ以上の構築部品を含有する部品入りケークの少なくとも一部分の冷却速度を制御する方法であって、部品入りケークの少なくとも一部分内の溶融粉末からなる1つ以上の冷却フィンを選択的に形成する工程を有してなる方法が提供される。冷却フィンは、部品入りケーク内の構築部品に少なくともある程度沿っており、熱を部品から部品入りケークの頂面へと効果的に伝達させるために選択的に配置される。ある特別な実施の形態において、部品入りケークの頂面で冷却フィンの端部は、さらに熱を除去するために外部の熱交換器に取り付けられている。
【0012】
本発明のさらに別の実施の形態によれば、未溶融粉末および1つ以上の構築部品を含有する部品入りケークの少なくとも一部分の冷却速度を制御する方法であって、部品入りケーク中に1つ以上の固体冷却媒体の少なくとも一部を挿入することによって、部品入りケークの少なくとも一部分内に1つ以上の熱伝達通路を形成する工程を有してなる方法が提供される。固体冷却媒体は、熱伝導性プローブなどの、熱伝導性であることが一般に知られている任意の固体材料を含んで差し支えない。ある特別な実施の形態において、部品入りケークの頂面で固体冷却媒体の端部は、さらに熱を除去するために外部の熱交換器に取り付けられている。
【0013】
本発明の別の態様によれば、レーザ焼結システム内に配置されてもそこから取外し可能であってもよい部品入りケーク・シリンダが提供される。ある実施の形態において、シリンダ装置は、側壁、開放頂部、およびピストンにより画成された底部を有する、部品入りケーク含有シリンダを有してなる。シリンダは、層毎の構築プロセス中に形成された冷却ダクトの末端部分を受容するための1つ以上の接続手段を有する。ある特別な実施の形態において、接続手段は、シリンダの側壁にある。別の特別な実施の形態において、接続手段はピストン内にある。
【0014】
本発明のさらに別の態様によれば、レーザ焼結プロセスからの部品入りケークであって、1つ以上の熱冷却通路を有する部品入りケークが提供される。ある好ましい実施の形態において、熱冷却通路は、1枚壁または多壁であって差し支えないダクトを含む。別の好ましい実施の形態において、熱冷却通路は冷却フィンを含む。冷却フィンは、部品入りケークの少なくとも1つ以上の構築部品に少なくともある程度沿っている。
【発明を実施するための最良の形態】
【0015】
以下、本発明の好ましい実施の形態が示されている添付の図面を参照して、本発明をより詳しく説明する。これらの実施の形態は、この開示が完全かつ完璧であり、当業者に本発明の範囲を十分に伝達するように提供されたものである。
【0016】
本発明は、レーザ焼結プロセスにおいて部品入りケークの冷却速度を選択的に制御するための方法および装置に関する。図1は、スリーディー・システムズ社(3D Systems, Inc.)(カリフォルニア州、バレンシア)により現在販売されている従来の選択的レーザ焼結システムを示している。図1において、このシステムの作業部分を示すためにカバーが切り取られている装置の正面図が示されている。概して、二酸化炭素レーザおよびその関連光学素子が、粉末床、2つの供給粉末シリンダ、およびレベリング・ローラを含むプロセス・チャンバ上のユニット内に搭載されているのが示されている。このプロセス・チャンバは、構築部品を製造するための適切な温度および雰囲気組成を維持する。この雰囲気は一般に、窒素などの不活性雰囲気である。プロセス・チャンバ内に真空を使用することも可能である。
【0017】
より詳しくは、レーザ焼結システム100において、レーザビーム104は、レーザ108によって発せられ、レーザビーム104を偏向させるガルバノ・ミラーを一般に備えた走査システム114により標的表面または区域110に向けられる。レーザおよび走査システムは、レーザ窓116によって熱いプロセス・チャンバ102から隔離されている。レーザ窓116は、下にある部品床の標的区域110を加熱する放射加熱要素120の内側に位置している。レーザエネルギーを、可溶粉末層に形成すべき物品の断面に対応するこの層の位置に向けるために、レーザビームの偏向および焦点距離は、レーザの変調と共に制御される。
【0018】
2つの供給システム(124および126)は、押上式ピストン・システムによりシステム中に粉末を供給する。部品床132は、以下に記載する2つの供給ピストン(125および127)から粉末を受け取る。供給装置126は最初に、供給シリンダ123内の粉末から測定した量の粉末を押し上げ、逆回転レベリング・ローラ130が部品床132上に粉末を取り上げ、それを均等に広げる。レベリング・ローラ130は、標的区域110および部品床132上を完全に通過する。いずれの残留粉末もオーバーフロー容器136中に入れられる。供給粉末を予熱する放射加熱要素122は、プロセス・チャンバ102の頂部近くに配置されている。レベリング・ローラ130が部品床132を横断した後、レーザが、丁度分配された層を選択的に溶融する。次いで、レベリング・ローラがオーバーフロー容器136の区域から戻り、その後、供給システム124が、供給シリンダ129内の粉末から所定量の粉末を押し上げる。次いで、レベリング・ローラ130は、標的区域110において粉末を反対方向に分配し、他方のオーバーフロー容器138に進んで残留粉末をその中に入れる。レベリング・ローラ130がシステムの各横断を開始する前に、中央の部品床ピストン128が、所望の層厚だけ下降して、追加の粉末のための空間を空ける。構築プロセスが開始するときに、供給シリンダ(123および129)に、部品入りケーク106に供給するための未溶融粉末を充填する。部品入りケークは、構築プロセス中に形成され、未溶融粉末および溶融粉末の構築部品を含む。シリンダは、粉末を送達するために有用などのような形状をとっても差し支えない。
【0019】
システム100内の粉末送達機構は、上方に移動し、インデックスが付けられた場合には、ある体積の粉末をチャンバ102中に持ち上げるようにモータ(図示せず)により制御された、供給ピストン125および127を備えている。部品入りケーク・ピストン128は、処理すべき粉末の各層の厚さを規定するために、少量、例えば、0.125mmだけプロセス・チャンバ102の床面下に下方に移動するようにモータ(図示せず)により制御されている。標的表面110は、部品入りケーク・ピストン128の上に配置された熱可溶粉末の頂面(もしあれば、先に溶融された部分を含む)を称する。部品入りケーク・ピストン128上に配置された溶融粉末および未溶融粉末が部品入りケーク106として図1に示されている。供給ピストン上の放射加熱要素122は、粉末を予熱して、新たな粉末が、直前に焼結された熱い標的区域110上に広げられたときの熱衝撃を最小にする。供給床と部品床両方のための加熱要素と共に、標的区域の下から新たな粉末を提供するこのタイプの二重ピストン供給システムが、スリーディー・システムズ社(カリフォルニア州、バレンシア)により販売されているVanguard(商標)選択的レーザ焼結システムにおいて工業的に導入されている。
【0020】
上述したシステムは一般に、ルース粉のレーザ焼結(すなわち、溶融)によって、一度に一層だけ構築部品が部品入りケーク内に形成される、層毎の構築プロセスを説明している。構築プロセスが完了した際に、部品入りケークは、未溶融粉末および溶融粉末の1つ以上の構築部品を含んでいる。構築部品は、部品入りケーク内の様々な位置にあり得る。前述したように、部品入りケークは、構築プロセスの最後に、全体に亘って加熱された状態にあり、温度は一般に、部品入りケーク内、特に、構築部品近くが高い。部品入りケークは、構築部品が部品入りケークから取り出せるようになる前に、周囲温度近くまで冷却できなければならない。この冷却時間のために、システムのスループットが減少する(すなわち、所定の時間で実施できる構築プロセスの正味の数が減少する)。部品入りケークの外側部分は、部品入りケークの内側部分よりも早い速度で冷却され、望ましくない温度勾配が部品入りケーク内に生じる傾向にある。例えば、シリンダ壁に接触した部品入りケークの外部と部品入りケークの頂面が早く冷却される傾向にある。これらの温度勾配のために、構築部品において構造歪みおよび一貫性のない材料特性が生じ得る。
【0021】
本発明は、レーザ焼結プロセスに用いられるタイプの粉末に限られるものではない。以下に限られないが、プラスチック(ナイロンなど)、ガラス充填プラスチック、エラストマー、ポリカーボネート、セラミック、金属、ポリスチレン、およびポリマー金属やポリマーセラミックなどの複合材料を含む、レーザ焼結に一般に用いられる任意の粉末を本発明にしたがって用いることができる。
【0022】
本発明は、部品入りケーク内に熱伝達通路を形成することによって、部品入りケークの冷却速度を制御する方法を提供する。熱伝達通路は、部品入りケークの内側部分からの熱の移動を促進させる。前記通路は、様々な実施の形態によれば、実質的に1枚壁を持つ中空ダクトまたは実質的に全体が固体であり得る。通路が中空の場合、熱の移動は、様々な冷却媒体を中空通路、すなわちダクト中に導入することによってさらに制御できる。これらの通路は、層毎の構築プロセス中に形成しても、構築プロセス後に形成しても差し支えない。通路は、冷却媒体の導入前に形成しても、冷却媒体、特に固体冷却媒体の導入と同時に形成しても差し支えない。
【0023】
本発明のある実施の形態において、熱伝達通路は、レーザ焼結プロセス中に部品入りケーク内に形成され、形成された通路自体もレーザ焼結プロセスにより形成される。言い換えれば、構築部品がレーザ焼結によって層毎の構築プロセスにおいて形成されている間に、熱伝達通路もレーザ焼結によって形成されている。そのような通路形成は、構築部品の形成においてレーザを方向付けるのに用いられる構築ファイル生成ソフトウェアの改変によって行われる。このソフトウェアは、所望の部品と同じ構築ファイル内に熱伝達通路を含ませるように改変することができる。
【0024】
本発明のある実施の形態において、部品入りケーク内に形成された通路は、中空の1枚壁ダクトからなる。ダクトは、1枚壁または多壁であって差し支えなく、部品入りケーク内で様々な形状をとることができる。例えば、ダクトは、角張った、直線、または曲線のものであって差し支えない。さらに、ダクトの寸法は、同じ部品入りケーク内でさえ、様々であって差し支えない。例えば、ダクトは、部品入りケーク内のある点で幅広い寸法を有し、部品入りケーク内の別の点でより狭い寸法に徐々に狭まる、テーパー状であって差し支えない。さらに、ダクトは様々な幾何学形状をとって差し支えない。例えば、断面において、ダクトは、丸、楕円、矩形、三角形、または本発明により有益であり得る任意の他の幾何学形状であって差し支えない。
【0025】
本発明のある実施の形態が図2に示されている。この図は、層毎の構築プロセスの完了後の部品入りケークの垂直面にとられた断面図である。図示された構築部品210が未溶融粉末195の中に部品入りケーク106全体に亘って分布している、部品入りケーク106が示されている。構築部品210により占められていない部品入りケーク106の区域において、ダクト200が形成されている。前述したように、ダクト200はレーザ焼結による層毎の構築プロセス中に形成される。図2はダクトが1つだけ示されているが、部品入りケークの制御冷却のために有益なように、多数のダクトを部品入りケーク全体に亘って形成しても差し支えないことが理解されよう。さらに、ダクトを部品入りケーク全体に亘って様々な異なる面内に配置しても差し支えない。
【0026】
まだ図2を参照すると、ダクト200は2つの末端部分(202および204)を有する。本発明のある実施の形態によれば、ダクト200の末端部分は、部品入りケーク106の頂部に位置するように形成される。部品入りケーク内に形成されたダクトの少なくとも1つの末端部分を、ダクト内の未溶融粉末の除去を容易にするために部品入りケークの頂部に位置させることが有益である。以下のより詳しく論じられるさらに別の実施の形態において、ダクトは、部品入りケーク内に1つ以上の末端部分を有することができる。ダクトは、部品入りケークを収容しているシリンダ175の壁にまたはその近くに、もしくは部品入りケーク・ピストン128にまたはその近くに1つ以上の末端部分を有していて差し支えない。
【0027】
層毎の構築プロセスが完了した際に、部品入りケーク内に形成されたダクトは未溶融粉末が充填されたままである。したがって、冷却媒体をダクト中に導入する前に、ダクトから未溶融粉末を除去することが有益である。図2に示した実施の形態において、未溶融粉末は既にダクト200から除去されている。ダクトから未溶融粉末を除去するために様々な方法を用いることができ、それらの方法はここに本発明により包含される。ある実施の形態において、未溶融粉末は、ダクトの一方の末端部分での真空吸引によって除去することができる。未溶融粉末を除去するのに有用な、真空手段などの装置を容易に取り付けられるようにするために、ダクトの少なくとも1つの末端部分を、そのような取付けに適した接続手段に形成することができる。図2から分かるように、ダクト200の末端部分202は、粉末除去装置の取付けのためのネジ付き接続手段207に形成されている。粉末の除去に用いるため、または冷却媒体をダクト中に導入することなどの他の目的のために、他のタイプの接続手段を形成しても差し支えない。
【0028】
以下に限られないが、強制空気排出(単独でまたは真空吸引と組み合わせて用いられる)および掘ることを含む、ダクトから未溶融粉末を除去する他の方法も考えられる。
【0029】
ある特別な実施の形態において、ダクトから未溶融粉末をさらに除去するために、ダクト内に粉末除去器具を形成することができる。この粉末除去器具は、ダクトとは別に形成されるが、層毎の構築プロセス中にレーザ焼結によってダクト内に形成される。そのような粉末除去器具の好ましい実施の形態が、引寄せチェーン・アセンブリ230として図3に示されている。図3は、その中に未焼成粉末195、構築部品210、ダクト200、およびダクト内の引寄せチェーン・アセンブリ230を有する部品入りケーク106の垂直面にとられた断面を示している。図3に示したように、引寄せチェーン・アセンブリ230を含むことに加えて、ダクト200はまだ、冷却媒体を導入する前に優先的に除去される未溶融粉末195を収容している。説明のために、引寄せチェーン・アセンブリ230は、吊りタイプの照明器具やシーリング・ファンにあるオン・オフ引張りチェーンとして、もしくは浴室のバスタブやシンクのためのドレン・プラグに取り付けるための昔に一般に見られたような、「ビーズ・チェーン」に例えることができる。図3に示した実施の形態において、引寄せチェーン・アセンブリ230は、ダクト200から引き寄せ、未溶融粉末195をバラバラにし、ダクト200からの未溶融粉末195の除去を容易にすることができる。引寄せチェーン・アセンブリ230は、図3においては、一本の連続チェーン、もしくは末端に取り付けられた回収板またはスクレーパを持つ引寄せひもあるいは引寄せひもに沿って間隔の置かれた位置で複数の回収板またはスクレーパを有する引寄せひもとして示されているが、それぞれがダクト200の別々の末端部分から引き寄せられる二本の別々のチェーンなどの他の実施の形態も考えられる。引寄せチェーンまたは引寄せひもの実施の形態は、送風ダクトなどの、レーザ焼結によって形成される任意の中空通路構造から未溶融粉末を除去するのにも有用である。それらは、部品入りケークの冷却を促進するための手段と共にここに示した任意の実施の形態と組み合わせて使用してよい。ダクト200内の引寄せチェーン・アセンブリ230の詳細図が図4に示されている。
【0030】
ダクト200から引寄せチェーン・アセンブリ230を取り出した後、残りの未溶融粉末は、真空手段などの追加の手段によって、ダクトから容易に除去できる。さらに、粉末除去器具は、ダクト内の未溶融粉末の実質的に全てを除去することができるように形成することができる。例えば、図4に示したように、引寄せチェーン・アセンブリ230はさらに、スクレーパ235を含むように形成でき、これらスクレーパは実質的に、ダクト200の内寸とほぼ等しいが、それよりわずかに小さい外寸を有するディスクである。引寄せチェーン・アセンブリ230がダクト200から取り出されるときに、引寄せチェーン・アセンブリ230が未溶融粉末195をバラバラにし、スクレーパ235が、バラバラになった未溶融粉末をダクト200から搬送するのを助ける。
【0031】
粉末除去器具は、上述した引寄せチェーン・アセンブリ以外の他の実施の形態をとることもでき、そのような追加の実施の形態も本発明に包含される。例えば、別の実施の形態において、粉末除去器具は柔軟なオーガーであって差し支えない。そのオーガーは、オーガーの軸を回転させることによって、オーガーがダクト内に粉末をバラバラにし、ダクトからバラバラになった粉末の搬送を助けるように、曲げは十分に柔軟であるが、ねじれは十分に剛性であることが優先される。オーガーは、引寄せチェーンまたは引寄せひもの実施の形態に関するように、ダクト内であるがダクトとは別に、レーザ焼結によって層毎の構築プロセス中に形成することができる。あるいは、オーガーは、構築プロセス後にダクト中に導入される別個の器具であっても差し支えない。それゆえ、ダクトを通るオーガーの前進は、粉末をバラバラにし、粉末をダクトから機械的に運び出すのに役立つであろう。さらに、オーガーと組み合わせて、またはさらに別の機械式粉末除去の実施の形態と組み合わせて、真空吸引を用いても差し支えない。
【0032】
図2を再度参照する。未溶融粉末がダクト200から除去された後、部品入りケーク106を制御冷却するために、冷却媒体をダクト内に導入することができる。冷却媒体は、気体媒体または液体媒体であって差し支えない。図2に示した実施の形態において、ダクト200は、両方とも部品入りケーク106の頂部にある2つの末端部分(202および204)を有する。そのような実施の形態において、部品入りケーク106内に「冷却ループ」が形成される。図2の実施の形態において、冷却媒体は、液体または気体の冷却媒体であって差し支えなく、ダクト200の一方の末端部分で導入され、ダクト200の他方の末端部分から除去される。
【0033】
冷却媒体として液体を使用する場合、ダクトの壁(すなわち、溶融粉末)と非反応性である限り、熱伝達に有用であると一般に知られている任意の液体を用いても差し支えない。さらに、液体は、ダクトの壁を可溶化できるべきではない。ある好ましい実施の形態において、液体冷却媒体は水である。この実施の形態によれば、水の熱伝達作用を改善するのに有益であれば、塩などの様々な添加剤を水に加えても差し支えない。別の実施の形態において、液体冷却媒体は、工業用冷却液を含む、公知の熱伝達能力を持つ任意の他の液体であって差し支えない。さらに、混合物または混合液を液体冷却媒体として使用しても差し支えない。
【0034】
液体冷却媒体は、ダクト200の末端部分202および204の一方を通して導入できる。この冷却媒体は、ダクトを通して循環させ、ダクト200の他方の末端部分から除去できる。前述したように、ダクト200の末端部分(202および204)の少なくとも一方を、冷却液供給または取込み装置などの、有用な装置を取り付けるための接続手段207に形成することができる。したがって、本発明のある実施の形態において、外部冷却液供給および/または取込みラインを接続手段207、または末端部分(202および204)の少なくとも一方に形成された他の類似の接続手段に取り付けることができる。ある特に好ましい実施の形態において、末端部分(202および204)は、温度制御液体が末端部分202および204の一方でダクト200に導入され、暖まった液体が他方の末端部分から除去されるように、外部の熱交換器(図示せず)に取り付けられる。暖まった液体は熱交換器に戻され、ここで、部品入りケーク106の冷却用にダクト200に戻すために制御温度まで再度冷却される。
【0035】
本発明のある実施の形態によると、冷却媒体を部品入りケークの暖かい内部中に導入することに加えて、部品入りケーク106を収容するシリンダ175の外部表面で熱伝達を制御することも有利である。シリンダ175の外部表面でのそのような熱伝達制御は、シリンダを通る周囲の環境への伝導により、またシリンダの外壁から周囲の環境への自然なまたは強制的な伝導により自然に生じる温度勾配を最小にするのに有用であり得る。上述したダクトなどの熱伝達通路によって部品入りケークの内部の熱伝達を促進することに加えて、部品入りケークを収容しているシリンダ175の外壁に均一な熱を加えることによって、部品入りケーク全体に亘る温度勾配を精密に制御すると同時に、冷却のための補助なし方法と比較して、部品入りケークの冷却に必要とされる時間を減少させることが可能である。本発明のある実施の形態において、部品入りケークの冷却速度を制御する方法は、部品入りケークを収容しているシリンダの少なくとも一部分に熱を加える工程を有してなる。ある特別な実施の形態において、外部熱は、シリンダ上の1つ以上の位置でシリンダの周りに巻き付けられる1つ以上のヒータ・バンドとして施される。別の実施の形態において、熱は、シリンダの少なくとも一部分を覆う保温ブランケットとして供給でき、このブランケットは、断熱材としてのみ作用するかまたは熱を加えることができる。さらに別の実施の形態において、熱は、シリンダと物理的に接触していない外部ヒータから供給することができ、ここで、シリンダの外部は、伝導または放射によって加熱される。部品入りケークを収容しているシリンダの外部に熱を供給する他の方法は、当業者に認識され、ここに包含される。外部熱源の施用は、部品入りケークの外側部分の冷却速度を、部品入りケークの内側部分の冷却速度に調整するのに有益である。加える熱は、その熱が制御された比率でゆっくりと減少するように冷却時間中に調節することができる。ある実施の形態において、冷却速度は、加えられる外部熱が、部品入りケークの内部部分の冷却速度に対応するように自動的に減少されるようにコンピュータ制御される。
【0036】
層毎の構築プロセス中にレーザ焼結によって部品入りケーク内に形成されたダクトは、図2に示したように、1枚壁のダクトであって差し支えない。あるいは、ダクトは多壁(すなわち、ダクト内に1つ以上のダクトがある)であっても差し支えない。そのような多壁の実施の形態において、ダクトの断面(ダクトが円形である場合)は、同心円として見えるであろう。多壁ダクトの形成は様々な実施の形態において有用であり得る。例えば、ダクトの壁は中実であり、溶融粉末から形成されるが、ダクトの壁はいくぶん多孔質であっても差し支えない。冷却媒体が液体媒体である場合には、ダクトの壁は非多孔質であり、液体冷却媒体がダクトから未溶融粉末中に移動するのを実質的に防ぐことが有益である。
【0037】
通常のレーザ焼結プロセスからの未溶融粉末は、回収し、さらなる構築プロセスに再度使用することができる。液体冷却媒体が未溶融粉末と接触するのは一般的に望ましくない。それは、冷却媒体により濡れた粉末は、廃棄するか、さらに使用するために別の処理しなければならないからである。ある実施の形態において、多壁ダクトを形成して、液体冷却媒体がダクトの壁を通って未溶融粉末中に移動するのをさらに保護することが有用である。
【0038】
多壁ダクトの形成は、ダクトからの未溶融粉末の除去を促進するためのさらに別の実施の形態において有用であり得る。そのような実施の形態の1つが図5に示されている。この図は、層毎の構築プロセスが完了した後に部品入りケークの垂直面にとられた断面を示している。図5の実施の形態において、ダクト200は、構築プロセス中にレーザ焼結によって形成された。ダクト200は、部品入りケーク106内の構築部品210に位置的に関連して選択的に形成される。ダクト200は多壁であり、内壁221および外壁222を有する。ダクト200は未溶融粉末195が充填されたままであり、その粉末は、内壁により画成される空間、および内壁221と外壁222との間の空間を充填している。
【0039】
図5に示す特定の実施の形態において、ダクト200の外壁222は、部品入りケーク106全体に亘って連続しており、V形状を有し、部品入りケーク106の頂部に末端部分202および204を有する。ダクト200の内壁221は、封止され、部品入りケーク106内のダクト200の最も低い底部点近くで内壁221の閉じた末端点を形成する。内壁221のこの構成が図6からより明白に分かる。図6は、部品入りケーク106内のダクト200の下側部分の拡大図を示している。
【0040】
図5および6に示した多壁ダクトは一般に、「コアおよびキャビティ」タイプの配置として見ることができる。内壁221は、溶融粉末から形成された1枚壁221内に閉じ込められた未溶融粉末の「コア」225を形成する。コア225は、ダクト200の外壁222により画成された開いた「キャビティ」226を去る単一ユニットとして、部品入りケーク106から引き出すことができる。再度、これは図6により容易に見ることができ、部品入りケーク106の右側にあるコア225が、キャビティ226を後にして部分的に除去されており、このキャビティは、開いており、冷却媒体の導入の準備ができている。同様に、部品入りケーク106の左側のコア225も除去される。ある実施の形態において、ダクト200は、テーパー状になっており、部品入りケーク106の底部近くで狭くなっており、部品入りケーク106の頂部に向かって広くなっている。ダクト200のそのようなテーパーは、単一ユニットとしてコア225の除去を補助するために特に有益である。
【0041】
ダクトは多壁ダクト(すなわち、ダクト内にダクトがある)として形成されるが、コアの除去によって、1枚壁の最終的なダクトが残る。さらに別の実施の形態において、元の多壁ダクトは、後の除去のためのコアを画成する内壁を有する3つ以上の同心ダクトから形成することができる。コアをその後除去すると、上述したキャビティが後に残るが、最終的なダクトは、部品入りケーク全体に亘って多壁ダクトのままであろう。
【0042】
内壁221および外壁222は、互いに近接した関係で形成されるが、物理的には接続されていないことが好ましい。壁を互いに近くに形成すると、ダクト間の未溶融粉末195が少なくなる。コア225の除去後、少量の未溶融粉末195がキャビティ226内に残り得る。そのような粉末は、キャビティ226内に粉末を残しても、冷却媒体の導入を妨げないような十分な小さな体積であろう。あるいは、所望であれば、残りの未溶融粉末195は、真空吸引などによって、キャビティから除去し、後の使用に再利用することができる。同様に、コア225内の未溶融粉末195は再利用できる。内壁221は、壁の形成に用いられる粉末の量を減少し、プロセスにおける廃物の量を最小にするために、機能的にできるだけ薄く形成することが優先される。この点に関して、外壁222の厚さを最小にすることも有益であり得るが、冷却媒体を収容するため、また液体冷却媒体が外壁22を通り周囲の未溶融粉末195中に移動するのを防ぐために有用な厚さに外壁22を維持するように考慮しなければならない。本発明によるダクトの壁は、好ましくは、約0.1mmから約10mm、より好ましくは約0.25mmから約5mm、最も好ましくは約0.5mmから約1mmの厚さを有する。
【0043】
前述したように、ダクト内に導入される冷却媒体は気体または液体であって差し支えない。ある実施の形態において、ダクトが、図5および6に示したように形成され、液体冷却媒体がダクト中に導入される。この液体は、ダクトを通して循環させることができ、ダクトの一方の末端部分で導入され、ダクトの第2の末端部部から除去される。
【0044】
本発明のダクトは、周囲の部品入りケークの圧縮力に抵抗するのに十分な抵抗を有し、開いたままであることが好ましい。これは一般に、ダクト壁は液体が壁を通って移動するのを防ぐのに十分な厚さのものであるので、液体冷却媒体が用いられる場合にはそれほどの心配ではない。ダクトに液体が満たされたとき、ダクトは、液体により与えられる追加の構造的支持を有する。
【0045】
本発明の別の実施の形態によれば、ダクトは部品入りケーク内に形成され、圧縮ガスがダクトを通してポンプで送り込まれ、ガスは、ダクトを出て、部品入りケークを通り、部品入りケークの頂部の雰囲気に戻る。ダクト壁はそれでも、周囲の部品入りケークの圧縮力に抵抗するのに十分な構造を有し、開いたままでなければならないが、それらの壁は、空気、または他の温度制御されたガスを、ダクトを通して部品入りケーク中にわずかな圧力でポンプにより送り込めるほど十分に多孔質でなければならない。そのような多孔性は、溶融粉末から形成されたダクト壁に独特であり得る。さらに、ダクト壁は、未溶融粉末が部品入りケークからダクト中に移動するのを防ぎながら、加圧ガスがダクトから出て部品入りケーク中に移動することができるほど十分に壁に開口部があるようにわざわざ形成しても差し支えない。
【0046】
気体冷却媒体およびガス透過性ダクトを用いた部品入りケークを制御冷却する方法のある特定の実施の形態が図7に示されている。この図は、構築プロセスが完了した後のシリンダ175内の部品入りケーク106の垂直面にとられた断面を示している。部品入りケーク106は、未溶融粉末195および層毎の構築プロセス中に形成された構築部品210を含む。また、ダクト200も示されている。ある好ましい実施の形態において、ダクト200は層毎の構築プロセス中に形成される。部品入りケーク106の左側のダクト200が、ダクト壁により画成されたダクト区域内に未溶融粉末195が残っているままで形成されているのが示されている。部品入りケーク106の右側のダクト200は、好ましくはここに記載された方法を用いて、ダクトから未溶融粉末が除去されている。
【0047】
図7に示されたダクト200は垂直かつ直線であり、各ダクトは、部品入りケーク106の頂部にある開いた末端部分を1つ、部品入りケーク106内の閉じた末端部分を1つ有している。他のダクトの幾何学形状および方向付けも本発明により包含される。例えば、ダクトは、対角線上に形成されても、角張ってまたは実質的に曲線であっても差し支えない。しかしながら、端部の閉じた形態においては、ダクト内の未溶融粉末の除去を容易にするために、直線のダクトが好ましい。前述したように、層毎の構築プロセス中にレーザ焼結によってダクトを形成する場合、未溶融粉末の除去を補助するように、粉末除去器具をダクト内に形成しても差し支えない。
【0048】
図7を再度参照する。ダクト200の頂部は、ガス供給源への取付けを容易にするように優先的に形成される。ガス供給源に取り付けた後、ダクトの頂部は封止(すなわち、気密に)され、ダクト中に導入される温度制御されたガスが逃げるのを防ぐ。したがって、ダクトからのガスの唯一の出口は、多孔質壁を通り、部品入りケーク中に抜けることである。ダクトの頂部は、ネジ付きに形成したり、「迅速接続」タイプの構造を持つように形成したりすることができる。部品入りケーク106の右側のダクト200は、ダクトの頂部から未溶融粉末が除去され、ガス供給取付具250が接続された状態で示されている。ガス供給取付具250は、後に導入される気体冷却媒体の圧力に対してダクト200の元々開いた頂部を封止することが有益である。加圧ガスの戻り通路は、ダクト200の多孔質壁を通り、部品入りケーク106中の未溶融粉末195を通り、部品入りケーク106の開いた頂部で雰囲気に流動する経路なので、導入されたガスの戻り口は不必要である。そのような流動が波状矢印によって図7に例示されている。未溶融粉末195を通り、構築部品210の周りを移動する気体媒体は、部品入りケーク106の内部から雰囲気に熱を伝達するのに役立つ。ある実施の形態において、気体冷却媒体は周囲温度である。別の実施の形態において、気体冷却媒体は、ダクト200中に導入される前に、温度制御様式で周囲温度より低く冷却される。そのような実施の形態は、部品入りケーク中の構築部品210が丈夫である(すなわち、全体が中実である、または全ての部品が相当な厚さであるなどの頑丈な構造のもの)場合、特に有用である。構築部品210がそれほど丈夫ではない(すなわち、特に小さい、複雑な、または薄壁の部品)実施の形態において、ガスが部品入りケークに導入される場合、ガス温度が部品入りケーク106の温度に近いように気体媒体の温度を制御することが好ましい。その後、気体媒体の温度は、段階的などで、周囲温度またはそれ未満に制御可能に減少させることができる。
【0049】
気体媒体が未溶融粉末または構築部品と不利に反応しないかぎり、周囲の空気などの任意の気体媒体を冷却剤として本発明に用いて差し支えない。ある実施の形態において、気体媒体は、窒素ガスなどの不活性ガスを有してなる。気体冷却媒体として不活性ガスを使用することは、酸素含有周囲空気などのより反応性の高いガスの暖かい部品入りケーク中への導入によって酸化や他の類似の化学反応が生じるかもしれないので、特に好ましい。
【0050】
上述したように、図7に示した本発明の実施の形態におけるダクト中に導入される気体媒体は優先的に加圧される。その圧力は一般に、粉末を過剰に流動化せずに部品入りケーク中の未溶融粉末を通して気体媒体をゆっくりと移動させられるように、十分に低く維持される。大きすぎる圧力を使用すると、部品入りケークの冷却が急になりすぎることがあり、これによって、部品入りケーク内に好ましくない温度勾配が生じることもある。その圧力は、部品入りケークの完全さの崩壊を防ぎ、未溶融粉末を部品入りケークから雰囲気中へと吹き飛ばすのを防ぐほど低く維持される。そのような極端な圧力では、構築部品に損傷が生じることがある。ダクト中に導入される気体媒体の圧力は、上述した制限内にまだ留まっている、ダクトから部品入りケーク中にガスを強制的に移動させるのに十分な任意の正の圧力であることが優先される。
【0051】
本発明のさらに別の実施の形態において、部品入りケークの冷却に用いられるダクトは、図7に示したように、直線であって差し支えないが、液体冷却媒体の導入のために形成することができる。そのような実施の形態の1つが図8に示されている。この図には、中に冷却ダクトが形成された部品入りケークの垂直面を通る断面が示されている。
【0052】
図8に示されるように、部品入りケーク106は、シリンダ175内に収容されており、構築部品210および未溶融粉末195を含んでいる。層毎の構築プロセス中に優先的に形成される、ダクト200も含まれている。ダクト200は、直線であり、優先的にテーパー状にされている。図8に示されるように、ダクト200は多壁のものであり、内壁221および外壁222を有する。そのような構造は、特に液体冷却媒体を導入する場合に好ましいが、ダクト200は、1枚壁の構造のものであって差し支えない。多壁の実施の形態において、外壁222は、二つ以上の壁を有していて差し支えない。
【0053】
ダクト200は、部品入りケーク106の上側部分の開いた上側末端部分および部品入りケーク106内の閉じた下側末端部分を有する。未溶融粉末は、内壁221によって画成されたダクトの区域から除去されている。内壁221によって画成されたこの区域は、ダクト200内のリザーバ270を実質的に形成する。内壁221および外壁222は互いに平行に形成されているので、環状空間275が内壁221と外壁222との間に存在している。液体冷却媒体は、部品入りケーク106から熱を引き出し冷却媒体へと熱を伝達するためにリザーバ270中に導入することができる。
【0054】
ある特別な実施の形態において、温度制御液体がリザーバ270中に導入され、その流体がリザーバ270内で循環させられる。1つのリザーバのみが図8に示されここに説明されているが、本発明はさらに、多数のリザーバが部品入りケーク106内に形成される方法を包含することが理解されよう。温度制御液体は、冷却ポンプ・システムなどの外部の熱交換器(図示せず)を用いて、リザーバ270内に循環させることができる。温度制御液体媒体は、供給ライン260を通してリザーバ270中にポンプで送り込み、戻りライン262を通してリザーバからポンプで排出することができる。供給ライン260はリザーバ270の底部に位置し、戻りライン262はリザーバ270の頂部近くに位置することが優先される。リザーバ270には最初に液体冷却媒体を充填することができ、外部の循環システムが、一定流量の温度制御液体をリザーバの底部に供給し、ダクト200の内壁221との熱交換によって暖められた液体をリザーバの頂部から除去し、部品入りケーク106から熱を取り出す。液体冷却媒体のそのような循環が図8に示されており、矢印が、リザーバ270内の液体の動きを示している。他の実施の形態において、供給ライン260および戻りライン262は、有用な制御様式で部品入りケークから熱を効率的に除去するために有益であると当業者に認識されるのであれば、リザーバ270内の様々な深さに配置しても差し支えない。
【0055】
図8に示した実施の形態において、リザーバ270が内部に形成されたダクト200は実質的に、部品入りケーク106の頂部から底部に垂直に渡り、それによって、部品入りケーク106の大部分から熱を除去する。他の実施の形態において、部品入りケーク内に形成されたリザーバは、部品入りケーク中の異なる位置で生じるのが望ましい温度環境に依存して、部品入りケーク内の様々な深さで終わっても差し支えない。リザーバは、様々な形状と向きを取ることができ、必ずしも直線または厳密に垂直である必要はない。むしろ、未溶融粉末をリザーバから除去でき、リザーバの頂部が、部品入りケークの頂部と同じ高さ、部品入りケークの上、または部品入りケーク中への冷却媒体が漏れることに対して封止されるように形成されている限り、リザーバは、部品入りケーク内で任意の形状および向きのものであって差し支えない。
【0056】
液体冷却媒体用のリザーバとして使用するために形成されたダクトは1枚壁ダクトであって差し支えなく、それは、このことによって、廃物として廃棄しなければならない冷却方法に用いられる未溶融粉末の体積が減少するからである。しかしながら、あるプロセス条件下で、壁が非多孔質であるようにダクトが形成されている場合でさえも、ダクト壁は、ダクト壁を通る液体冷却媒体の移動を完全に防ぐほど十分な完全さを有していないかもしれない。そのような移動が生じた場合には、ダクト壁の周りの未溶融粉末は、液体により湿らされ、粉末を廃棄する必要が生じるか、または再使用の前に粉末をさらに処理する必要が生じる得る。したがって、ある実施の形態において、図8に示した二重壁ダクトなどの多壁ダクトを形成することが有益であろう。図8に示したように、未溶融粉末は、内壁により画成された区域から除去されて、その中にリザーバが形成されるが、内壁と1つ以上の外壁との間の環状空間内に未溶融粉末が残されている。
【0057】
図9は、図8からのダクトと部品入りケークの一部分の詳細図を与える。図9に示したように、内壁221と外壁222との間の環状空間275は未溶融粉末195が充填されたままである。リザーバ270から内壁221を通って移動する任意の液体冷却媒体は、環状空間275内に捕捉され、外壁222を通って部品入りケーク106内の残りの未溶融粉末195中に移動するようには進行しない。液体は、環状空間275内の未溶融粉末によって吸収され、乾燥粉末を通って毛管作用により運ばれ、部品入りケーク106の頂部の環状空間275の頂部から雰囲気へと蒸発する。この多壁/粉末充填環状空間の組合せによって、部品入りケーク106の残りの部分にある未溶融粉末195が保護され、またこの毛管作用と蒸発作用によって追加の冷却効果が与えられる。
【0058】
図10は、液体冷却媒体を収容するダクト/リザーバを用いた本発明の追加の実施の形態を示している。図10は、部品入りケーク106、および層毎の構築プロセス後のその内容物の垂直面を通る断面を与える点で図9に似ている。図10から分かるように、層毎の構築プロセスにおいて形成されたダクト200は、開いた頂部末端部分および閉じた底部末端部分を有する1枚壁ダクトであって差し支えなく、その壁は、液体冷却媒体を収容するためのリザーバ270を形成している。このリザーバ270は、本発明で形成されたダクトに可能な追加の様々な形状の内の1つを示している。
【0059】
図10においてさらに示されるように、ある実施の形態において、構築プロセス中にトレイまたはキャッチ・ベースン290を形成することができる。キャッチ・ベースン290は、部品入りケーク106内の未溶融粉末195の頂部層を包囲し、ダクト200の頂部に一体的に接続されている。キャッチ・ベースン290は、ダクト200の頂部の周りの区域にある部品入りケーク106の頂部の一部のみを覆い、部品入りケーク106の頂部の少なくともある部分で雰囲気に開いていることができる。所望であれば、キャッチ・ベースン290は、部品入りケーク106の全頂面を被覆しても差し支えない。キャッチ・ベースン290は、液飛びによる、または上述した外部のポンプ装置の使用に関連する流動/ポンプ作用による、リザーバ270から漏れる任意の液体冷却媒体から、下にある未溶融粉末195を保護する。
【0060】
上述した様々な実施の形態において、熱伝達通路を有するダクトは、層毎の構築プロセス中にレーザ焼結によって形成することができる。そのような形成は、ダクトを、部品入りケークおよびその中に収容される構成部品を制御可能に冷却するのに有用な任意の形状、サイズ、配列または位置に形成することができるという点で特に有益である。一般に、上述したように、ダクトは層毎の構築プロセス中に形成され、構築プロセスが完了した後、未溶融粉末がダクトから除去され、冷却媒体が導入される。本発明の特別な実施の形態において、ダクトは、冷却媒体を導入し、除去するための開口部(一般に、部品入りケークの頂部に)を1つしか有さない。他の実施の形態において、ダクトは部品入りケークの頂部に2つ以上の開口部を有し、ここで、冷却媒体は一方の開口部から導入し、別の開口部から除去することができる(貫流(flow-through)システムを提供する)。
【0061】
本発明の別の実施の形態によれば、ダクトは2つ以上の開口部を有して貫流システムを形成し、少なくとも1つの開口部が部品入りケーク内にあり、部品入りケークを収容しているシリンダの側壁もしくはシリンダの底部を形成するピストンにまたはその近くにあることが優先される。そのような構造を有する1つの特別な実施の形態が図11に示されており、この図は、シリンダの側壁177およびピストン128により画成されたシリンダ175内に収容された部品入りケーク106の垂直面を通る断面を示している。部品入りケーク106内に収容されているのは、未溶融粉末195および構築部品210である。
【0062】
図11から分かるように、層毎の構築プロセスに用いられる部品入りケーク・シリンダ装置は、シリンダの側壁177およびピストン128内の永久的接続手段350の存在によって特別に特徴付けられる。そのような接続手段は、側壁177、ピストン128、またはその両方の様々な位置に計画的に配置することができ、ダクトを形成するために用いられる構築ソフトウェアにおいて特定される空間位置にあることが優先される。接続手段350は、ダクト200から未溶融粉末195を除去するまたは冷却媒体をダクト200中に導入するのに有用な管または他の取付器具に容易に接続できるように標準化されていることが好ましい。接続手段350は、その全てが本発明により包含される、様々なタイプ、形状、および構造のものであって差し支えない。
【0063】
シリンダの側壁177およびピストン128内に永久的に配置された接続手段350について、管200は、永久的な接続手段350と整合した少なくとも1つの末端部分を有するように層毎の構築プロセス中に形成することができる。ある実施の形態において、ダクト200は、接続手段350と整合した1つの末端部分および部品入りケーク106の頂部にある1つの末端部分を有するように形成される。この実施の形態によれば、接続手段350は、シリンダの側壁177またはピストン128内にあっても差し支えない。別の実施の形態において、ダクト200は、1つの接続手段350と整合した1つの末端部分および別の接続手段350と整合した1つの末端部分を有するように形成される。図11に示したように、ダクト200は、例えば、直線かつ垂直または曲線である多数の形態をとって差し支えない。ある実施の形態において、ダクト200は、構築部品210に少なくとも部分的にしたがうように形成される。ダクト200は、シリンダ175の両側のシリンダ側壁177内の2つの接続手段350の間に形成された、直接かつ水平であって差し支えない。
【0064】
一旦、構築プロセスが完了し、ダクト200が部品入りケーク106内に形成されたら、ダクトは、未溶融粉末195が除去されて、冷却媒体の導入の準備ができる。接続手段350は、未溶融粉末が接続手段350に進入するを永久的に防ぐためのキャップまたは他の手段を有することができる。ダクト200は、接続手段350に直に隣接する固化部分を有するように形成しても差し支えない。一旦構築プロセスが完了したら、キャップは取り外し、またはダクト200の端部の固化部分を壊して外し、ダクト200内に未溶融粉末195にアクセスすることができる。次いで、未溶融粉末195を、真空吸引などによって、除去することができる。ダクト200の両端部部分が接続手段350にある場合、未溶融粉末195は、一方の接続手段350での真空吸引の施用および他方の接続手段350での加圧ガスの施用によって、除去することができる。ここに記載した追加の実施の形態に関して説明した粉末除去方法も本発明により使用できる。例えば、粉末をバラバラにし、それをダクトから除去するのを補助するために、粉末除去器具をダクト内に形成することができる。
【0065】
接続手段がシリンダの側壁にある場合、側壁の内側部分の接続手段は、図11に示されるように、側壁と同一平面にあることが優先される。そのような配列によって、シリンダ内のピストンの動きを接続手段が妨害するのが防がれ、ピストンの外縁は、ピストンの周りで粉末が失われないようにシリンダの側壁と封止接触している。
【0066】
熱伝達通路がダクトとして形成されているここに記載した追加の実施の形態と同様に、導入される冷却媒体は、所望の冷却速度および部品入りケーク中に形成されるダクトの構造に応じて異なって差し支えない。温度制御された冷却媒体は気体媒体または液体媒体であることが優先される。
【0067】
本発明のさらに別の実施の形態によれば、熱伝達通路は、部品入りケーク内に構築部品を形成するのに用いられる層毎の構築プロセスが完了した後に形成しても差し支えない。固体の冷却媒体が用いられるある特別な実施の形態において、熱伝達通路は、固体冷却媒体の導入と同時に形成される。そのような実施の形態が図12に示されている。この図は、未溶融粉末195および構築部品210を中に有する部品入りケーク106の垂直面を通る断面を示してる。この部品入りケークを制御冷却するために、この図はさらに、部品入りケーク106中に導入された固体冷却媒体(305および307)を示している。この実施の形態によれば、固体冷却媒体(305および307)は、構築部品210と直接接触しないように注意しながら、部品入りケーク106内の未溶融粉末195中に押し込まれる。部品入りケーク106中に固体冷却媒体(305および307)を導入するのに用いられる機械的力によって、未焼成粉末195を置き換えることにより固体冷却媒体(305および307)を収容するための通路が形成される。
【0068】
図12は、熱伝達通路が部品入りケーク106内に形成されるのと同時に固体冷却媒体(305および307)が導入される実施の形態を示している。図12にさらに示すように、固体冷却媒体(305および307)、および固体冷却媒体(305および307)の部品入りケーク106中への導入により形成される熱伝達通路は、固体冷却媒体(305および307)の少なくとも一部分が部品入りケーク106中に導入されている限り、様々な深さのものであって差し支えない。固体冷却媒体および熱伝達通路が垂直に配置される必要はない。
【0069】
本発明にしたがって、どのような適切な固体冷却媒体を用いても差し支えない。ある特別な実施の形態において、固体冷却媒体はヒート・パイプからなる。ヒート・パイプは、一点から別の点に熱を迅速に伝達できる装置を説明するために用いられる総称である。ヒート・パイプは一般に、密閉容器、この容器内の作用流体、およびこの容器内の芯または毛管構造からなる。ヒート・パイプは、芯を形成する多孔質毛管を用いた蒸発−凝縮サイクルによって、引力に逆らって熱を効果的に伝達できる。この芯は、凝縮液を蒸発器に戻す毛管駆動力を与える。通常芯の品質およびタイプがヒート・パイプの性能を決定する。
【0070】
別の好ましい実施の形態によれば、固体冷却媒体は熱伝導性プローブ307からなる。熱伝導性プローブは一般に、ヒート・パイプよりも構造が単純であり、単に金属管またはロッドからなることも多い。金属は、銅やアルミニウムなどのように高熱伝導性である。さらに好ましい実施の形態において、熱伝導性プローブ307は、温度制御能動冷却システムなどの、外部の熱交換器に接続することができる。この実施の形態において、熱エネルギーは、部品入りケーク106の暖かい部分から、より冷たい熱伝導性プローブ307またはヒート・パイプ305に伝達される。次いで、この熱は、熱伝導性プローブ307から雰囲気に伝達されるか、またはヒート・パイプ305の内部の熱交換システム内で分散される。熱伝導性プローブ307が温度制御能動冷却システムに接続されている場合、熱はプローブ307から冷却システムに伝達される。
【0071】
本発明の別の実施の形態において、熱伝達通路はそれ自体少なくとも部分的に固体であって差し支えない。そのような実施の形態において、固体の熱伝達通路が、熱を部品入りケークから一般に雰囲気中への移動を促進するように機能するので、冷却媒体を導入する必要はない。そのような実施の形態の1つが図13に示されている。ここでは、シリンダ175内に収容され、未溶融粉末195および層毎の構築プロセス中に形成された構築部品210を中に有する部品入りケークの垂直面をとおる断面が示されている。図13に示した実施の形態において、熱伝達通路は冷却フィン325として存在する。この実施の形態において、冷却フィンは、溶融粉末からなり、層毎の構築プロセス中にレーザ焼結によって形成される。
【0072】
レーザ焼結プロセス中に形成された固化材料は一般に、未溶融粉末195よりも著しく熱伝導性が高いことが知られている。冷却フィン325は、構築部品210に関して部品入りケーク106内の所望の位置で、ソフトウェアによって自動的に生成しても、構築ファイルに手動で加えられても差し支えない。構築プロセス中、冷却フィン325は、冷却が高められることが望ましい、構築部品210の周りなどの部品入りケーク106の特定の区域に関して近くに構築することができる。冷却フィン325は、熱伝導の増加した通路を与え、冷却が高められることが望ましい区域から部品入りケークの表面まで連続するように形成できる。特別な実施の形態において、冷却フィン325は、少なくともある程度性質が適合するものであり、部品入りケーク106内の1つ以上の構築部品210の形状に少なくとも部分的に従うような形状である。別の実施の形態において、部品入りケーク106の頂部の冷却フィンの末端部分は、相対的に冷たい放熱板(図示せず)に物理的に接続することができ、これは、熱エネルギーを、部品入りケーク106から、特に、冷却を高める必要のある所望の特定の区域から引き出す。
【0073】
図13に示したように、冷却フィン325は様々な形態をとることができる。例えば、冷却フィンは、角のある、直線の、および曲線の形態の様々な組合せをとる、溶融粉末の1つの連続片からなることができる。冷却フィンは、1つ以上の枝がそこから部品入りケーク中に延在する本体を持つ分岐構造からなっていて差し支えない。部品入りケークの冷却速度をさらに制御するために、部品入りケーク全体に亘り、それぞれ部品入りケークの表面まで延在する多数の個々の冷却フィンを形成することが有利であるかもしれない。他の有利な配列が、当業者により考えることができ、本発明により包含される。
【0074】
本発明の別の実施の形態によれば、熱伝達通路は、層毎の構築プロセスが完了した後に部品入りケーク内に形成さるダクトからなる。本発明の他の実施の形態に関して前述したように、熱伝達通路がダクトからなる場合、それらのダクトは、レーザ焼結によって層毎の構築プロセス中に形成できることが有利である。この実施の形態において、ダクトは、部品入りケーク内の未溶融粉末に通路を掘り、掘った通路内に柔軟な管などの予め作製された部材を挿入することによって形成しても差し支えない。
【0075】
ある特別な実施の形態において、部品入りケーク中をボーリング・ヘッドまたはドリル用ビットを導くために、「指向性穴あけ」システムを用いることができる。ボーリング・ヘッドが部品入りケーク中を移動するときに、未溶融粉末が除去されて、部品入りケークを通る開放通路が形成される。その後、固体の柔軟な管(または他のダクト状装置)をその通路に挿入することができる。特に好ましい実施の形態において、ボーリング・ヘッドは、通路を掘ると同時に、管を後に引き込み、直ちに、掘った通路に管を埋め込み、それによって、部品入りケーク全体に亘りダクト状熱伝達通路を形成する。ボーリング・システムは、部品に損傷を与えずに構築部品の近くと周りにダクトを形成するために、部品入りケーク内の三次元空間内でボーリング・ヘッドの位置をモニタし、ボーリング・ヘッドを部品入りケーク中を導くことのできるプログラフによってコンピュータ制御されていることが有利である。通路を掘り、その中に管を配置することによって、一旦、ダクトが形成されたら、部品入りケークの冷却を促進するために、冷却媒体をダクト内に導入することができる。
【0076】
部品入りケーク内の熱伝達通路の形成は、コンピュータ制御下で有益に行われる。例えば、熱伝達通路が溶融粉末から形成されたダクトである場合、ダクトの配置は、構築プロセス中に形成すべき構築部品に関連してマッピングすることができる。ダクトは、構築ファイルの一部で形成され、構築プロセス中に自動的に生成される。同様に、熱伝達通路が、ボーリング・ヘッドを用いてトンネルを掘り、その中に管を配置することなどによって、構築プロセス後に形成される場合、部品入りケーク内の構築部品の位置をマッピングするように構築ファイルを解釈するようにコンピュータを有益に使用する。このコンピュータは、部品入りケークを通るようにボーリング・ヘッドを案内して、部品入りケークの冷却を制御するために構築部品に有利に近接して熱伝達通路を形成しながら構築部品を避けることができる。
【0077】
上述したことに加え、特に好ましい実施の形態において、部品入りケーク全体に亘る熱伝達通路の配置は、通常の構築ファイル生成ソフトウェアと、熱分析ソフトウェアや流体力学計算ソフトウェアなどの追加の分析ソフトウェアとの組合せによって自動的に生成することができる。そのような組合せによって、熱伝達通路を最適化された位置と経路で部品入りケーク全体に亘り有利に配置することができる。最適化された位置および経路は、構築部品の幾何学的歪みを最小にし、部品入りケークの冷却速度を最大にするために特に有益である。本発明によるレーザ焼結システムは、構築部品の幾何学形状や精度に悪影響を及ぼさずに、プロセス時間を減少させ、スループットを増加させる。
【0078】
本発明の多くの改変および他の実施の形態が、上述した説明および関連する図面に示した教示の恩恵を受けた本発明に関連する当業者には想起されるであろう。したがって、本発明は、開示した特定の実施の形態に制限されるべきではなく、改変や他の実施の形態も添付の特許請求の範囲に含むべきことが意図されているのが理解されよう。ここには特定の用語を用いたが、それらは、一般的な説明の意味で用いられ、制限を目的とするものではない。
【図面の簡単な説明】
【0079】
【図1】システムの機構のいくつかを示す従来の選択的レーザ焼結装置の正面図
【図2】ダクトが部品入りケーク内に形成され、未溶融粉末が排出された、本発明のある実施の形態を示す、層毎の構築プロセスが完了した後の部品入りケークの垂直面にとられた断面図
【図3】ダクトに未溶融粉末が充填されたままであり、ダクトが粉末除去装置内に形成されている、部品入りケークの垂直面にとられた断面図
【図4】図3からのダクトの一部の詳細図
【図5】多壁ダクトが「コアおよびキャビティ」システム内の部品入りケーク内に形成されている、本発明のさらに別の実施の形態の垂直面にとられた断面図
【図6】図示された右側の「コア」がある程度除去されている、図5に示した多壁ダクトの底部の詳細図
【図7】気体冷却媒体を用いて、多孔質ダクトを通して部品入りケーク中にポンプで送り込むことによって部品入りケークを冷却する、本発明のある実施の形態の垂直面にとられた断面図
【図8】多壁ダクトが液体冷却媒体リザーバとして形成されている、本発明の別の実施の形態の垂直面にとられた断面図
【図9】特に、壁間の環状空間を示す、図8の多壁ダクトの一部の詳細図
【図10】特に、代わりのダクト/リザーバ構成の使用および液体冷却媒体から未溶融粉末を保護するためのキャッチ・ベースンの使用を示す、本発明の別の実施の形態の冷却システムを備えた部品入りケークの垂直面にとられた断面図
【図11】部品入りケーク内に形成されたダクトに連結するための円筒側壁およびピストン内の永久連結手段を備えた収容シリンダ内の部分ケークの垂直面にとられた断面図
【図12】熱伝達通路が固体冷却媒体を部品入りケーク中に導入することによって形成された、部品入りケークの垂直面にとられた断面図
【図13】熱伝達通路が層毎の構築プロセス中に形成された適合した冷却フィンである、部品入りケークの垂直面にとられた断面図
【符号の説明】
【0080】
100 レーザ焼結システム
104 レーザ・ビーム
106 部品入りケーク
120,122 加熱要素
123,129 供給シリンダ
124,126 供給システム
125,127 供給ピストン
128 ピストン
175 シリンダ
195 未焼成粉末
200 ダクト
210 構築部品
221 内壁
222 外壁
260 供給ライン
262 戻りライン
270 リザーバ
350 接続手段

【特許請求の範囲】
【請求項1】
未溶融粉末および層毎の構築プロセス中に形成される1つ以上の構築部品をその中に有する部品入りケークの少なくとも一部分を制御冷却する方法であって、前記部品入りケークの少なくとも一部分内に1つ以上の熱伝達通路を選択的に形成する工程を有してなる方法。
【請求項2】
前記1つ以上の熱伝達通路を、前記層毎の構築プロセス中にレーザ焼結によって形成することを特徴とする請求項1記載の方法。
【請求項3】
前記部品入りケークがシリンダ内に収容されており、前記方法が、前記シリンダの少なくとも一部分に熱を加える工程をさらに含むことを特徴とする請求項1記載の方法。
【請求項4】
前記熱を加える工程が、前記シリンダの外面の少なくとも一部分にヒータ・バンドを施す工程を含むことを特徴とする請求項3記載の方法。
【請求項5】
加えられた前記熱をゆっくりと減少させることを特徴とする請求項4記載の方法。
【請求項6】
前記1つ以上の通路が中空の1枚壁ダクトからなることを特徴とする請求項2記載の方法。
【請求項7】
前記ダクトが前記部品入りケークの外面に1つ以上の末端部分を含むことを特徴とする請求項6記載の方法。
【請求項8】
前記ダクトから未溶融粉末を除去する工程をさらに含むことを特徴とする請求項6記載の方法。
【請求項9】
前記未溶融粉末を除去する工程が、前記ダクトに真空吸引を行う工程を含むことを特徴とする請求項8記載の方法。
【請求項10】
前記未溶融粉末を除去する工程が、前記ダクトから前記未溶融粉末を掘り出す工程を含むことを特徴とする請求項8記載の方法。
【請求項11】
前記ダクト中に冷却媒体を導入する工程をさらに含むことを特徴とする請求項6記載の方法。
【請求項12】
前記冷却媒体が気体を含むことを特徴とする請求項11記載の方法。
【請求項13】
前記冷却媒体が液体を含むことを特徴とする請求項11記載の方法。
【請求項14】
前記1つ以上の熱伝達通路を形成する工程が、前記部品入りケーク中に固体冷却媒体を挿入する工程を含むことを特徴とする請求項1記載の方法。
【請求項15】
前記1つ以上の熱伝達通路が、溶融粉末から形成された固体冷却フィンを含むことを特徴とする請求項2記載の方法。
【請求項16】
前記1つ以上の熱伝達通路を、前記部品入りケーク内に1つ以上のトンネルを掘り、該トンネル内に管を配置することによって形成することを特徴とする請求項1記載の方法。
【請求項17】
前記1つ以上の熱伝達通路を、構築ファイル生成ソフトウェアと熱分析ソフトウェアとの組合せによって自動的に形成することを特徴とする請求項2記載の方法。
【請求項18】
前記1つ以上の熱伝達通路が、1枚壁ダクトおよび多壁ダクトからなる群より選択されることを特徴とする請求項6記載の方法。
【請求項19】
前記部品入りケークがシリンダ内にあり、前記1つ以上のダクトが、前記シリンダ中に構築された永久的接続手段への取付けのために形成された少なくとも1つの末端部分を含むことを特徴とする請求項6記載の方法。
【請求項20】
前記層毎の構築プロセス中に前記1つ以上のダクト内にレーザ焼結によって粉末除去器具を形成する工程をさらに含むことを特徴とする請求項8記載の方法。
【請求項21】
前記1つ以上のダクトから未溶融粉末を除去する工程が、前記粉末除去器具を前記1つ以上のダクトから取り出す工程を含むことを特徴とする請求項20記載の方法。
【請求項22】
前記1つ以上のダクトが内壁と1つ以上の外壁を有し、前記未溶融粉末が、前記内壁から形成された前記1つ以上のダクトの空間から除去されることを特徴とする請求項6記載の方法。
【請求項23】
前記1つ以上のダクトが、前記部品入りケークの頂面で開いており、該部品入りケーク内の下方に延在していることを特徴とする請求項6記載の方法。
【請求項24】
前記1つ以上のダクトを、その中に冷却媒体を導入するために冷却媒体供給源に取り付けるための開放末端部分を有するように形成することを特徴とする請求項11記載の方法。
【請求項25】
前記1つ以上のダクトが、リザーバを画成する内壁と、1つ以上の外壁であって、該内壁と該1つ以上の外壁との間に1つ以上の環状空間を画成する1つ以上の外壁とからなる多壁ダクトであることを特徴とする請求項6記載の方法。
【請求項26】
前記未溶融粉末が、少なくとも前記リザーバから除去され、前記壁の間の1つ以上の環状空間の内の少なくとも1つに残されていることを特徴とする請求項25記載の方法。
【請求項27】
前記液体冷却媒体を前記リザーバ内に循環させることを特徴とする請求項26記載の方法。
【請求項28】
前記液体冷却媒体を外部の熱交換器に通して循環させることを特徴とする請求項27記載の方法。
【請求項29】
側壁、開放頂部、およびピストンにより画成された底部を有する、部品入りケークを収容しているシリンダを有してなるレーザ焼結装置であって、前記シリンダが、層毎の構築プロセス中に前記部品入りケーク内に形成される熱伝達ダクトの末端部分を受容するための1つ以上の接続手段を含むことを特徴とするレーザ焼結装置。
【請求項30】
前記1つ以上の接続手段の内の少なくとも1つが前記シリンダの側壁にあることを特徴とする請求項29記載の装置。
【請求項31】
前記1つ以上の接続手段の内の少なくとも1つが前記ピストン内にあることを特徴とする請求項29記載の装置。
【請求項32】
前記1つ以上の接続手段が、粉末除去装置または冷却媒体供給装置への外部取付けのために配置されていることを特徴とする請求項29記載の装置。
【請求項33】
前記シリンダがその中に形成された部品入りケークを含み、該部品入りケークが、前記層毎の構築プロセス中に形成された1つ以上の熱伝達通路を含むことを特徴とする請求項29記載の装置。
【請求項34】
前記1つ以上の熱伝達通路が、1つ以上の1枚壁ダクト、1つ以上の多壁ダクト、および1つ以上の冷却フィンからなる群より選択される構造を含むことを特徴とする請求項33記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2006−183146(P2006−183146A)
【公開日】平成18年7月13日(2006.7.13)
【国際特許分類】
【外国語出願】
【出願番号】特願2005−353238(P2005−353238)
【出願日】平成17年12月7日(2005.12.7)
【出願人】(597013711)スリーディー システムズ インコーポレーテッド (43)
【Fターム(参考)】