説明

酸素吸収性樹脂組成物

【課題】優れた酸素吸収性、特に酸素吸収により不快な臭気を発生せず、透明性の高い酸素吸収性樹脂組成物を提供する。
【解決手段】一般式(I)の構造単位を有する熱可塑性樹脂(A)、遷移金属塩(B)、および必要に応じてマトリックス樹脂(C)を含有する酸素吸収性樹脂組成物(Xはメチレン基または酸素原子、R、R、RおよびRはそれぞれ独立して水素原子またはアルキル基)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、酸素に対し感受性が高く劣化し易い製品、特に食品、飲料、医薬品、化粧品などの包装材料、容器などに用いられる、酸素吸収性樹脂組成物に関する。本発明はまた、このような酸素吸収性樹脂組成物を用いた成形品、例えば食品、飲料、医薬品、化粧品などの包装材料、容器などに関する。
【背景技術】
【0002】
ガスバリア性樹脂、例えばエチレン−ビニルアルコール共重合体(以下、EVOHと略すことがある)は、酸素バリア性および二酸化炭素バリア性に優れた材料である。このような樹脂は溶融成形が可能であるので、耐湿性、機械的特性などに優れた熱可塑性樹脂(ポリオレフィン、ポリエステルなど)の層と積層され、多層包装材として好適に用いられる。しかしながら、これらのガスバリア性樹脂の気体透過性は完全にゼロであるわけではなく、無視し得ない量の気体を透過する。このような気体の透過、とりわけ、包装体の内容物、特に食品の品質に大きな影響を及ぼす酸素の透過を低減するために、また、内容物の包装時点ですでに包装体内部に存在する酸素を吸収させて除去するために、包装材料に酸素吸収剤を混合させて使用することが行われている。
【0003】
例えば、酸素吸収に適した配合物として、エチレン性不飽和炭化水素と遷移金属触媒を含有する組成物(特許文献1参照)が提案されている。また、EVOHと酸素吸収剤とを含む樹脂組成物が提案されている(特許文献2、特許文献3および特許文献4参照)。特にEVOHを含む樹脂組成物は、EVOHと同様に溶融成形が可能なので、各種包装材料に好ましく用いることができる。
【0004】
しかしながら、上記の酸素吸収剤を混合した包装材料または樹脂組成物を包装材として使用すると、酸素吸収が進むにつれて酸素吸収剤が分解し、不快な臭気が発生する場合が多い。そのため、無臭性が要求される用途においてはなお改良の余地があった。
【0005】
一方、不快な臭気を発生しない、実質的に主鎖のみに炭素−炭素二重結合を有する熱可塑性樹脂および遷移金属塩を含有する酸素吸収性樹脂組成物が提案されている(特許文献5参照)。しかしながら、当該組成物の相容性を高めるために、相容化剤としての役割を発揮する添加剤を加えるなどの処置が必要であること、相容化剤を添加した場合でも、分散性を十分に高めることは難しく、前記熱可塑性樹脂の添加量をあまり増やすと、得られる酸素吸収性樹脂組成物を成形した成形体が白化するなどの問題点が残っていた。
【0006】
また、食品包装の分野においては、さらなる保存性向上のために包装体内部の残存酸素を速やかに除去することが求められる場合があり、この場合、単に酸素吸収能力が大きいことではなく、初期の短期間の酸素吸収速度が大きいことが求められる。
【0007】
かかる初期酸素吸収速度を向上させる方法として、ひとつには基材樹脂中における酸素吸収性樹脂組成物の分散性を向上させることが考えられる。しかしながら、前記したように、従来の技術では、相容化剤を添加しても分散性を十分に向上させることは難しいのが現状であった。
【0008】
主鎖に炭素−炭素二重結合を有する樹脂と、ポリビニルアルコール系樹脂などの比較的極性の高い樹脂の樹脂組成物における分散性を向上させるために、主鎖に炭素−炭素二重結合を有する樹脂をマレイン化することで相容性を向上させることが開示されている(特許文献6参照)。しかしながら、かかる樹脂組成物において、酸素吸収性樹脂への適用という観点から考察した場合、炭素−炭素二重結合のアリル位に無水マレイン酸骨格が結合しているために、酸素吸収に伴う酸化開裂によって低分子量の分解物が生じて不快な臭気が発生する恐れがあるため、依然として改良の余地がある。
【0009】
【特許文献1】特開平5−115776号公報
【特許文献2】特開2001−106866号公報
【特許文献3】特開2001−106920号公報
【特許文献4】特開2002−146217号公報
【特許文献5】特開2005−187808号公報
【特許文献6】特開2006−307208号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明の目的は上記してきた課題を解決することであり、優れた酸素吸収性を有し、酸素吸収により不快な臭気を発生せず、かつ初期酸素吸収速度を向上させるに十分な分散性を与える酸素吸収性樹脂組成物を提供することにある。
【課題を解決するための手段】
【0011】
本発明によれば、上記の目的は、下記一般式(I)
【0012】
【化1】

【0013】
(式中、Xはメチレン基または酸素原子であり、R、R、RおよびRはそれぞれ水素原子またはアルキル基を表す。)
で示される構造単位(以下、構造単位(I)と称する)を含有する熱可塑性樹脂(A)(以下、単に熱可塑性樹脂(A)と称する)、および遷移金属塩(B)を含有する酸素吸収性樹脂組成物を提供することにより達成される。
【0014】
本発明の好適な実施態様は、熱可塑性樹脂(A)が、下記一般式(II)
【0015】
【化2】

【0016】
(式中、X、R、R、RおよびRは前記定義のとおりである。)
で表される酸無水物(以下、酸無水物(II)と称する。)と、シクロオクタジエン、シクロオクテンおよびノルボルネンからなる群より選択される少なくとも1種の環状オレフィンを開環メタセシス重合で共重合させて得られる共重合体であり、遷移金属塩(B)がニッケル塩、マンガン塩およびコバルト塩からなる群から選択される少なくとも1種の金属塩である。
【0017】
また、上記酸素吸収性樹脂組成物は、さらにマトリックス樹脂(C)を含有してもよく、熱可塑性樹脂(A)からなる粒子がマトリックス樹脂(C)のマトリックス中に、分散しており、かつ熱可塑性樹脂(A)とマトリックス樹脂(C)の合計質量を100質量%としたとき、該熱可塑性樹脂(A)は30〜1質量%、該マトリックス樹脂(C)は70〜99質量%の割合であるのが本発明のさらに好ましい実施態様である。そして、マトリックス樹脂(C)は好適にはポリビニルアルコール系樹脂であり、より好適にはエチレン含有量5〜60モル%、ケン化度90%以上のエチレン−ビニルアルコール共重合体である。
【発明の効果】
【0018】
本発明によれば、優れた酸素吸収性を有し、酸素吸収により不快な臭気を発生しない酸素吸収性樹脂組成物が得られる。特に、該樹脂組成物を含む容器は、食品、化粧品などの酸素による劣化を受け易く、かつ香りが重視される製品を保存するために有用である。本発明によればまた、取り扱いの容易な脱酸素剤としても有用な酸素吸収性樹脂組成物が得られる。
【発明を実施するための最良の形態】
【0019】
(1)熱可塑性樹脂(A)
本発明の酸素吸収性樹脂組成物は、熱可塑性樹脂(A)を含有する。構造単位(I)および酸無水物(II)におけるR、R、RおよびRがそれぞれ独立して表すアルキル基としては、炭素原子数1〜5のアルキル基が好ましく、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基などが挙げられる。熱可塑性樹脂(A)は、好適には、酸無水物(II)とシクロオクテン、シクロオクタジエンおよびノルボルネンからなる群より選択される少なくとも1種の環状オレフィンを開環メタセシス重合で共重合させて得られる共重合体である。かかる共重合体中における構造単位(I)の含有量に特に制限はないが、好ましくは共重合体を構成する全単量体のモル量に対する酸無水物(II)のモル量として0.1モル%以上であることが好ましい。なお、酸無水物(II)の具体例としては、入手性、経済性を考慮すると、5−ノルボルネン−2,3−ジカルボン酸無水物、5−オキサノルボルネン−2,3−ジカルボン酸無水物などが好ましい化合物として挙げられる。
【0020】
熱可塑性樹脂(A)は、構造単位(I)内に炭素−炭素二重結合を有するため、酸素と効率よく反応することが可能であり、その結果、酸素吸収機能が得られる。本明細書では、「炭素−炭素二重結合」には、芳香環中の炭素−炭素二重結合は含まない。
【0021】
熱可塑性樹脂(A)が有する炭素−炭素二重結合の量は、0.001〜0.020mol/gであることが好ましく、0.005〜0.018mol/gがより好ましく、0.007〜0.012mol/gがさらに好ましい。炭素−炭素二重結合の含有量が0.001mol/g未満である場合、得られる酸素吸収性樹脂組成物の酸素吸収機能が不十分となる傾向となり、0.020mol/gを超える場合は、熱可塑性樹脂(A)を含む酸素吸収性樹脂組成物を他の樹脂と共に成形すると着色やブツが生じる傾向となる。
【0022】
熱可塑性樹脂(A)が有する構造単位(I)においては、炭素−炭素二重結合がポリマー主鎖内に存在するため、酸素吸収により炭素−炭素二重結合やそのアリル位が部分酸化、あるいは切断されても、側鎖中の炭素−炭素二重結合が切断された場合のような低分子量の断片が生じにくく、臭気物質を発生しにくい。
【0023】
さらに、構造単位(I)は、主鎖をその一部とする環状構造を有することを特徴とする。このような環状構造を有することで、熱可塑性樹脂(A)を含む酸素吸収性樹脂組成物は、酸素吸収に伴う臭気発生を抑制しつつ、ポリビニルアルコール系樹脂などの極性の高い樹脂への高い相容性を発現する。
【0024】
熱可塑性樹脂(A)の重量平均分子量(Mw)は、好ましくは10,000〜250,000であり、より好ましくは40,000〜200,000の範囲である。熱可塑性樹脂(A)の重量平均分子量(Mw)が10,000未満の場合や500,000を超える場合には、得られる酸素吸収性樹脂組成物の成形加工性、ハンドリング性、成形品とした場合の強度や伸度等の機械的性質が低下する傾向にある。また、後述するマトリックス樹脂(C)と混合して使用する場合、熱可塑性樹脂(A)の分散性が低下し、その結果、酸素吸収性能が低下し、かつマトリックス樹脂(C)の性質が十分に発揮できない(例えば、ガスバリア性が不十分である)場合がある。
【0025】
熱可塑性樹脂(A)は、例えば、シクロオクタジエンと5−ノルボルネン−2,3−ジカルボン酸無水物を原料とし、開環メタセシス重合触媒の存在下に開環メタセシス重合により共重合させることで製造できる。開環メタセシス重合触媒としては、例えば、遷移金属化合物と助触媒として機能するアルキル化剤又はルイス酸との組み合わせによる開環メタセシス重合触媒、周期表第4〜8族遷移金属カルベン錯体触媒などが挙げられる。これらの開環メタセシス重合触媒は単独で、あるいは2種類以上を混合して使用することができる。これらの中でも、助触媒を必要とせず、しかも高活性であることから、周期表第4〜8族の遷移金属カルベン錯体触媒を使用するのが好ましく、共重合体中への触媒残分の観点から、ルテニウムカルベン錯体触媒の使用が特に好ましい。
【0026】
ルテニウムカルベン錯体触媒の具体例としては、例えば、ベンジリデン(1,3−ジメシチルイミダゾリジン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3−ジメシチルイミダゾリジン−2−イリデン)(3−メチル−2−ブテン−1−イリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチルオクタヒドロベンズイミダゾール−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン[1,3−ジ(1−フェニルエチル)−4−イミダゾリン−2−イリデン](トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチル−2,3−ジヒドロベンズイミダゾール−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(トリシクロヘキシルホスフィン)(1,3,4−トリフェニル−2,3,4,5−テトラヒドロ−1H−1,2,4−トリアゾール−5−イリデン)ルテニウムジクロリド、(1,3−ジイソプロピルヘキサヒドロピリミジン−2−イリデン)(エトキシメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3−ジメシチルイミダゾリジン−2−イリデン)ピリジンルテニウムジクロリドなどの、含窒素ヘテロ環カルベン1つと含窒素ヘテロ環カルベン以外の中性電子供与体1つが結合したルテニウムカルベン錯体;ベンジリデンビス(1,3−ジシクロヘキシルイミダゾリジン−2−イリデン)ルテニウムジクロリド、ベンジリデンビス(1,3−ジイソプロピル−4−イミダゾリン−2−イリデン)ルテニウムジクロリドなどの、含窒素ヘテロ環カルベンが2つ結合したルテニウムカルベン錯体;(1,3−ジメシチルイミダゾリジン−2−イリデン)(2−イソプロポキシフェニルメチレン)ルテニウムジクロリド、(1,3−ジメシチルイミダゾリジン−2−イリデン)(2−エトキシフェニルメチレン)ルテニウムジクロリドなどの、含窒素ヘテロ環カルベンを1つ有し、かつ配位性エーテル結合をカルベン中に有するルテニウムカルベン錯体;が挙げられる。
【0027】
これらの中でも、触媒溶液中での安定性、開環メタセシス重合時の活性などの観点から、ベンジリデン(1,3−ジメシチルイミダゾリジン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドおよび(1,3−ジメシチルイミダゾリジン−2−イリデン)(2−イソプロポキシフェニルビニリデン)ルテニウムジクロリドを使用することが好ましい。
【0028】
開環メタセシス重合は溶媒の不存在下または存在下で行うことができるが、溶媒の存在下に実施するのが好ましい。使用可能な溶媒としては、開環メタセシス重合反応に不活性であれば特に制限はなく、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカンなどの脂肪族炭化水素;トルエン、ベンゼン、キシレンなどの芳香族炭化水素;テトラヒドロフランなどのエーテル;塩化メチレンなどのハロゲン化炭化水素などが挙げられる。溶媒を使用する場合、その使用量に特に制限はないが、通常、原料に対して1〜1,000質量倍、好ましくは2〜200質量倍、より好ましくは3〜100質量倍の範囲である。
【0029】
開環メタセシス重合を実施する温度としては、溶媒の使用の有無や、溶媒を使用する場合は使用する溶媒の沸点などによっても異なるが、通常、−78〜200℃の温度範囲で実施される。実施にあたっては、不活性ガス雰囲気下で実施することが好ましい。
【0030】
本発明において、熱可塑性樹脂(A)に、酸化防止剤を添加してもよい。酸化防止剤としては、例えば2,5−ジtert−ブチルハイドロキノン、2,6−ジtert−ブチル−p−クレゾール、4,4’−チオビス(6−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、オクタデシル−3−(3’,5’−ジtert−ブチル−4’−ヒドロキシフェニル)プロピオネート、4,4’−チオビス(6−tert−ブチルフェノール)、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、2,6−ジtert−ブチル−4−メチルフェノール、2,2−メチレンビス(6−tert−ブチル−p−クレゾール)、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、チオジプロピオン酸ジラウリルなどが挙げられる。
【0031】
熱可塑性樹脂(A)に酸化防止剤を添加する場合、その量は、本発明の酸素吸収性樹脂組成物を構成する各成分の種類および配合量、本発明の酸素吸収性樹脂組成物の使用目的、保存条件などを考慮して適宜決定できる。例えば、熱可塑性樹脂(A)を比較的低温で、もしくは不活性ガス雰囲気下で保存する場合、または窒素シールした状態で溶融混練して本発明の酸素吸収性樹脂組成物を製造する場合などには、酸化防止剤の量は少なくてもよい。また、後述の遷移金属塩(B)を比較的多く添加する場合、熱可塑性樹脂(A)に酸化防止剤が比較的多量に添加されていても、良好な酸素吸収機能を有する酸素吸収性樹脂組成物を得ることができる。酸化防止剤の添加量は、熱可塑性樹脂(A)と酸化防止剤の合計質量を基準として、通常0.01〜1質量%であることが好ましく、0.02〜0.5質量%であるのがより好ましく、0.03〜0.3質量%であるのがさらに好ましい。酸化防止剤の添加量が1質量%を超えると、熱可塑性樹脂(A)と酸素との反応が妨げられ、本発明の酸素吸収性樹脂組成物の酸素吸収機能が不十分となる場合がある。一方、酸化防止剤の添加量が0.01質量%よりも少ないと、熱可塑性樹脂(A)の保存時または溶融混練時に、酸素の吸収が進行し、該樹脂組成物の実使用前に酸素吸収機能が低下してしまう場合がある。
【0032】
(2)遷移金属塩(B)
本発明の酸素吸収性樹脂組成物は、遷移金属塩(B)を含有する。遷移金属塩(B)に含まれる遷移金属としては、例えば鉄、ニッケル、銅、マンガン、コバルト、ロジウム、チタン、クロム、バナジウム、ルテニウムなどが挙げられる。これらの中でも、鉄、ニッケル、銅、マンガン、コバルトが好ましく、マンガンまたはコバルトがより好ましく、コバルトがさらに好ましい。
【0033】
遷移金属塩(B)に含まれる遷移金属の対イオンとしては、有機酸由来のアニオンが好ましく、かかる有機酸としては、例えば酢酸、ステアリン酸、ジメチルジチオカルバミン酸、パルミチン酸、2−エチルへキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸などが挙げられる。遷移金属塩(B)としては、2−エチルへキサン酸コバルト、ネオデカン酸コバルトおよびステアリン酸コバルトが特に好ましい。
【0034】
遷移金属塩(B)は、好ましくは熱可塑性樹脂(A)の質量を基準として、遷移金属換算で1〜50,000ppm、より好ましくは5〜10,000ppm、さらに好ましくは10〜5,000ppmの範囲で配合する。本発明の酸素吸収性樹脂組成物が、後述のように、熱可塑性樹脂(A)に加えてマトリックス樹脂(C)を含有する場合、遷移金属塩(B)は、熱可塑性樹脂(A)およびマトリックス樹脂(C)の合計質量を基準として、遷移金属換算で1〜50,000ppm、より好ましくは5〜10,000ppm、さらに好ましくは10〜5,000ppmの範囲で配合する。さらに、本発明の酸素吸収性樹脂組成物が、後述のように、熱可塑性樹脂(A)に加えてマトリックス樹脂(C)および相容化剤(D)を含有する場合には、遷移金属塩(B)は、熱可塑性樹脂(A)、マトリックス樹脂(C)および相容化剤(D)の合計質量を基準として、遷移金属換算で1〜50,000ppm、より好ましくは5〜10,000ppm、さらに好ましくは10〜5,000ppmの範囲で配合する。遷移金属塩(B)の配合量が遷移金属換算で1ppm未満では、得られる酸素吸収性樹脂組成物の酸素吸収機能が不十分となる場合があり、一方、50,000ppmを超えると、得られる酸素吸収性樹脂組成物の熱安定性が低下し、ゲル・ブツの発生が著しくなる場合がある。
【0035】
(3)マトリックス樹脂(C)
本発明の酸素吸収性樹脂組成物は、必要に応じてマトリックス樹脂(C)を含有する。このマトリックス樹脂(C)は、熱可塑性樹脂(A)を希釈しあるいは分散させるための支持体として機能し、かつマトリックス樹脂(C)が有する特性を本発明の酸素吸収性樹脂組成物に付与する。含有させるマトリックス樹脂(C)は、本発明の酸素吸収性樹脂組成物の使用目的に応じて適宜選択できる。例えば、本発明の酸素吸収性樹脂組成物にガスバリア性を付与したい場合には、マトリックス樹脂(C)としてガスバリア性樹脂を用いる。その他の機能を付与したい場合には、目的に応じて樹脂を選択する。例えば、ガスバリア性樹脂を含む本発明の酸素吸収性樹脂組成物を容器などの成形体とすると、該ガスバリア性樹脂は、外部からの酸素が該成形体を通して移動するのを制御する働きを有する。
【0036】
マトリックス樹脂(C)のうち、ガスバリア性樹脂(以下、ガスバリア性樹脂(C−1)と称する)としては、酸素透過速度が500ml・20μm/m・day・atm(20℃、65%RH)以下のガスバリア性を有する樹脂を用いることが好ましい。この酸素透過速度は、20℃、相対湿度65%の環境下で測定したときに、1気圧の酸素の差圧がある状態で、面積1m、20μm厚のフィルムを1日に透過する酸素の体積が500ml以下であることを意味する。酸素透過速度が500ml・20μm/m・day・atmを超える樹脂を使用すると、得られる酸素吸収性樹脂組成物のガスバリア性が不十分となる傾向になる。ガスバリア性樹脂(C−1)の酸素透過速度は、より好ましくは100ml・20μm/m・day・atm以下であり、さらに好ましくは20ml・20μm/m・day・atm以下であり、最も好ましくは5ml・20μm/m・day・atm以下である。このようなガスバリア性樹脂(C−1)を熱可塑性樹脂(A)に含有させることで、ガスバリア性に加えて酸素吸収機能が発揮され、高度なガスバリア性を有する酸素吸収性樹脂組成物を得ることができる。
【0037】
上記のようなガスバリア性樹脂(C−1)の例としては、ポリビニルアルコール系樹脂(C−1−1)、ポリアミド樹脂(C−1−2)、ポリ塩化ビニル樹脂(C−1−3)、ポリアクリロニトリル樹脂(C−1−4)などが代表的な樹脂として挙げられる。ガスバリア性樹脂(C−1)としては、これらの樹脂のうち1種を使用してもよいし、2種以上を混合して使用してもよい。ガスバリア性樹脂(C−1)としては、上記した中でもポリビニルアルコール系樹脂(C−1−1)が好ましく、エチレン含有量5〜60モル%、ケン化度90%以上のエチレン−ビニルアルコール共重合体(以下、EVOHと称する)がより好ましい。
【0038】
上記ガスバリア性樹脂(C−1)のうち、ポリビニルアルコール系樹脂(C−1−1)は、ビニルエステルの単独重合体、またはビニルエステルと他の単量体との共重合体(特にビニルエステルとエチレンとの共重合体)を、アルカリ触媒などを用いてケン化して得られる。ビニルエステルとしては酢酸ビニルが挙げられるが、プロピオン酸ビニル、ピバリン酸ビニルなどの他の脂肪酸ビニルエステルも使用できる。
【0039】
ポリビニルアルコール系樹脂(C−1−1)のビニルエステル成分のケン化度は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは96%以上である。ケン化度が90モル%未満では、高湿度下でのガスバリア性が低下する。特に、ポリビニルアルコール系樹脂(C−1−1)がEVOHである場合、ケン化度が90モル%未満では熱安定性が不充分となり、成形体にゲル・ブツが含有され易くなる。
【0040】
ポリビニルアルコール系樹脂(C−1−1)の中でも、溶融成形が可能で、高湿度下でのガスバリア性が良好な点から、EVOHを用いるのが好ましい。
【0041】
EVOHのエチレン含有量は5〜60モル%であるのが好ましい。エチレン含有量が5モル%未満では、高湿度下でのガスバリア性が低下し溶融成形性も悪化することがある。EVOHのエチレン含有量は、好ましくは10モル%以上であり、より好ましくは15モル%以上、さらに好ましくは20モル%以上である。一方、エチレン含有量が60モル%を超えると十分なガスバリア性が得られないことがある。エチレン含有量は、好ましくは55モル%以下であり、より好ましくは50モル%以下である。
【0042】
好ましいEVOHは、上述のようにエチレン含有量が5〜60モル%であり、かつケン化度が90%以上である。本発明の酸素吸収性樹脂組成物からなる層を含む多層容器において、耐衝撃剥離性に優れたものを所望する場合は、エチレン含有量が25モル%以上55モル%以下であり、ケン化度が90%以上99%未満のEVOHを使用することが好ましい。
【0043】
また、耐衝撃剥離性およびガスバリア性がより高いレベルでバランスがとれたものを所望する場合は、エチレン含有量が25モル%以上55モル%以下であり、ケン化度が90%以上99%未満のEVOH(C−1−1a)と、エチレン含有量が25モル%以上55モル%以下であり、ケン化度が99%以上のEVOH(C−1−1b)とを、(C−1−1a)/(C−1−1b)の配合質量比が5/95〜95/5となるように混合して使用することが好ましい。なお、このように、EVOHがエチレン含有量の異なる2種類以上のEVOHの混合物からなる場合には、混合質量比から算出される平均値をエチレン含有量とする。
【0044】
EVOHのエチレン含有量およびケン化度は、核磁気共鳴(NMR)法により求めることができる。
【0045】
EVOHは、本発明の目的が阻害されない範囲で、エチレン単位およびビニルアルコール単位以外の単量体の単位を共重合単位として少量含有することもできる。このような単量体の例としてはプロピレン、1−ブテン、イソブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどのα−オレフィン;イタコン酸、メタクリル酸、アクリル酸、無水マレイン酸などの不飽和カルボン酸、その塩、その部分または完全エステル、そのニトリル、そのアミド、その無水物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β−メトキシエトキシ)シラン、γ−メタクリルオキシプロピルトリメトキシシランなどのビニルシラン化合物;不飽和スルホン酸またはその塩;アルキルチオール類;ビニルピロリドン類などが挙げられる。
【0046】
中でも、EVOHが、共重合成分としてビニルシラン化合物0.0002〜0.2モル%を含有する場合は、該EVOHを含む本発明の酸素吸収性樹脂組成物を、基材となる樹脂(例えばポリエステル)と共に共押出成形または共射出成形して多層構造体を得る際に、該基材樹脂との溶融粘性の整合性が改善され、均質な成形物の製造が可能である。ビニルシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシランなどが好ましい。
【0047】
さらに、EVOHにホウ素化合物が添加されている場合にも、EVOHの溶融粘性が改善され、均質な共押出成形体または共射出成形体が得られる点で有効である。ここでホウ素化合物としては、オルトホウ酸、メタホウ酸、四ホウ酸などのホウ酸類、ホウ酸トリエチル、ホウ酸トリメチルなどのホウ酸エステル、前記の各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂などのホウ酸塩、水素化ホウ素ナトリウムなどの水素化ホウ素類などが挙げられる。これらの化合物のうちでもオルトホウ酸が好ましい。
【0048】
EVOHにホウ素化合物が添加される場合、その添加量は、好ましくはホウ素換算で20〜2,000ppm、より好ましくは50〜1,000ppmである。この範囲にあることで加熱溶融時のトルク変動が抑制されたEVOHを得ることができる。20ppm未満ではそのような効果が小さく、一方、2,000ppmを超えるとゲル化しやすく、成形性不良となる場合がある。
【0049】
EVOHにアルカリ金属塩を添加することも、層間接着性や相容性の改善のために有効である。アルカリ金属塩の添加量は、好ましくは5〜5,000ppm、より好ましくはアルカリ金属換算で20〜1,000ppm、さらに好ましくは30〜500ppmである。アルカリ金属塩としては、リチウム、ナトリウム、カリウムなどのアルカリ金属の脂肪族カルボン酸塩、芳香族カルボン酸塩、リン酸塩、金属錯体などが挙げられる。例えば、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム、リン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレンジアミン四酢酸のナトリウム塩などが挙げられ、これらの中でも酢酸ナトリウム、酢酸カリウム、リン酸ナトリウムが好ましい。
【0050】
EVOHへのリン酸化合物の添加量は、好ましくはリン酸根換算で20〜500ppm、より好ましくは30〜300ppm、さらに好ましくは50〜200ppmの範囲である。上記範囲でリン酸化合物を配合することにより、EVOHの熱安定性を改善することができる。特に、長時間にわたる溶融成形を行う際のゲル状ブツの発生や着色を抑制することができる。
【0051】
EVOHに添加するリン酸化合物の種類は特に限定されず、リン酸、亜リン酸などの各種の酸やその塩などを用いることができる。リン酸塩は第1リン酸塩、第2リン酸塩、第3リン酸塩のいずれの形であってもよい。リン酸塩のカチオン種も特に限定されないが、カチオン種がアルカリ金属、アルカリ土類金属であることが好ましい。中でも、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸水素二カリウムの形でリン化合物を添加することが好ましい。
【0052】
EVOHのメルトフローレート(MFR)(210℃、2160g荷重下、JIS K 7210に基づく)は、好ましくは0.1〜100g/10分、より好ましくは0.5〜50g/10分、さらに好ましくは1〜30g/10分である。
【0053】
ガスバリア性樹脂(C−1)のうち、ポリアミド樹脂(C−1−2)の種類は特に限定されない。例えば、ポリカプロラクタム(ナイロン−6)、ポリウンデカンアミド(ナイロン−11)、ポリラウロラクタム(ナイロン−12)、ポリヘキサメチレンアジパミド(ナイロン−6,6)、ポリヘキサメチレンセバカミド(ナイロン−6,10)などの脂肪族ポリアミド単独重合体;カプロラクタム/ラウロラクタム共重合体(ナイロン−6/12)、カプロラクタム/アミノウンデカン酸共重合体(ナイロン−6/11)、カプロラクタム/ω−アミノノナン酸共重合体(ナイロン−6/9)、カプロラクタム/ヘキサメチレンアジパミド共重合体(ナイロン−6/6,6)、カプロラクタム/ヘキサメチレンアジパミド/ヘキサメチレンセバカミド共重合体(ナイロン−6/6,6/6,10)などの脂肪族ポリアミド共重合体;ポリメタキシリレンアジパミド(MX−ナイロン)、ヘキサメチレンテレフタラミド/ヘキサメチレンイソフタラミド共重合体(ナイロン−6T/6I)などの芳香族ポリアミドが挙げられる。これらのポリアミド樹脂(C−1−2)は、それぞれ単独で用いることもできるし、2種以上を混合して用いることもできる。これらの中でも、ポリカプロラクタム(ナイロン−6)およびポリヘキサメチレンアジパミド(ナイロン−6,6)がガスバリア性の観点から好ましい。
【0054】
ポリ塩化ビニル樹脂(C−1−3)としては、塩化ビニルまたは塩化ビニリデンの単独重合体のほか、塩化ビニルまたは塩化ビニリデンと酢酸ビニル、マレイン酸誘導体、高級アルキルビニルエーテルなどとの共重合体が挙げられる。
【0055】
ポリアクリロニトリル樹脂(C−1−4)としては、アクリロニトリル単独重合体のほか、アクリロニトリルとアクリル酸エステルなどとの共重合体が挙げられる。
【0056】
本発明の酸素吸収性樹脂組成物が、樹脂成分として、熱可塑性樹脂(A)に加えてマトリックス樹脂(C)を含有する場合、熱可塑性樹脂(A)と該マトリックス樹脂(C)の合計質量を100質量%とすると、該熱可塑性樹脂(A)は30〜1質量%の割合で、該マトリックス樹脂(C)は70〜99質量%の割合であることが好ましい。例えば、マトリックス樹脂(C)がガスバリア性樹脂(C−1)である場合に、その割合が70質量%未満である場合には、該樹脂組成物の、酸素ガス、二酸化炭素ガスなどに対するガスバリア性が低下する傾向となり、一方、99質量%を超える場合、酸素吸収機能が低下する傾向になる。熱可塑性樹脂(A)の割合は、より好ましくは20〜2質量%、さらに好ましくは15〜3質量%であり、マトリックス樹脂(C)の割合は、より好ましくは80〜98質量%、さらに好ましくは85〜97質量%である。
【0057】
(4)相容化剤(D)
本発明の酸素吸収性樹脂組成物が熱可塑性樹脂(A)とマトリックス樹脂(C)を含有する場合、またはさらに後述のその他の熱可塑性樹脂(E)を含有する場合に、これらの樹脂の相容性を向上させ、得られる酸素吸収性樹脂組成物に安定したモルフォロジーを与える目的で、必要に応じて相容化剤(D)を含有させる。かかる相容化剤(D)の種類は特に限定されず、使用する熱可塑性樹脂(A)、マトリックス樹脂(C)などの組み合わせにより適宜選択することができる。
【0058】
例えば、マトリックス樹脂(C)がポリビニルアルコール系樹脂(C−1−1)のように極性の高い樹脂である場合には、相容化剤(D)としては、極性基を含有する炭化水素系重合体であることが好ましい。相容化剤(D)が極性基を含有する炭化水素系重合体の場合、重合体のベースとなる炭化水素重合体部分により、該相容化剤(D)と熱可塑性樹脂(A)との親和性が良好となる。さらに、該相容化剤(D)の極性基により、該相容化剤(D)とマトリックス樹脂(C)との親和性が良好となる。その結果、得られる酸素吸収性樹脂組成物に安定したモルフォロジーを形成させることができる。
【0059】
上記の極性基を含有する炭化水素系重合体のベースとなる炭化水素重合体部分を形成し得る単量体としては、エチレン、プロピレン、1−ブテン、イソブテン、3−メチルペンテン、1−ヘキセン、1−オクテンなどのα−オレフィン類;スチレン、α−メチルスチレン、2−メチルスチレン、4−メチルスチレン、4−プロピルスチレン、4−tert−ブチルスチレン、4−シクロヘキシルスチレン、4−ドデシルスチレン、2−エチル−4−ベンジルスチレン、4−(フェニルブチル)スチレン、2,4,6−トリメチルスチレン、モノフルオロスチレン、ジフルオロスチレン、モノクロロスチレン、ジクロロスチレン、メトキシスチレン、tert−ブトキシスチレンなどのスチレン類;1−ビニルナフタレン、2−ビニルナフタレンなどのビニルナフタレン類;ブタジエン、イソプレン、2,3−ジメチルブタジエン、1,3−ペンタジエン、1,3−ヘキサジエンなどの共役ジエン化合物などが挙げられる。これらは1種単独で炭化水素重合体部分の形成に寄与していてもよいし、2種以上の単量体が炭化水素重合体部分の形成に寄与していてもよい。
【0060】
上記単量体は次のような炭化水素重合体を形成する:ポリエチレン(超低密度、低密度、直鎖状低密度、中密度、高密度)、ポリプロピレン、エチレン−プロピレン共重合体などのオレフィン系重合体;ポリスチレン、スチレン−ジエン系ブロック共重合体(スチレン−ブタジエンジブロック共重合体、スチレン−イソプレンジブロック共重合体、スチレン−ブタジエン−スチレントリブロック共重合体、スチレン−イソプレン−スチレントリブロック共重合体など)、その水素添加物などのスチレン系重合体;など。これらの中でも、スチレン−ジエン系ブロック共重合体(スチレン−イソプレンジブロック共重合体、スチレン−ブタジエンジブロック共重合体、スチレン−ブタジエン−スチレントリブロック共重合体、スチレン−イソプレン−スチレントリブロック共重合体など)、その水素添加物などのスチレン系重合体が好ましい。
【0061】
極性基としては、スルホン酸基、スルフェン酸基、スルフィン酸基などのイオウ含有基;水酸基、エポキシ基;ケトン基、エステル基、アルデヒド基、カルボキシル基、酸無水物基などのカルボニル基含有基;ニトロ基、アミド基、ウレア基、イソシアナート基などの窒素含有基;ホスホン酸エステル基、ホスフィン酸エステル基などのリン含有基;ボロン酸基、ボロン酸エステル基、ボロン酸無水物基、ボロン酸塩基などのホウ素含有基などが挙げられる。これらの中でも、相容化剤(D)が極性基を含有する炭化水素系重合体である場合に有する極性基としては、カルボキシル基、ホウ素含有基が特に好ましい。このうち、極性基がカルボキシル基である場合、得られる酸素吸収性樹脂組成物は高い熱安定性を有する。前述のように、本発明の酸素吸収性樹脂組成物に遷移金属塩(B)が過剰に含まれる場合、該樹脂組成物の熱安定性が低下する場合があるが、遷移金属塩(B)と共にカルボキシル基を有する相容化剤(D)が含まれていると、該樹脂組成物の熱安定性が保持される。
【0062】
極性基を含有する炭化水素系重合体の製造法は特に限定されない。例えば、次の方法が挙げられる:(1)上記炭化水素重合体部分を形成し得る単量体と、極性基(または該極性基を形成し得る基)を含有する単量体とを共重合する方法;(2)上記炭化水素重合体部分を形成し得る単量体を重合する際に、極性基(または該極性基を形成し得る基)を有する開始剤または連鎖移動剤を用いる方法;(3)上記炭化水素重合体部分を形成し得る単量体をリビング重合し、極性基(または該極性基を形成し得る基)を有する単量体を停止剤(末端処理剤)として用いる方法;および(4)上記炭化水素重合体部分を形成し得る単量体を重合して重合体を得、該重合体中の反応性の部分、例えば炭素−炭素二重結合部分に、極性基(または該極性基を形成し得る基)を有する単量体を反応により導入する方法。上記(1)の方法において、共重合を行う際には、ランダム共重合、ブロック共重合、グラフト共重合のいずれの重合方法も採用され得る。
【0063】
このような極性基を有する相容化剤(D)の具体例は、例えば、特許文献4に詳細に開示されている。開示されている相容化剤(D)の中でも、ボロン酸エステル基を有するスチレン−ジエン系ブロック共重合体の水素添加物が好ましい。
【0064】
相容化剤(D)は単独で使用してもよいし、2種以上を混合して使用してもよい。
【0065】
本発明の酸素吸収性樹脂組成物が、樹脂成分として、熱可塑性樹脂(A)に加えてマトリックス樹脂(C)および相容化剤(D)を含有する場合、熱可塑性樹脂(A)、マトリックス樹脂(C)および相容化剤(D)の合計質量を100質量%とすると、熱可塑性樹脂(A)は29.9〜1質量%、マトリックス樹脂(C)は70〜98.9質量%、そして相容化剤(D)は29〜0.1質量%の割合であることが好ましい。マトリックス樹脂(C)の割合が70質量%未満である場合、得られる酸素吸収性樹脂組成物の酸素、二酸化炭素などに対するガスバリア性が低下する傾向となり、一方、98.9質量%を超える場合には、酸素吸収機能が低下する傾向となり、さらに酸素吸収性樹脂組成物のモルフォロジーの安定性が損なわれる傾向となる。熱可塑性樹脂(A)の割合はより好ましくは19.5〜2質量%であり、さらに好ましくは14〜3質量%である。マトリックス樹脂(C)の割合はより好ましくは80〜97.5質量%であり、さらに好ましくは85〜96質量%である。相容化剤(D)の割合はより好ましくは18〜0.5質量%であり、さらに好ましくは12〜1質量%である。
【0066】
(5)その他の熱可塑性樹脂(E)および添加剤
本発明の酸素吸収性樹脂組成物は、本発明の効果を損なわない程度に、熱可塑性樹脂(A)、マトリックス樹脂(C)および相容化剤(D)以外の熱可塑性樹脂(E)を含有していてもよい。熱可塑性樹脂(E)としては、例えば、マトリックス樹脂(C)がガスバリア性樹脂(C−1)である場合、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレンまたはプロピレン共重合体(エチレンまたはプロピレンと次の単量体のうち少なくとも1種との共重合体:1−ブテン、イソブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどのα−オレフィン;イタコン酸、メタクリル酸、アクリル酸、無水マレイン酸などの不飽和カルボン酸、その塩、その部分または完全エステル、そのニトリル、そのアミド、その無水物;ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ビニルブチレート、ビニルオクタノエート、ビニルドデカノエート、ビニルステアレート、ビニルアラキドネートなどのカルボン酸ビニルエステル類;ビニルトリメトキシシランなどのビニルシラン化合物;不飽和スルホン酸およびその塩;アルキルチオール類;ビニルピロリドン類など)、ポリ(4−メチル−1−ペンテン)、ポリ(1−ブテン)などのポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリスチレン;ポリカーボネート;およびポリメチルメタクリレートなどのポリアクリレートなどが挙げられる。熱可塑性樹脂(E)をさらに含有する場合、その含有量は、本発明の酸素吸収性樹脂組成物全体の10質量%以下であるのが好ましい。
【0067】
本発明の酸素吸収性樹脂組成物には、本発明の作用効果が阻害されない範囲内で各種の添加剤を含有させてもよい。添加剤としては、可塑剤、熱安定剤(溶融安定剤)、光開始剤、脱臭剤、紫外線吸収剤、帯電防止剤、滑剤、着色剤、乾燥剤、充填剤、加工助剤、難燃剤、防曇剤などが挙げられる。
【0068】
(6)酸素吸収性樹脂組成物およびそれを用いた成形体
本発明の酸素吸収性樹脂組成物は、上述のように、熱可塑性樹脂(A)および遷移金属塩(B)を含有し、さらに必要に応じて、マトリックス樹脂(C)、相容化剤(D)、その他の熱可塑性樹脂(E)、各種添加剤などを含有する。
【0069】
本発明の酸素吸収性樹脂組成物がマトリックス樹脂(C)など、熱可塑性樹脂(A)以外の樹脂を含む組成物においては、熱可塑性樹脂(A)からなる粒子が、熱可塑性樹脂(A)以外の樹脂(マトリックス樹脂(C)、相容化剤(D)、およびその他の熱可塑性樹脂(E)のうちの少なくとも1種)、遷移金属塩(B)、ならびに各種添加剤を含むマトリックス中に分散している態様が推奨される。例えば、本発明の酸素吸収性樹脂組成物が熱可塑性樹脂(A)、遷移金属塩(B)およびマトリックス樹脂(C)からなる場合、熱可塑性樹脂(A)からなる粒子が遷移金属塩(B)およびマトリックス樹脂(C)を含むマトリックスに分散している態様が推奨される。このような状態の本発明の酸素吸収性樹脂組成物からなる各種成形体は特に酸素吸収機能に優れ、かつ透明性に優れる。さらに、マトリックス樹脂(C)の機能が十分に得られる。例えば、マトリックス樹脂(C)がガスバリア性樹脂(C−1)である場合には、ガスバリア性が良好である。さらに、本発明の酸素吸収性樹脂組成物が相容化剤(D)を適量含有する場合には、上記分散効果が安定して得られ易い。
【0070】
上記熱可塑性樹脂(A)からなる粒子の平均粒径については、好ましくはその長径が4μm以下、より好ましくは2μm以下、さらに好ましくは1μm以下である。このような熱可塑性樹脂(A)粒子の平均粒径は、後述の実施例に示される走査型電子顕微鏡(SEM)観察により測定したときに得られる粒子径である。
【0071】
本発明の酸素吸収性樹脂組成物のメルトフローレート(MFR)(210℃、2160g荷重下、JIS K 7210に基づく)は、好ましくは0.1〜100g/10分、より好ましくは0.5〜50g/10分、さらに好ましくは1〜30g/10分である。該樹脂組成物のメルトフローレートが上記の範囲から外れる場合、溶融成形時の加工性が悪くなる傾向となる。
【0072】
本発明の酸素吸収性樹脂組成物の酸素吸収速度は、0.01ml/g・day以上であることが好ましく、0.05ml/g・day以上がより好ましい。ここで、酸素吸収速度とは、本明細書では、本発明の酸素吸収性樹脂組成物から作成したフィルムを一定容量の空気中に放置した場合に、該樹脂組成物が含有する炭素−炭素二重結合1mol当たり単位時間にそのフィルムが吸収した酸素の量(mol)と定義する。
【0073】
本発明の酸素吸収性樹脂組成物は、特に製造後1〜3日程度の初期において高い酸素吸収速度を発揮できる。本発明の酸素吸収性樹脂組成物の初期酸素吸収速度は、ガスバリア性樹脂(C−1)をマトリックス樹脂(C)とした場合においても、後述の方法で測定した60℃、100%RHにおける1日目までの初期酸素吸収速度として、10mlO/day/g以上とすることができ、さらには15mlO/day/g以上とすることができる。
【0074】
本発明の酸素吸収性樹脂組成物の各成分は混合した後、次いで所望の製品に加工される。本発明の酸素吸収性樹脂組成物の各成分を混合する方法は特に限定されない。各成分を混合する際の順序も特に限定されない。例えば、熱可塑性樹脂(A)、遷移金属塩(B)、マトリックス樹脂(C)および相容化剤(D)を混合する場合、これらを同時に混合してもよいし、熱可塑性樹脂(A)、遷移金属塩(B)および相容化剤(D)を混合した後、マトリックス樹脂(C)と混合してもよい。また、熱可塑性樹脂(A)および相容化剤(D)を混合した後、遷移金属塩(B)およびマトリックス樹脂(C)と混合してもよいし、遷移金属塩(B)およびマトリックス樹脂(C)を混合した後、熱可塑性樹脂(A)および相容化剤(D)と混合してもよい。さらに、熱可塑性樹脂(A)、マトリックス樹脂(C)および相容化剤(D)を混合した後、遷移金属塩(B)と混合してもよいし、遷移金属塩(B)および相容化剤(D)を混合した後、熱可塑性樹脂(A)およびマトリックス樹脂(C)と混合してもよい。また、熱可塑性樹脂(A)、マトリックス樹脂(C)および相容化剤(D)を混合して得た混合物と、遷移金属塩(B)およびマトリックス樹脂(C)を混合して得た混合物とを混合してもよい。
【0075】
混合の具体的な方法としては、工程の簡便さおよびコストの観点から溶融混練法が好ましい。このとき、高い混練度を達成することのできる装置を使用し、各成分を細かく均一に分散させることが、酸素吸収性能、透明性を良好にすると共に、ゲル・ブツの発生や混入を防止できる点で好ましい。
【0076】
高い混練度を達成し得る装置としては、連続式インテンシブミキサー、ニーディングタイプ二軸押出機(同方向または異方向)、ミキシングロール、コニーダーなどの連続型混練機;高速ミキサー、バンバリーミキサー、インテンシブミキサー、加圧ニーダーなどのバッチ型混練機;(株)KCK製KCK混練押出機などの石臼のような摩砕機構を有する回転円板を使用した装置、一軸押出機に混練部(ダルメージなど)を設けた装置;リボンブレンダー、ブラベンダーミキサーなどの簡易型の混練機などを挙げることができる。これらの中でも、連続型混練機が好ましい。市販されている連続式インテンシブミキサーとしては、Farrel社製「FCM」(商品名)、(株)日本製鋼所製「CIM」(商品名)、(株)神戸製鋼所製「KCM」、「LCM」、「ACM」(いずれも商品名)などが挙げられる。これらの連続式混練機の吐出口に押出機およびペレタイザーを接続し、混練、押出およびペレット化を同時に実施する装置を採用することが好ましい。また、ニーディングディスクまたは混練用ロータを有する二軸混練押出機としては、例えば(株)日本製鋼所製「TEX」(商品名)、Werner&Pfleiderer社製「ZSK」(商品名)、東芝機械(株)製「TEM」(商品名)、池貝鉄工(株)製「PCM」(商品名)などが挙げられる。混練機は1機でもよいし、また2機以上を連結して用いることもできる。
【0077】
混練温度は、通常50〜300℃の範囲である。熱可塑性樹脂(A)の酸化防止のためには、ホッパー口を窒素シールし、低温で押出すことが好ましい。混練時間は、長い方が良い結果を得られるが、熱可塑性樹脂(A)の酸化防止および生産効率の観点から、通常10〜600秒であり、好ましくは15〜200秒であり、より好ましくは15〜150秒である。
【0078】
本発明の酸素吸収性樹脂組成物は、成形方法を適宜採用することによって、種々の成形物、例えば、フィルム、シート、容器その他の包装材に成形することができる。このとき、本発明の酸素吸収性樹脂組成物を一旦ペレットとしてから成形に供してもよいし、本発明の酸素吸収性樹脂組成物の各成分をドライブレンドして、直接成形に供してもよい。
【0079】
成形方法および成形物としては、例えば、溶融押出成形によりフィルム、シートなどに、射出成形により容器形状に、また中空成形によりボトル状などの中空容器に成形することができる。中空成形としては、押出成形によりパリソンを成形し、これをブローして成形を行う押出中空成形と、射出成形によりプリフォームを成形し、これをブローして成形を行う射出中空成形が好ましい。
【0080】
本発明においては、上記成形により得られる成形物は単層であってもよいが、機械的特性、水蒸気バリア性、さらなるガスバリア性などの特性を付与するという観点から、他の層と積層された多層構造体であることが好ましい。
【0081】
多層構造体の層構成としては、本発明の酸素吸収性樹脂組成物以外の樹脂からなる層をx層、本発明の酸素吸収性樹脂組成物層をy層、接着性樹脂層をz層とすると、x/y、x/y/x、x/z/y、x/z/y/z/x、x/y/x/y/x、x/z/y/z/x/z/y/z/xなどが例示されるが、これらに限定されるものではない。複数のx層を設ける場合は、その種類は同じであっても異なっていてもよい。また、成形時に発生するトリムなどのスクラップからなる回収樹脂を用いた層を別途設けてもよいし、回収樹脂を他の樹脂からなる層にブレンドしてもよい。多層構造体の各層の厚み構成は特に限定されないが、成形性およびコストなどの観点から、全層厚みに対するy層の厚み比は2〜20%が好ましい。
【0082】
上記のx層に使用される樹脂としては、加工性などの観点から熱可塑性樹脂が好ましい。かかる熱可塑性樹脂としては、次の樹脂が挙げられるが、特にこれらに限定されない:ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレンまたはプロピレン共重合体(エチレンまたはプロピレンと次の単量体の少なくとも1種との共重合体:1−ブテン、イソブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどのα−オレフィン;イタコン酸、メタクリル酸、アクリル酸、無水マレイン酸などの不飽和カルボン酸、その塩、その部分または完全エステル、そのニトリル、そのアミド、その無水物;ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ビニルブチレート、ビニルオクタノエート、ビニルドデカノエート、ビニルステアレート、ビニルアラキドネートなどのカルボン酸ビニルエステル類;ビニルトリメトキシシランなどのビニルシラン系化合物;不飽和スルホン酸またはその塩;アルキルチオール類;ビニルピロリドン類など)、ポリ(4−メチル−1−ペンテン)、ポリ(1−ブテン)などのポリオレフィン;ポリ(エチレンテレフタレート)、ポリ(ブチレンテレフタレート)、ポリ(エチレンナフタレート)などのポリエステル;ポリカプロラクタム、ポリヘキサメチレンアジパミド、ポリメタキシリレンアジパミドなどのポリアミド;ポリ塩化ビニリデン、ポリ塩化ビニル、ポリスチレン、ポリアクリロニトリル、ポリカーボネート、ポリアクリレートなど。
【0083】
これらの熱可塑性樹脂のうち、ポリオレフィン樹脂は耐湿性、機械的特性、経済性、ヒートシール性などの点で、また、ポリエステル樹脂は機械的特性、耐熱性などの点で好ましい。
【0084】
一方、z層に用いる接着性樹脂としては、各層間を接着できれば特に限定されず、例えば、ポリウレタン系またはポリエステル系の一液型または二液型硬化性接着剤、カルボン酸変性ポリオレフィン樹脂などが好ましい。カルボン酸変性ポリオレフィン樹脂とは、不飽和カルボン酸またはその無水物(無水マレイン酸など)を共重合成分として含むオレフィン系共重合体;またはポリオレフィンに不飽和カルボン酸またはその無水物をグラフト共重合させて得られる共重合体である。
【0085】
これらの中でもカルボン酸変性ポリオレフィン樹脂が好ましく、x層がポリオレフィン樹脂である場合、y層との接着性が良好となる。かかるカルボン酸変性ポリオレフィン系樹脂の例としては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)などのポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル(メチルエステルまたはエチルエステル)共重合体などに無水マレイン酸などをグラフト共重合させてカルボン酸変性したものが挙げられる。
【0086】
多層構造体を得る方法としては、押出ラミネート法、ドライラミネート法、共射出成形法、共押出成形法などが例示される。中でも、共押出成形法としては、共押出ラミネート法、共押出シート成形法、共押出インフレーション成形法、共押出ブロー成形法などを挙げることができる。
【0087】
得られる多層シート、多層フィルム、容器前駆体(パリソン)などを、含有される樹脂の融点以下の温度で再加熱し、絞り成形などの熱成形法、ロール延伸法、パンタグラフ式延伸法、インフレーション延伸法、ブロー成形法などにより一軸または二軸延伸して、延伸された多層構造体を成形物として得ることもできる。
【0088】
かかる多層構造体が有する機能は、多層容器としたときにより発揮される。例えば、本発明の酸素吸収性樹脂組成物からなる層の両側に、または多層構造体を使用する際に高湿度となる側に、防湿性の高い層を配置した多層構造体は、酸素吸収機能の持続期間が延長され、その結果、高度なガスバリア性がより長時間維持できる観点から好ましい。また、本発明の酸素吸収性樹脂組成物からなる層を最内層に有する多層容器は、容器内の酸素吸収機能を速やかに発揮するという観点から好ましい。
【0089】
本発明の酸素吸収性樹脂組成物からなる層を含み、全層厚みが300μm以下である多層フィルムからなる多層容器、または本発明の酸素吸収性樹脂組成物からなる層および熱可塑性ポリエステルからなる層をそれぞれ少なくとも1層含む多層容器は、透明性に優れ、食品などの内容物を視認し易い包装容器として有用である。
【0090】
本発明の酸素吸収性樹脂組成物からなる層を含み、全層厚みが300μm以下である多層フィルムからなる多層容器はフレキシブル性を有し、通常パウチなどの形態に加工することができる。かかる多層容器は透明性、ガスバリア性に優れ、また持続的な酸素吸収機能を有するので、酸素に対し感受性が高く劣化し易い製品、特に食品などの包装に極めて有用である。
【0091】
前記多層フィルムの全層厚みは、透明性およびフレキシブル性を維持するという観点から、上述のように300μm以下であり、より好ましくは250μm以下であり、さらに好ましくは200μm以下である。一方、多層容器としての機械的特性を考慮すると、全層厚みは、好ましくは10μm以上であり、より好ましくは20μm以上であり、さらに好ましくは30μm以上である。
【0092】
全層厚みが300μm以下の多層フィルムの製造方法に特に制限はなく、例えば、本発明の酸素吸収性樹脂組成物からなる層と他の熱可塑性樹脂からなる層をドライラミネート、共押出ラミネートなどの方法で積層することによって多層フィルムを得ることができる。
【0093】
ドライラミネートする場合には、他の熱可塑性樹脂からなる層として無延伸フィルム、一軸延伸フィルム、二軸延伸フィルム、圧延フィルムなどが使用可能である。これらの中でも、二軸延伸ポリプロピレンフィルム、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリカプロラクタムフィルムが機械的強度の観点から好ましく、防湿性も考慮すると、二軸延伸ポリプロピレンフィルムが特に好ましい。無延伸フィルムまたは一軸延伸フィルムを使用する場合、積層した後に多層フィルムを再加熱し、絞り成形などの熱成形法、ロール延伸法、パンタグラフ式延伸法、インフレーション延伸法などにより一軸または二軸延伸することによって、延伸された多層フィルムを得ることもできる。
【0094】
得られる多層容器を密封するために、多層フィルムの製造段階において、少なくとも一方の最外層表面にヒートシール可能な樹脂からなる層を設けることも好ましい。かかる樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィンを挙げることができる。
【0095】
本発明の酸素吸収性樹脂組成物からなる層および熱可塑性ポリエステルからなる層をそれぞれ少なくとも1層含む多層容器は、透明性、ガスバリア性、酸素吸収機能に優れるので、袋状容器、カップ状容器、中空成形容器などの種々の形態で使用できる。これらの中でも、中空成形容器、特にボトルが重要である。
【0096】
上記多層容器に用いる熱可塑性ポリエステルとしては、芳香族ジカルボン酸またはそれらのアルキルエステルと、ジオールとを主成分とする縮合重合体が挙げられる。特に透明性の観点からは、具体的には、テレフタル酸単位とエチレングリコール単位との合計割合(モル%)が、熱可塑性ポリエステルを構成する全単位の合計モル数に対して70モル%以上であることが好ましく、90モル%以上がより好ましい。テレフタル酸単位とエチレングリコール単位の合計割合が70モル%未満であると、得られる熱可塑性ポリエステルが非晶性となり、機械的強度が不足する上に、多層容器とした後に内容物を加熱充填(ホットフィル)すると、熱収縮が大きく使用に耐えなくなる傾向となる。上記熱可塑性ポリエステルは、必要に応じてテレフタル酸単位およびエチレングリコール単位以外の二官能化合物単位、具体的には、ネオペンチルグリコール単位、シクロヘキサンジメタノール単位、シクロヘキサンジカルボン酸単位、イソフタル酸単位、ナフタレンジカルボン酸単位などを、本発明の奏する効果を阻害しない範囲で含有することができる。このような熱可塑性ポリエステルの製造方法には特に制限はなく、公知の方法を適宜選択できる。
【0097】
本発明の酸素吸収性樹脂組成物からなる層および熱可塑性ポリエステルからなる層をそれぞれ少なくとも1層含む、本発明の多層容器の製造方法としては、共射出ブロー成形法を用いることが生産性などの観点から好ましい。共射出ブロー成形法においては、共射出成形によって得られた容器前駆体(パリソン)を延伸ブロー成形することにより容器が製造される。
【0098】
共射出成形でパリソンを得る方法としては、通常、多層構造体の各層を構成すべき樹脂を2台またはそれ以上の射出シリンダーより、各々同心円状のノズル内に導き、同時にまたはタイミングをずらして交互に、単一の金型内に射出し、1回の型締め操作を行うことにより成形を行う。例えば熱可塑性ポリエステルをPES、本発明の酸素吸収性樹脂組成物をSCと略称して、(1)先に内外層用のPESを射出し、次いで、中間層となるSCを射出して、PES/SC/PESの3層構成のパリソンを得る方法、(2)先に内外層用のPESを射出し、次いでSCを射出して、それと同時にまたはその後にPESを再度射出し、PES/SC/PES/SC/PESの5層構成のパリソンを得る方法などが挙げられる。なお、上記層構成において、SC層とPES層との間に、必要に応じて接着性樹脂層を設けてもよい。
【0099】
共射出成形の条件としては、PESは250〜330℃の温度範囲で射出することが好ましく、270〜320℃がより好ましく、280〜310℃がさらに好ましい。PESの射出温度が250℃未満である場合、PESが十分に溶融せず、成形物に未溶融物(フィッシュアイ)が混入し外観不良を生じ、同時に成形物の機械的強度が低下する傾向となる。また、極端な場合はスクリュートルクが上昇し、成形機の故障を引き起こす恐れがある。一方、PESの射出温度が330℃を超える場合、PESの分解が著しくなり、分子量低下による成形物の機械的強度の低下を引き起こす傾向となる。また、分解時に生じるアセトアルデヒドなどにより成形物に充填する物質の性質を損なうだけでなく、分解時に生じるオリゴマーにより金型が汚染され、パリソンの外観を損なう恐れがある。
【0100】
一方、SCは170〜250℃の温度範囲で射出することが好ましく、180〜240℃がより好ましく、190〜230℃がさらに好ましい。SCの射出温度が170℃未満である場合、SCが十分に溶融せず、成形物に未溶融物(フィッシュアイ)が混入し外観不良を生じる傾向となる。また、極端な場合はスクリュートルクが上昇し、成形機の故障を引き起こす恐れがある。一方、SCの射出温度が250℃を超える場合、熱可塑性樹脂(A)の酸化が進行し、SCのガスバリア性および酸素吸収機能が低下する傾向となる。また、着色やゲル化物によりパリソンの外観が不良となり、また分解ガスやゲル化物に起因したSC層の欠落部分を生じることもある。射出操作時のSCの酸化を抑制するためには、原料供給ホッパーを窒素でシールすることも好ましい。
【0101】
こうして得られたパリソンは、総厚みが2〜5mm、SC層の厚みが合計で10〜500μmであることが好ましい。
【0102】
上記のパリソンは、高温の状態で直接、またはブロックヒーター、赤外線ヒーターなどの発熱体を用いて再加熱された後、延伸ブロー工程に送られる。加熱されたパリソンを、延伸ブロー工程において縦方向に1〜5倍に延伸した後、窒素などで1〜4倍に延伸ブロー成形することにより、多層容器を製造することができる。延伸ブロー成形時のパリソンの加熱温度は、75〜150℃が好ましく、85〜140℃がより好ましく、90〜130℃がさらに好ましく、95〜120℃が最も好ましい。加熱温度が150℃を超えると、PESが結晶化し易くなり、得られる容器が白化して透明性が損なわれたり、容器の層間剥離が増加したりする場合がある。一方、加熱温度が75℃未満であると、PESにクレーズが生じ、パール調になって透明性が損なわれる場合がある。
【0103】
こうして得られる多層容器の胴部の総厚みは、一般的には100〜2,000μm、好ましくは150〜1,000μmであり、用途に応じて使い分けられる。このときのSC層の合計厚みは、2〜200μmの範囲であることが好ましく、5〜100μmがより好ましい。
【0104】
このようにして本発明の酸素吸収性樹脂組成物からなる層および熱可塑性ポリエステルからなる層からなる多層容器が得られる。この容器は透明性、ガスバリア性および酸素吸収機能に極めて優れ、かつ酸素吸収により臭気成分が生じない。従って、酸素の存在により劣化し易い内容物、例えば、食品、医薬品などの容器として有用である。特に風味を重要視する食品、ビールなどの飲料の容器として極めて有用である。
【0105】
さらに、本発明の酸素吸収性樹脂組成物は、容器用パッキング(ガスケット)として、特に容器のキャップ用のガスケットとして使用するのに適している。この場合、キャップ本体の素材としては特に制限はなく、熱可塑性樹脂、金属などの当該分野で一般に使用される材料を採用することができる。かかるガスケットを装着してなるキャップは、ガスバリア性に優れ、かつ持続的な酸素吸収機能を有し、かつ酸素吸収により臭気成分が生じない。そのため、酸素に対し感受性が高く劣化し易い製品、特に風味を重要視する食品、飲料などの容器に用いられるキャップとして極めて有用である。
【実施例】
【0106】
以下に本発明を実施例などの例によって具体的に説明するが、本発明はそれにより何ら限定されない。以下の実施例および比較例における分析および評価は次のようにして行った。
【0107】
(1)熱可塑性樹脂(A)の分子構造:
CDClを溶媒とし、核磁気共鳴(H−NMR)測定(日本電子社製「JNM−GX−500型」を使用)により決定した。
【0108】
(2)熱可塑性樹脂(A)の数平均分子量(Mn)および重量平均分子量(Mw):
ゲルパーミエーションクロマトグラフィー(GPC)により測定を行い、ポリスチレン換算値として表記した。測定の詳細条件は以下のとおりである。
<分析条件>
装置 :Shodex製ゲルパーミエーションクロマトグラフィー(GPC)SYSTEM−11
カラム:KF−806L(Shodex) カラム温度:40℃
移動相:テトラヒドロフラン 流速:1.0ml/分
検出器:RI
濾過:0.45μmフィルター
濃度:0.1%
【0109】
(3)EVOHのエチレン含有量およびケン化度:
DMSO−dを溶媒とし、核磁気共鳴(H−NMR)測定(日本電子社製「JNM−GX−500型」を使用)により算出した。
【0110】
(4)酸素吸収性樹脂組成物中の熱可塑性樹脂(A)の分散粒子径の測定
後述の各実施例および比較例で得られた酸素吸収性樹脂組成物より、所定の厚みのフィルムを得た。常法に従い、このフィルムを、プレスフィルムについては任意の方向で、押出しフィルムについては押出方向に垂直方向で、かつ該フィルム面と直角の方向にミクロトームで切断し、断面に減圧下で白金を蒸着した。白金が蒸着された断面を走査型電子顕微鏡(SEM)を用いて切断面に対して垂直方向から10,000倍に拡大して写真撮影し、写真中の熱可塑性樹脂(A)からなる粒子20個程度を含む領域を選択して、該領域中に存在する各々の粒子像の粒径を測定し、その平均値を算出して、これを分散粒子径とした。なお、各々の粒子の粒径については、写真中に観察される粒子の長径(最も長い部分)を測定し、これを粒径とした。
【0111】
(合成例1)シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)の合成
攪拌機および温度計を備えた容量5lの3つ口フラスコ内を乾燥窒素で置換した後、シクロオクタジエン107g(0.99mol)、5−ノルボルネン−2,3−ジカルボン酸無水物1.64g(0.01mol)およびシス−4−オクテン510mg(4.55mmol)を溶解させたヘプタン624gを仕込んだ。
次いでベンジリデン(1,3−ジメシチルイミダゾリジン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド42.4mg(49.9μmol)をトルエン3.00gに溶解させた触媒液を調製し、これを上記溶液に加えて、60℃で開環メタセシス重合を行った。1時間後、ガスクロマトグラフィー(島津製作所製、GC−14B;カラム:化学品検査協会製、G−100)により分析し、シクロオクタジエンおよび5−ノルボルネン−2,3−ジカルボン酸無水物の消失を確認した。その後、エチルビニルエーテル1.08g(15.0mmol)を添加し、さらに10分間攪拌した。
【0112】
得られた反応液にメタノール600gを添加し、40℃で30分間攪拌した後、40℃で1時間静置して分液後、下層を除去した。上層にメタノール600gを添加し、55℃で30分間攪拌した後、40℃で1時間静置して分液後、下層を除去した。上層を減圧下で濃縮し、次いで真空乾燥機を用いて50Pa、40℃で24時間乾燥することで、重量平均分子量(Mw)90,000のシクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)92.3g(シクロオクタジエン基準の収率:85%)を得た。
【0113】
(合成例2)シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−2)の合成
シス−4−オクテンの量を715mg(6.37mmol)としたこと以外は合成例1と同様に操作を行い、重量平均分子量(Mw)70,000のシクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−2)94.5g(シクロオクタジエン基準の収率:87%)を得た。
【0114】
(比較合成例1)ポリオクテニレン(A−4)の合成
攪拌機および温度計を備えた容量5lの3つ口フラスコ内を乾燥窒素で置換した後、シクロオクテン110g(1.00mol)およびシス−4−オクテン374mg(3.33mmol)を溶解させたヘプタン624gを仕込んだ。
次いでベンジリデン(1,3−ジメシチルイミダゾリジン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド42.4mg(49.9μmol)をトルエン3.00gに溶解させた触媒液を調製し、これを上記溶液に加えて、60℃で開環メタセシス重合を行った。1時間後、ガスクロマトグラフィー(島津製作所製、GC−14B;カラム:化学品検査協会製、G−100)により分析し、シクロオクテンの消失を確認した。その後、エチルビニルエーテル1.08g(15.0mmol)を添加し、さらに10分間攪拌した。
【0115】
得られた反応液にメタノール600gを添加し、40℃で30分間攪拌した後、40℃で1時間静置して分液後、下層を除去した。上層にメタノール600gを添加し、55℃で30分間攪拌した後、40℃で1時間静置して分液後、下層を除去した。上層を減圧下で濃縮し、次いで真空乾燥機を用いて50Pa、40℃で24時間乾燥することで、重量平均分子量(Mw)89,000のポリオクテニレン(A−4)91.5g(シクロオクテン基準の収率:83%)を得た。
【0116】
(比較合成例2)スチレン−イソプレン−スチレントリブロック共重合体(A−5)の合成
乾燥窒素で系内を置換し、フィード口を備えた攪拌式オートクレーブにシクロヘキサン600ml、N,N,N’,N’−テトラメチルエチレンジアミン0.16ml、および開始剤としてn−ブチルリチウムのシクロヘキサン溶液(濃度:10質量%)0.094mlを仕込んだ。この混合液を50℃に昇温し、スチレン4.25mlを加えて1.5時間重合させた。次に温度を30℃に下げ、イソプレン120mlを添加し、添加終了後2.5時間重合させた。さらに再び温度を50℃に昇温し、スチレン4.25mlを加えて1.5時間重合させた。
得られた反応液をメタノールに注いで生成物を沈殿させ、これを分離・乾燥してスチレン−イソプレン−スチレントリブロック共重合体(A−5)80.5g(スチレン、イソプレン添加量に対する収率:90%)を得た。その後、得られたトリブロック共重合体(A−5)に酸化防止剤として2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレートおよびペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)を、それぞれトリブロック共重合体(A−5)に対して0.12質量%添加した。
得られたトリブロック共重合体(A−5)の数平均分子量(Mn)は85,000、スチレン含有量は14モル%、炭素−炭素二重結合の含有量は0.014mol/g、イソプレンブロック中における側鎖の炭素−炭素二重結合の全炭素−炭素二重結合に対する比率は55%であり、メルトフローレートは7.7g/10分であった。
【0117】
実施例1
以下の実施例1、2および比較例1〜3においては、ガスバリア性樹脂(C)として以下の組成および物性を有するEVOH(リン酸化合物およびナトリウム塩を含有するEVOH;以下EVOH(C−1)と称する)を使用した:
エチレン含有量:32モル%、ケン化度:99.6%、メルトフローレート(MFR):3.1g/10分(210℃、2160g荷重)、リン酸化合物含有量:100ppm(リン酸根換算)、ナトリウム塩含有量:65ppm(ナトリウム換算)、融点:183℃、酸素透過速度:0.4ml・20μm/m・day・atm(20℃、65%RH)。
【0118】
EVOH(C−1)950g、シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)50gおよびステアリン酸コバルト(II)8.4848g(コバルトとして0.800g)をドライブレンドし、25mmφ二軸押出機((株)東洋精機製LABO PLASTOMIL MODEL 15C300)を用い、210℃、スクリュー回転数100rpmの条件でストランドを押出して切断した。次いで、40℃で16時間減圧乾燥を行い、酸素吸収性樹脂組成物のペレットを得た。
【0119】
得られたペレットを用いて、210℃にて押出成形を行い、厚み20μmのフィルムを得た。このフィルムの切断面をSEMで観察したところ、粒子径1μm以下のシクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)がEVOH(C−1)からなるマトリックス中に分散していた。
【0120】
得られたフィルム0.5gを精秤し、成形の5時間後にロール状に巻いて、23℃、50%RH、体積比で21:79の酸素および窒素を含有する空気を満たした容量260mlの規格瓶に入れた。内部の相対湿度を100%RHとするため、水を含ませたろ紙を同封し、規格瓶の口をアルミニウム層を含む多層シートを用いてエポキシ樹脂で封じてから、60℃で静置した。封入後、経時的に内部の空気をシリンジでサンプリングし、酸素濃度をガスクロマトグラフィーを用いて測定した。サンプリング時に多層シートに空いた孔は、エポキシ樹脂を用いてその都度封じた。測定によって得られた酸素と窒素の体積比から酸素の減少量を計算することによって、酸素吸収性樹脂組成物の60℃、100%RH雰囲気下における酸素吸収量を求めた。封入時から1日(24時間)後、2日(48時間)後、6日(144時間)後、12日(288時間)後、21日(504時間)後および28日(672時間)後の酸素吸収量(積算量)を図1および表1に示す。
【0121】
さらに、以下のようにして臭気評価を行った。
(臭気評価)
上記フィルム1gを精秤し、成形の5時間後にロール状に巻いて、23℃、50%RHの空気を満たした容量85mlの規格瓶に入れた。内部の相対湿度を100%RHとするため、水を含ませたろ紙を同封し、規格瓶の口をアルミニウム層を含む多層フィルムを用いてエポキシ樹脂で封じてから、60℃で2週間静置した。その後、パネリスト5人が規格瓶中の空気の臭気を官能評価した。
結果を表1に示す。表1において、臭気の欄の◎は規格瓶中の空気にはほとんど臭気がない;○は規格瓶中の空気には低いレベルで臭気が存在する;△は規格瓶中の空気には臭気が存在する;そして×は規格瓶中の空気には激しい臭気が存在すると評価されたことを示す。なお、本実施例、比較例においては5人のパネリストの評価結果は一致していた。
【0122】
実施例2
シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)に代えて、シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−2)を使用したこと以外は実施例1と同様にしてフィルムを得た。このフィルムの切断面をSEMで観察したところ、粒子径1μm以下のシクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−2)がEVOH(C−1)からなるマトリックス中に分散していた。このフィルムを用いて実施例1と同様に酸素吸収量、臭気の測定を行った。結果を図1および表1に示す。
【0123】
比較例1
シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)に代えて、日本ゼオン社製ポリブタジエンゴム「Nipol BR1220」(以下、ポリブタジエン(A−3)と称する)を使用したこと以外は実施例1と同様にしてフィルムを得た。ポリブタジエン(A−3)の数平均分子量(Mn)は160,000であり、シスポリブタジエン、トランスポリブタジエンおよび1,2−ポリブタジエンを96/2/2のモル比で含有し、側鎖中の炭素−炭素二重結合の全炭素−炭素二重結合に対する比率は2%(主鎖中の炭素−炭素二重結合の量をa(mol/g)、側鎖中の炭素−炭素二重結合の量をb(mol/g)としたとき100×b/(a+b)=2)であった。このフィルムの切断面をSEMで観察したところ、粒子径1〜10μmのポリブタジエン(A−3)がEVOH(C−1)からなるマトリックス中に分散していた。このフィルムを用いて実施例1と同様に酸素吸収量、臭気の測定を行った。結果を図1および表1に示す。
【0124】
比較例2
シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)に代えて、ポリオクテニレン(A−4)を使用したこと以外は実施例1と同様にしてフィルムを得た。このフィルムの切断面をSEMで観察したところ、粒子径1μm以下のポリオクテニレン(A−4)がEVOH(C−1)からなるマトリックス中に分散していた。このフィルムを用いて実施例1と同様に酸素吸収量、臭気の測定を行った。結果を図1および表1に示す。
【0125】
比較例3
シクロオクタジエン−(5−ノルボルネン−2,3−ジカルボン酸無水物)開環メタセシス共重合体(A−1)に代えて、スチレン−イソプレン−スチレントリブロック共重合体(A−5)を使用したこと以外は実施例1と同様にしてフィルムを得た。このフィルムの切断面をSEMで観察したところ、粒子径1〜10μmのスチレン−イソプレン−スチレントリブロック共重合体(A−5)がEVOH(C−1)からなるマトリックス中に分散していた。このフィルムを用いて実施例1と同様に酸素吸収量、臭気の測定を行った。結果を図1および表1に示す。
【0126】
【表1】

【産業上の利用可能性】
【0127】
本発明によれば、優れた酸素吸収性を有し、酸素吸収により不快な臭気を発生せず、透明性に優れた酸素吸収性樹脂組成物が得られる。かかる樹脂組成物は酸素吸収性に優れ、該樹脂組成物を含む種々の成形体、例えば該樹脂組成物からなる層を含む多層フィルム、多層容器などを製造することができる。このような成形体、例えば多層フィルムや多層容器は、酸素による劣化を受け易く、かつ香りが重視される食品、化粧品などの製品を長期間安定に保存する容器として好ましい。また、本発明の酸素吸収性樹脂組成物は高い酸素吸収機能を有するので、取り扱いの容易な脱酸素剤としても有用である。
【図面の簡単な説明】
【0128】
【図1】実施例1、2および比較例1〜3のフィルムの60℃、100%RH雰囲気下における酸素吸収量を時間に対してプロットしたグラフである。

【特許請求の範囲】
【請求項1】
一般式(I)
【化1】

(式中、Xはメチレン基または酸素原子であり、R、R、RおよびRはそれぞれ独立して水素原子またはアルキル基を表す。)
で示される構造単位を含有する熱可塑性樹脂(A)、および遷移金属塩(B)を含有することを特徴とする酸素吸収性樹脂組成物。
【請求項2】
前記熱可塑性樹脂(A)が、一般式(II)
【化2】

(式中、Xはメチレン基または酸素原子であり、R、R、RおよびRはそれぞれ独立して水素原子またはアルキル基を表す。)
で示される酸無水物と、シクロオクタジエン、シクロオクテンおよびノルボルネンからなる群より選択される少なくとも1種の環状オレフィンを開環メタセシス重合で共重合させて得られる共重合体である、請求項1に記載の酸素吸収性樹脂組成物。
【請求項3】
前記遷移金属塩(B)が、ニッケル塩、マンガン塩およびコバルト塩からなる群から選択される少なくとも1種の金属塩である、請求項1または2に記載の酸素吸収性樹脂組成物。
【請求項4】
さらにマトリックス樹脂(C)を含有する、請求項1〜3のいずれか1つに記載の酸素吸収性樹脂組成物。
【請求項5】
前記熱可塑性樹脂(A)と前記マトリックス樹脂(C)の合計質量を100質量%としたときに、該熱可塑性樹脂(A)が30〜1質量%、そして該マトリックス樹脂(C)が70〜99質量%の割合で含有される、請求項4に記載の酸素吸収性樹脂組成物。
【請求項6】
前記マトリックス樹脂(C)が、ポリビニルアルコール系樹脂である、請求項4または5に記載の酸素吸収性樹脂組成物。
【請求項7】
前記マトリックス樹脂(C)が、エチレン含有量5〜60モル%、ケン化度90%以上のエチレン−ビニルアルコール共重合体である、請求項4または5に記載の酸素吸収性樹脂組成物。

【図1】
image rotate


【公開番号】特開2009−209324(P2009−209324A)
【公開日】平成21年9月17日(2009.9.17)
【国際特許分類】
【出願番号】特願2008−56522(P2008−56522)
【出願日】平成20年3月6日(2008.3.6)
【出願人】(000001085)株式会社クラレ (1,607)
【Fターム(参考)】