説明

金属微粒子の製造方法

【課題】本発明は、金属微粒子の品質を損なうこと無く、高い生産性かつ低コストで金属微粒子の平均粒径を自在に制御可能な金属微粒子の製造方法を提供することを課題とする。
【解決手段】炉内でバーナを用いて火炎を形成し、該火炎中に、燃料ガスにより輸送された原料粉体である金属或いは金属化合物を通過させることで金属微粒子を生成する方法であって、該火炎は、還元性火炎であり、該還元性火炎の火炎長を調整することで金属微粒子の平均粒径を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バーナを用いた金属微粒子の製造方法に関する。
【背景技術】
【0002】
従来、携帯端末やデジタル家電の中には、金属微粒子を用いた様々な電子部品が内蔵されている。一例としては、積層セラミックコンデンサーがある。これは、チタン酸バリウム等の誘電体とニッケル等の金属とを積層させた超小型のコンデンサーである。
【0003】
超小型のコンデンサーに使用するニッケルは、0.2〜0.4μm程度の球状の微粒子であり、これらをペースト化して、焼成することで電極層が形成される。積層セラミックコンデンサーは、年々小型化が進んでおり、これに伴い、安価で、かつ小粒径のニッケル微粒子の製造技術が望まれている。
【0004】
発明者らは、これまでに特許文献1〜3に記載の金属微粒子の製造方法に関する発明をなした。これらは、炉内でバーナにより還元性火炎を形成し、そこに原料となる金属や金属化合物を吹き込み、加熱・還元・蒸発を行うことで金属微粒子を生成する方法である。
特許文献1〜3に記載の金属微粒子の製造方法は、従来の蒸気圧の高い塩化物を原料に用いた方法や、アークやプラズマ等の高電気エネルギーを利用した方法とは異なり、有害物質の生成も無く、安価な金属微粒子の製造方法である。
【0005】
上記特許文献1〜3には、酸素比や排ガス中の一酸化炭素と二酸化炭素の比(CO/CO)の調整や、排ガス中の原料濃度や原料の噴出流速等を調整する方法が開示されている。これらの方法を用いることで、所望の平均粒径に制御された金属微粒子を生成させることが可能となる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第4304212号公報
【特許文献2】特許第4304221号公報
【特許文献3】特開2011−6718号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、酸素比を調整する場合、生成する金属微粒子の酸化やC濃度の上昇による不純物の混入の問題があるため、金属微粒子の平均粒径の制御範囲に限界があった。
また、排ガス中の原料濃度を調整する方法では、特に、平均粒径の小さい金属微粒子(具体的には、平均粒径が0.1μm以下の金属微粒子)を生成する場合、原料供給量を減らす調整や、燃焼排ガス量を増やす調整等を行う必要があるため、生産性の低下やバーナ燃焼量の増加等によるコストアップが生じてしまうという問題があった。
【0008】
そこで、本発明は、金属微粒子の品質を損なうこと無く、高い生産性かつ低コストで金属微粒子の平均粒径を自在に制御可能な金属微粒子の製造方法を提供するものである。
【課題を解決するための手段】
【0009】
上記課題を解決するため、請求項1に係る発明によれば、炉内でバーナを用いて火炎を形成し、該火炎中に、燃料ガスにより輸送された原料粉体である金属或いは金属化合物を通過させることで金属微粒子を生成する方法であって、前記火炎は、還元性火炎であり、前記還元性火炎の火炎長を調整することで前記金属微粒子の平均粒径を制御することを特徴とする金属微粒子の製造方法が提供される。
【0010】
また、請求項2に係る発明によれば、前記還元性火炎は、CO及びHが残存する火炎であり、燃料ガスの部分燃焼で得られることを特徴とする請求項1記載の金属微粒子の製造方法が提供される。
【0011】
また、請求項3に係る発明によれば、前記還元性火炎の火炎長の調整は、前記バーナの燃焼室に噴出される支燃性ガスの流速を変えることで行なうことを特徴とする請求項1または2記載の金属微粒子の製造方法が提供される。
【0012】
また、請求項4に係る発明によれば、前記還元性火炎の火炎長の調整は、前記バーナの燃焼室に支燃性ガスを噴出する支燃性ガス噴出部を少なくとも2系統以上に分割し、各系統に供給する支燃性ガスの流量比率を変えることで行なうことを特徴とする請求項1または2記載の金属微粒子の製造方法が提供される。
【0013】
また、請求項5に係る発明によれば、前記燃焼室に噴出された前記燃料ガスと、前記燃焼室に噴出される支燃性ガスとを交差させることを特徴とする請求項1ないし4のうち、いずれか1項記載の金属微粒子の製造方法が提供される。
【0014】
また、請求項6に係る発明によれば、前記燃料ガスにより輸送された前記原料粉体は、前記バーナの中心部から前記燃焼室に噴出され、前記支燃性ガスは、前記原料粉体の外側から前記燃焼室に噴出されることを特徴とする請求項1ないし5のうち、いずれか1項記載の金属微粒子の製造方法が提供される。
【発明の効果】
【0015】
本発明の金属微粒子の製造方法によれば、還元性火炎中に、燃料ガスにより輸送された原料粉体である金属或いは金属化合物を通過させて金属微粒子を生成する際、還元性火炎の火炎長を調整することにより、金属微粒子の品質を損なうこと無く、高い生産性かつ低コストで金属微粒子の平均粒径を自在に制御することができる。
なお、還元性火炎の火炎長を短くすると金属微粒子の平均粒径は小さくなり、還元性火炎の火炎長を長くすると、還元性火炎の火炎長が短い場合と比較して金属微粒子の平均粒径は大きくなる。
【図面の簡単な説明】
【0016】
【図1】本発明の実施の形態の金属微粒子の製造方法を行う際に使用する金属微粒子製造装置の概略構成を示す模式図である。
【図2】図1に示すバーナをA視した図である。
【図3】図2に示すバーナのB−B線方向の断面図である。
【図4】燃料ガスの流量、酸素(支燃性ガス)の流量、及び第1の支燃性ガスと、第2の支燃性ガスとの流量割合を固定し、第1及び第2の支燃性ガスの流速を変化させたときの還元性火炎の火炎長を示す図である。
【図5】燃料ガスの流量、酸素(支燃性ガス)の流量を固定し、第1の支燃性ガスと第2の支燃性ガスとの流量割合を変化させたときの還元性火炎の火炎長を示す図である。
【図6】金属微粒子の平均粒径と還元性火炎の火炎長との関係について示す図である。
【発明を実施するための形態】
【0017】
以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の金属微粒子製造装置の寸法関係とは異なる場合がある。
【0018】
(実施の形態)
図1は、本発明の実施の形態の金属微粒子の製造方法を行う際に使用する金属微粒子製造装置の概略構成を示す模式図である。
図1を参照するに、金属微粒子製造装置10は、原料フィーダー11、バーナ12、水冷炉13、支燃性ガス供給源15と、窒素供給源16と、バグフィルター18と、ブロワー21と、を有する。
【0019】
原料フィーダー11は、図示していない燃料ガス供給源、及びバーナ12と接続されている。原料フィーダー11は、原料粉体を定量的に供給し、さらに燃料ガスにより原料粉体を気体搬送してバーナ12に供給する。
バーナ12は、原料フィーダー11及び支燃性ガス供給源15と接続されており、先端部12Aが水冷炉13の上端と対向するように配置されている。バーナ12の先端部12Aは、原料粉体である金属或いは金属化合物を加熱・還元・蒸発させる火炎を形成する。
【0020】
図2は、図1に示すバーナをA視した図であり、図3は、図2に示すバーナのB−B線方向の断面図である。
図2及び図3を参照するに、バーナ12は、原料供給管25と、原料噴出孔26と、環状部材27と、第1の支燃性ガス供給部29と、第1の支燃性ガス噴出孔32(支燃性ガス噴出部)と、外筒33と、第2の支燃性ガス供給部35と、第2の支燃性ガス噴出孔36(支燃性ガス噴出部)と、燃焼室38と、冷却水用管路41と、を有する。
なお、本実施の形態では、支燃性ガス噴出部を、第1の支燃性ガス噴出孔32と、第2の支燃性ガス噴出孔36と、の2系統に分割した場合を例に挙げて以下の説明を行う。
【0021】
図3を参照するに、原料供給管25は、円筒形状とされており、内部に筒状空間44を有する。筒状空間44は、管路を介して、原料フィーダー11と接続されている。筒状空間44には、燃料ガスであるLNG(天然ガスやプロパンガスといった炭化水素系の燃料ガス)により輸送された原料粉体が供給される。
【0022】
図3を参照するに、原料噴出孔26は、原料供給管25の先端25Aを貫通するように複数設けられている。複数の原料噴出孔26は、原料供給管25の中心軸Cに対して外側に広がるように形成されたマルチホールである(図2参照)。
原料噴出孔26は、燃焼室38に燃料ガス及び原料粉体を噴出する。燃料ガス及び原料粉体は、バーナ12の中心部から燃焼室38に噴出される。燃焼室38に噴出された原料粉体は、支燃性ガスにより形成される火炎中で直接加熱される。
【0023】
図2及び図3を参照するに、環状部材27は、円筒形状とされており、原料供給管25との間に隙間を介在させた状態で、原料供給管25の外側に設けられている。環状部材27は、その中心軸が原料供給管25の中心軸Cと一致するように配置されている。
環状部材27の先端27Aは、原料供給管25の中心軸Cに対して外側に広がるように傾斜している。環状部材27の先端27Aは、原料供給管25の先端面25aから燃焼室38側に突出している。
【0024】
図3を参照するに、第1の支燃性ガス供給部29は、原料供給管25と環状部材27との間に設けられた筒状の空間である。第1の支燃性ガス供給部29は、管路を介して、支燃性ガス供給源15と接続されており、支燃性ガスである酸素または酸素富化空気が供給される。
【0025】
第1の支燃性ガス噴出孔32は、燃焼室38側に位置する第1の支燃性ガス供給部29の端に複数設けられている。これら第1の支燃性ガス噴出孔32は、原料噴出孔26の形成位置よりも外側に配置されている。
第1の支燃性ガス噴出孔32は、第1の支燃性ガス供給部29と接続されている。第1の支燃性ガス噴出孔32は、燃焼室38に噴出された原料粉体の外側から、燃焼室38に第1の支燃性ガスである酸素または酸素富化空気を噴出する。
【0026】
図2を参照するに、第1の支燃性ガス噴出孔32は、原料供給管25の中心軸Cに対して同心円状に配置されたマルチホールである。第1の支燃性ガス噴出孔32は、燃焼室38に第1の支燃性ガスを噴出する。
【0027】
図3を参照するに、外筒33は、環状部材27との間に第2の支燃性ガス供給部35が形成されるように、環状部材27の外側に配置されている。
第2の支燃性ガス供給部35は、第2の支燃性ガス供給部35は、環状部材27と外筒33との間に設けられた筒状の空間である。第2の支燃性ガス供給部35は、管路を介して、支燃性ガス供給源15と接続されており、支燃性ガスである酸素または酸素富化空気が供給される。
【0028】
第2の支燃性ガス噴出孔36は、環状部材27の先端27Aを貫通するように複数設けられている。これら第2の支燃性ガス噴出孔36は、第1の支燃性ガス噴出孔32の形成位置よりも外側に配置されている。
第2の支燃性ガス噴出孔36は、第2の支燃性ガス供給部35と接続されており、燃焼室38に噴出された原料粉体の外側から、燃焼室38に第2の支燃性ガスである酸素または酸素富化空気を噴出する。
【0029】
図2を参照するに、複数の第2の支燃性ガス噴出孔36は、原料供給管25の中心軸Cに向かう方向に傾斜して配置されている。第2の支燃性ガス噴出孔36は、燃料ガスが噴出される原料噴出孔26と交差するように構成されている。つまり、バーナ12は、燃焼室38に噴出された燃料ガスと、燃焼室38に噴出された第2の支燃性ガスと、が交差するような構成とされている。
【0030】
このように、燃焼室38に噴出された燃料ガスと、燃焼室38に噴出された第2の支燃性ガスと、を交差させることで、燃料ガスと支燃性ガスとの混合が促進されると共に、支燃性ガスの流速変化に対する燃料ガスの混合の割合を敏感に影響させることが可能となるので、支燃性ガスの流速変化により火炎の長さを容易に調整できる。
【0031】
還元性火炎の火炎長を調整することで、具体的には、還元性火炎の火炎長を長くして平均粒径の大きな金属粒子を生成し、還元性火炎の火炎長を短くして平均粒径の小さな金属粒子を生成する。
これにより、金属微粒子の品質を損なうこと無く、高い生産性かつ低コストで金属微粒子の平均粒径を自在に制御することができる。
【0032】
なお、本実施の形態では、図3に示すように、燃料ガスが噴出される原料噴出孔26と、第2の支燃性ガスが噴出される第2の支燃性ガス噴出孔36と、の両方を傾斜させた場合を例に挙げて説明したが、どちらか一方のみを傾斜させた構成としてもよい。
【0033】
図3を参照するに、燃焼室38は、原料供給管25の先端面25aと環状部材27の先端27Aとで囲まれた空間である。燃焼室38は、原料供給管25の先端面25aから離間するにつれて、径が広くなる形状とされている。燃焼室38は、円錐台形の空間である。バーナ12は、燃焼室38及びその先に原料粉体を溶融する火炎を形成する。
【0034】
冷却水用管路41は、外筒33に内設されている。冷却水用管路41は、冷却水を循環させるための管路であり、バーナ12の先端を冷却することで、バーナ12の先端が熱により損傷することを防止する。
【0035】
本実施の形態では、上記構成とされたバーナ12を用いて、燃料ガスを完全燃焼できる酸素(支燃性ガス)の量よりも少ない量の酸素により部分燃焼させ、CO及びHが残存する還元性火炎を形成し、原料粉体が還元性火炎内を通過することで、原料粉体が加熱・還元・蒸発されて金属微粒子が生成される。
【0036】
図1を参照するに、水冷炉13の上端にバーナ12が設けられている。水冷炉13の内部は、中空であり、炉壁を冷却することで、水冷炉13の内壁に原料粉体或いは金属微粒子が付着・成長することを抑制するためのものである。
【0037】
支燃性ガス供給源15は、管路を介して、バーナ12と接続されている。具体的には、図3に示す第1及び第2の支燃性ガス供給部29,35のそれぞれと接続されている。支燃性ガス供給源15は、第1及び第2の支燃性ガス供給部29,35のそれぞれに対して支燃性ガスを供給する。
【0038】
窒素供給源16は、水冷炉13の内部に窒素を供給可能な状態で、水冷炉13と接続されている。窒素供給源16は、水冷炉13の内部に窒素を供給することで、水冷炉13の内部空間に旋回流を形成する。
【0039】
バグフィルター18は、生成された金属微粒子を回収可能な状態で水冷炉13の下端と接続されている。バグフィルター18は、生成された金属微粒子を捕集するためのフィルターである。
ブロワー21は、バグフィルター18と接続されている。ブロワー21は、水冷炉から排出されるガスを排気するためのものである。
【0040】
本実施の形態の金属微粒子の製造方法によれば、還元性火炎中に、燃料ガスにより輸送された原料粉体である金属或いは金属化合物を通過させて金属微粒子を生成する際、還元性火炎の火炎長を調整することにより、金属微粒子の品質を損なうこと無く、高い生産性かつ低コストで金属微粒子の平均粒径を自在に制御することができる。
なお、還元性火炎の火炎長を短くすると金属微粒子の平均粒径は小さくなり、還元性火炎の火炎長を長くすると、還元性火炎の火炎長が短い場合と比較して金属微粒子の平均粒径は大きくなる。
【0041】
なお、本実施の形態では、一例として、支燃性ガスが噴出される支燃性ガス噴出部を2系統に分けた場合を例に挙げて説明したが、支燃性ガスが噴出される支燃性ガス噴出部は、2系統以上に分割されておればよく、2系統に限定されない。
【0042】
以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【0043】
(実施例1)
図1に示す金属微粒子製造装置10(図2及び図3に示す構造とされたバーナ12を備えた装置)を使用して、下記表1に示す条件のときの還元性火炎の火炎長について評価した。
具体的には、燃料ガスの流量、酸素(支燃性ガス)の流量、及び第1の支燃性ガスと第2の支燃性ガスとの流量割合を固定し、第1及び第2の支燃性ガスの流速を変化させたときの還元性火炎の火炎長について評価した。流量を固定した第1及び第2の支燃性ガスの流速は、支燃性ガス噴出孔の径を変えたノズルに交換して行った。
【0044】
【表1】

【0045】
この結果を図4に示す。図4は、燃料ガスの流量、酸素(支燃性ガス)の流量、及び第1の支燃性ガスと第2の支燃性ガスとの流量割合を固定し、第1及び第2の支燃性ガスの流速を変化させたときの還元性火炎の火炎長を示す図である。
【0046】
図4を参照するに、第1及び第2の支燃性ガス(酸素ガス)の流速が速いと還元性火炎の火炎長は短くなるなり、第1及び第2の支燃性ガスの流速が遅いと還元性火炎の火炎長は長くなることが確認できた。
つまり、第1及び第2の支燃性ガスの流速を変化させることで、還元性火炎の火炎長を調整可能なことが確認できた。
【0047】
(実施例2)
図1に示す金属微粒子製造装置10(図2及び図3に示す構造とされたバーナ12を備えた装置)を使用して、下記表2に示す条件のときの還元性火炎の火炎長について評価した。
具体的には、燃料ガスの流量、酸素(支燃性ガス)の流量を固定し、第1の支燃性ガスと第2の支燃性ガスとの流量割合を変化させたときの還元性火炎の火炎長について評価した。
【0048】
【表2】

【0049】
この結果を図5に示す。図5は、燃料ガスの流量、酸素(支燃性ガス)の流量を固定し、第1の支燃性ガスと第2の支燃性ガスとの流量割合を変化させたときの還元性火炎の火炎長を示す図である。なお、ノズルは1種類であり、該ノズルにより第1及び第2の支燃性ガス流量の割合を変化させている。
【0050】
図2を参照するに、第1の支燃性ガス(酸素ガス)の流量の割合が40%(言い換えれば、第2の支燃性ガス(酸素ガス)の流量の割合が60%)のときに、還元性火炎の火炎長が最も長くなることが確認できた。
図2に示すように、第1及び第2の支燃性ガス(酸素ガス)の流量の割合を変化させることで、還元性火炎の火炎長を調整可能なことが確認できた。
【0051】
(実施例3)
図1に示す金属微粒子製造装置10(図2及び図3に示す構造とされたバーナ12を備えた装置)を使用して、下記表3に示す条件を用いて、金属微粒子を生成し、バグフィルター18で捕集し、該金属微粒子の平均粒径と還元性火炎の火炎長との関係について評価した。
【0052】
【表3】

【0053】
この結果を図6に示す。図6は、金属微粒子の平均粒径と還元性火炎の火炎長との関係について示す図である。
図6を参照するに、金属微粒子の平均粒径と還元性火炎の火炎長との間には、相関関係があり、還元性火炎の火炎長が短いと生成される金属微粒子の平均粒径が小さくなり、還元性火炎の火炎長が長いと生成される金属微粒子の平均粒径は大きくなることが確認できた。
つまり、従来よりも平均粒径の制御範囲の広い金属微粒子を容易に製造することができることが確認できた。
【産業上の利用可能性】
【0054】
本発明は、バーナを用いた金属微粒子の製造方法に適用可能である。
【符号の説明】
【0055】
10…金属微粒子製造装置、11…原料フィーダー、12…バーナ、12A…先端部、13…水冷炉、15…支燃性ガス供給源、16…窒素供給源、18…バグフィルター、21…ブロワー、25…原料供給管、25a…先端面、25A,27A…先端、26…原料噴出孔、27…環状部材、29…第1の支燃性ガス供給部、32…第1の支燃性ガス噴出孔、33…外筒、35…第2の支燃性ガス供給部、36…第2の支燃性ガス噴出孔、38…燃焼室、41…冷却水用管路、C…中心軸

【特許請求の範囲】
【請求項1】
炉内でバーナを用いて火炎を形成し、該火炎中に、燃料ガスにより輸送された原料粉体である金属或いは金属化合物を通過させることで金属微粒子を生成する方法であって、
前記火炎は、還元性火炎であり、
前記還元性火炎の火炎長を調整することで前記金属微粒子の平均粒径を制御することを特徴とする金属微粒子の製造方法。
【請求項2】
前記還元性火炎は、CO及びHが残存する火炎であり、燃料ガスの部分燃焼で得られることを特徴とする請求項1記載の金属微粒子の製造方法。
【請求項3】
前記還元性火炎の火炎長の調整は、前記バーナの燃焼室に噴出される支燃性ガスの流速を変えることで行なうことを特徴とする請求項1または2記載の金属微粒子の製造方法。
【請求項4】
前記還元性火炎の火炎長の調整は、前記バーナの燃焼室に支燃性ガスを噴出する支燃性ガス噴出部を少なくとも2系統以上に分割し、各系統に供給する支燃性ガスの流量比率を変えることで行なうことを特徴とする請求項1または2記載の金属微粒子の製造方法。
【請求項5】
前記燃焼室に噴出された前記燃料ガスと、前記燃焼室に噴出される支燃性ガスとを交差させることを特徴とする請求項1ないし4のうち、いずれか1項記載の金属微粒子の製造方法。
【請求項6】
前記燃料ガスにより輸送された前記原料粉体は、前記バーナの中心部から前記燃焼室に噴出され、
前記支燃性ガスは、前記原料粉体の外側から前記燃焼室に噴出されることを特徴とする請求項1ないし5のうち、いずれか1項記載の金属微粒子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−237023(P2012−237023A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2011−105177(P2011−105177)
【出願日】平成23年5月10日(2011.5.10)
【出願人】(000231235)大陽日酸株式会社 (642)
【Fターム(参考)】