説明

電子内視鏡装置

【課題】最適なエンハンス処理を自動で行うことを可能にした電子内視鏡装置を提供する。
【解決手段】内視鏡画像を映像信号として出力する電子内視鏡と、モニタと、映像信号を処理してモニタに表示可能なビデオ信号を生成する電子内視鏡用プロセッサとを備えた電子内視鏡装置が、モニタと該モニタの前面に位置する観察者との距離を測定する距離測定手段を備え、電子内視鏡用プロセッサは、映像信号から画像を生成し、該画像の所定の空間周波数を中心にエンハンス処理する信号処理回路を備え、信号処理回路は、距離測定手段によって測定された距離に基づいて所定の空間周波数を変更する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子内視鏡から出力される内視鏡画像をモニタに表示する電子内視鏡装置であって、特に、エンハンス処理を施した内視鏡画像をモニタに表示する電子内視鏡装置に関する。
【背景技術】
【0002】
内視鏡の挿入管の先端部に対物光学系及び撮像素子を内蔵した電子内視鏡と、該電子内視鏡から出力される映像信号を処理してモニタに表示可能なビデオ信号を生成する電子内視鏡用プロセッサとを備えた電子内視鏡装置が、体腔内の診断等に広く利用されている。
【0003】
電子内視鏡装置においては、モニタに表示される内視鏡画像を見やすくするために、電子内視鏡用プロセッサでエンハンス処理(輪郭強調処理)等の画像処理が行われている(特許文献1)。一般に、エンハンス処理は、内視鏡画像の空間周波数を帯域強調する処理であり、具体的には、接続される電子内視鏡のCCDの画素数やノイズレベル等に応じて、空間フィルタのマスク演算係数を変更し、エンハンス処理する空間周波数を変更している(特許文献2)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平7−313447号公報
【特許文献2】特開2005−103325号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
電子内視鏡から出力される画像がぼやけた画像であっても、電子内視鏡用プロセッサで最適なエンハンス処理を行うことによって、鮮鋭感の高い画像を得ることが可能となる。しかしながら、的確なエンハンス処理が行われない場合(すなわち、強調する空間周波数を誤った場合)には、所望の画像が得られず、かえって不自然な画像になったり、ノイズが増加した画像になったりするという問題がある。また、所望の画像を得るためには強調すべき最適な空間周波数を探す操作(すなわち、エンハンスを調整する操作)が必要となるが、内視鏡を操作しながらこのような操作を行う必要があるため、術者にとっては煩わしいものとなる。そして、結果として、患者に長時間の診断を強いることとなる。
【0006】
本発明は上記の問題を解決するためになされたものである。すなわち、本発明は、最適なエンハンス処理を自動で行うことを可能にした電子内視鏡装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記の目的を達成するため、本発明の電子内視鏡装置は、内視鏡画像を映像信号として出力する電子内視鏡と、モニタと、映像信号を処理してモニタに表示可能なビデオ信号を生成する電子内視鏡用プロセッサとを備えた電子内視鏡装置であって、モニタと該モニタの前面に位置する観察者との距離を測定する距離測定手段を備え、電子内視鏡用プロセッサは、映像信号から画像を生成し、該画像の所定の空間周波数を中心にエンハンス処理する信号処理回路を備え、信号処理回路は、距離測定手段によって測定された距離に基づいて所定の空間周波数を変更することを特徴とする。
【0008】
このような構成により、モニタと観察者(術者)との距離に応じて最適なエンハンス処理が行われることとなり、術者は、常に最適なエンハンス処理がなされた画像を見ながら内視鏡を操作することが可能となる。また、術者は、内視鏡を操作しながら別の操作を行う必要が無いため、内視鏡の操作に集中することができ、結果として、診断時間が短縮される。
【0009】
また、信号処理回路は、モニタと観察者の距離が所定の基準距離の時に最適なエンハンス処理が行われるように定められた基準空間周波数と、モニタが解像できる最大の空間周波数と、距離測定手段によって測定された距離とに基づいて所定の空間周波数を変更する構成としても良い。このような構成により、最適なエンハンス処理を行うのに必要な空間周波数を簡単な演算で求めることができる。
【0010】
また、距離測定手段は複数のセンサユニットを備え、複数のセンサユニットのそれぞれが、観察者が存在するか否かを検出する人感センサと、モニタと観察者との間の距離を測定する測距センサとを備えることが好ましい。
【0011】
また、信号処理回路は、複数のセンサユニットによって測定されたモニタと観察者との間の距離のうち、最小距離に基づいて所定の空間周波数を変更する構成としても良い。このような構成により、距離測定手段によって複数の観察者が検出された場合でも最もモニタに近い観察者に対して最適なエンハンス処理を行うことができる。
【0012】
また、人感センサは、熱線センサであり、測距センサは、超音波センサで構成することが好ましい。
【発明の効果】
【0013】
以上のように、本発明によれば、最適なエンハンス処理を自動で行うことを可能にした電子内視鏡装置が実現される。
【図面の簡単な説明】
【0014】
【図1】図1は、本発明の実施の形態による電子内視鏡装置のブロック図である。
【図2】図2は、本実施形態の電子内視鏡装置で実行されるエンハンス処理を説明する上で前提となる人間の視覚特性を説明する図である。
【図3】図3は、本実施形態の電子内視鏡装置で実行されるエンハンス処理を説明する図である。
【図4】図4は、本実施形態のシステムコントローラで実行される自動エンハンス処理のフローチャートである。
【図5】図5は、本実施形態の測距センサの構成を説明するブロック図である。
【図6】図6は、図4の自動エンハンス処理で実行される距離測定ルーチンのフローチャートである。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本実施形態の電子内視鏡装置のブロック図である。図1に示されるように、本実施形態の電子内視鏡装置1は、電子内視鏡100と、電子内視鏡用プロセッサ200と、モニタ300とを有する。
【0016】
プロセッサ200は、システムコントローラ202、タイミングコントローラ204を有している。システムコントローラ202は、電子内視鏡装置1を構成する各要素を制御する。タイミングコントローラ204は、信号の処理タイミングを調整するクロックパルスを電子内視鏡装置1内の各種回路に出力する。
【0017】
ランプ208は、ランプ電源イグナイタ206による始動後、白色光を放射する。ランプ208には、キセノンランプ、ハロゲンランプ、水銀ランプ、メタルハライドランプ等の高輝度ランプが適している。ランプ208から放射された照明光は、集光レンズ210によって集光されつつ絞り212を介して適正な光量に制限されて、LCB(light carrying bundle)102の入射端に入射する。
【0018】
絞り212には、図示省略されたアームやギヤ等の伝達機構を介してモータ214が機械的に連結している。モータ214は例えばDCモータであり、ドライバ216の制御下で駆動する。絞り212は、モニタ300に表示される映像を適正な明るさにするため、モータ214の駆動によって開度が変化するように構成されており、ランプ208から放射された照明光の光量を開度に応じて制限する。適正とされる映像の明るさの基準は、術者によるフロントパネル218の輝度調節操作に応じて設定変更される。なお、ドライバ216を制御して輝度調整を行う調光回路は周知の回路であり、本明細書においては省略することとする。
【0019】
LCB102の入射端に入射した照明光は、LCB102内を全反射を繰り返すことによって伝播する。LCB102内を伝播した照明光は、電子スコープ100の先端に配されたLCB102の射出端から射出する。LCB102の射出端から射出した照明光は、配光レンズ104を介して被写体を照明する。被写体からの反射光は、対物レンズ106を介して固体撮像素子108の受光面上の各画素で光学像を結ぶ。
【0020】
固体撮像素子108は、IR(InfraRed)カットフィルタ108a、ベイヤ配列カラーフィルタ108bの各種フィルタが受光面前面に配置された単板式カラーCMOS(Complementary Metal Oxide Semiconductor)イメージセンサであり、受光面上の各画素で結像した光学像を光量に応じた電荷として蓄積して、R、G、Bの各色に応じた撮像信号に変換する。変換された撮像信号は、ドライバ信号処理回路112に入力されAD変換、信号増幅等の処理後、信号処理回路220に出力される。なお、別の実施形態では、固体撮像素子108は、CMOSイメージセンサに限らず、CCDイメージセンサであってもよい。
【0021】
ドライバ信号処理回路112は、メモリ114にアクセスして電子スコープ100の固有情報を読み出す。電子スコープ100の固有情報には、例えば固体撮像素子108の画素数や感度、対応可能なレート、型番等が含まれる。ドライバ信号処理回路112は、メモリ114から読み出した固有情報をシステムコントローラ202に出力する。
【0022】
システムコントローラ202は、電子スコープ100の固有情報に基づいて各種演算を行い、制御信号を生成する。システムコントローラ202は、生成された制御信号を用いて、プロセッサ200に接続中の電子スコープに適した処理がなされるようにプロセッサ200内の各種回路の動作やタイミングを制御する。なお、システムコントローラ202は、電子スコープの型番と、この型番の電子スコープに適した制御情報とを対応付けたテーブルを有した構成としてもよい。この場合、システムコントローラ202は、対応テーブルの制御情報を参照して、プロセッサ200に接続中の電子スコープに適した処理がなされるようにプロセッサ200内の各種回路の動作やタイミングを制御する。
【0023】
タイミングコントローラ204は、システムコントローラ202によるタイミング制御に従って、ドライバ信号処理回路112にクロックパルスを供給する。ドライバ信号処理回路112は、タイミングコントローラ204から供給さるクロックパルスに従って、固体撮像素子108をプロセッサ200側で処理される映像のフレームレートに同期したタイミングで駆動制御する。
【0024】
信号処理回路220は、ドライバ信号処理回路112から出力されるデジタルの画像データを画像メモリ222に記憶する。また、信号処理回路220は、画像メモリ222に記憶された画像データを所定の(すなわち、モニタ300の水平及び垂直同期周波数に対応した)タイミングで読み出し、読み出した画像データに所定の画像処理(例えば、エンハンス処理など)を行い、画像処理が行われた後の画像データを、所定の形式のビデオ信号(例えば、NTSC形式)に変換し、モニタ300に出力する。この結果、電子内視鏡100の固体撮像素子108によって撮像された被写体の内視鏡画像が、モニタ300に表示されることになる。なお、上述の信号処理回路220の各動作は、タイミングコントローラ204及びシステムコントローラ202の制御によって行われる。
【0025】
モニタ300の周辺(例えば、上側)には、測距センサ310が配設されている。測距センサ310は、モニタ300のモニタ面と観察者(術者)の間の距離を測定するセンサであり、システムコントローラ202によって制御される。測距センサ310は、例えば、人感センサである熱線センサと距離を測定する超音波センサとを組み合わせたセンサであり、測距センサ310の前面に人がいるか否かを検出すると共に、人がいることが検出された場合にはモニタ300のモニタ面と術者の間の距離を測定し、その結果をシステムコントローラ202に送信する(後述)。
【0026】
次に、本実施形態の電子内視鏡装置1で実行される自動エンハンス処理について説明する。図2は、本実施形態の電子内視鏡装置1で実行されるエンハンス処理を説明する上で前提となる人間の視覚特性を説明する図である。
【0027】
いま、モニタ300と観察者(術者)との距離をx1(例えば、50cm)とし、観察距離の基準とする。そして、この時にモニタ300上に表示されたある像の大きさをy1とすると、観察者は、以下のような視野角θで像を観察することとなる。
θ=atan(y1/x1)・・・(1)
【0028】
次に、観察距離がx1からx2(x2=α×x1)になった場合を考える。観察距離x2において、観察距離x1の時と同じ視野角θで観察できるモニタ300上の像の大きさy2は、式(2)と同様、以下のようにおける。
θ=atan(y2/x2)・・・(2)
【0029】
そして、式(1)及び(2)から、以下の式(3)を得る。
【数1】

【0030】
そして、モニタ300を異なる距離x1、x2において、モニタ300上の像に対して同視野角で観察する時、x2=α×x1ならば、以下の式(4)が導かれる。
y2=α×y1・・・(4)
【0031】
式(4)は、モニタ300上の像をα倍離れた所から観察した場合、観察できる像の大きさが、1/α倍になることを意味する。
【0032】
次に、観察対象となる像の空間周波数と解像力との関係を考える。図3は、本実施形態の電子内視鏡装置1で実行されるエンハンス処理を説明する図である。図3は、観察対象となる像の空間周波数(横軸)と解像力(縦軸)との関係を示しており、点線は、エンハンス処理をしていない場合の特性を表し、実線は、エンハンス処理を行った場合の特性を表している。
【0033】
図3の点線で示されるように、一般に、エンハンス処理をしていない場合、空間周波数が低い像(すなわち、粗い象)ほど解像力が高く、空間周波数が高い像(すなわち、細かい像)ほど解像力が低くなる。
【0034】
エンハンス処理は、所定の空間周波数Fの解像力を高める処理であり、図3の実線で示されるように、所定の周波数F(以下、エンハンス周波数Fという)をピークとして、全体に解像力を高める方向にエンハンス処理を行っている。エンハンス周波数Fを調整することにより強調される空間周波数のバランスを変更し、観察画像の所定の空間周波数をより強調することができるため、これによって所望の観察画像を得ることが可能となる。
【0035】
ここで、モニタ300が解像できる最大の空間周波数を最大空間周波数Fn(例えば、1280TV本)とした場合、エンハンス周波数Fは、定数β(0<β<1)を用いて、以下のように表現できる。
F=β×Fn・・・(5)
【0036】
上述のように、モニタ300上の像の大きさは、観察する位置によって異なるため、観察する位置によって像の空間周波数が異なることとなる。すなわち、モニタ300上の像をモニタ300に近づいて観察した場合、その像の空間周波数は低くなり、離れて観察した場合、その像の空間周波数は高くなる。本実施形態のエンハンス処理は、像の空間周波数が観察距離に依存する点に注目したものであり、観察距離に応じて最適なエンハンス周波数Fを自動調整するように構成されている。以下、本実施形態の自動エンハンス処理について詳述する。
【0037】
モニタ300の横方向の大きさをY、横方向の最大空間周波数をFn、観察距離x1における最適なエンハンス周波数をF1、空間周波数F1に対応するモニタ上の像の周期(大きさ)をy1とすると、以下の関係を得る。
y1=Y/F1・・・(6)
【0038】
そして、式(5)と式(6)より、以下の式(7)が得られる。
【数2】

【0039】
次に、x1とは異なる距離x2(x2=α×x1)で観察する場合を考える。いま、観察距離x2における最適なエンハンス周波数をF2、空間周波数F2に対応するモニタ上の像の周期(大きさ)をy2とすると、式(4)及び式(7)から、以下の式(8)
【数3】

及び以下の式(9)を得る。
【数4】

【0040】
式(8)及び式(9)において、モニタ300の横方向の大きさY及び横方向の最大空間周波数Fnは、モニタ300の仕様によって決まる定数であることから、観察距離x2における最適なエンハンス周波数F2、空間周波数F2に対応するモニタ上の像の周期(大きさ)y2は、定数α及びβを求めることによって求まることが分かる。
【0041】
本実施形態では、定数βは、観察距離x1における最適なエンハンス周波数F1を主観評価実験によって求めている。具体的には、観察距離x1において、エンハンス周波数Fを変更しながらモニタ上の所定の像を観察し、最も鮮鋭感が得られた時のエンハンス周波数Fを求め、このエンハンス周波数Fとモニタ300が解像できる最大の空間周波数Fnとを式(5)に代入することによって定数β(例えば、0.3)を求めている。観察距離x1、観察距離x1における最適なエンハンス周波数F1及びモニタ300が解像できる最大の空間周波数Fnの各パラメータは、フロントパネル218を介してユーザによって入力され、不図示のメモリに格納される。そして、定数βは、システムコントローラ202によって各パラメータを用いて演算され、各パラメータと同様、不図示のメモリに格納される。
【0042】
また、本実施形態においては、定数αは、測距センサ310によって観察者とモニタ300との距離(すなわち、観察距離x2)を求めることによって求めている。具体的には、後述するように、システムコントローラ202が、測距センサ310で検出した観察距離x2と既知の観察距離x1とから定数α(=x2/x1)を求めている。
【0043】
そして、本実施形態においては、求められた定数α及びβと、既知のモニタ300が解像できる最大の空間周波数Fnとを式(9)に代入することによって、観察距離x2における最適なエンハンス周波数F2を求め、最適なエンハンス処理が自動で行われるように構成されている。
【0044】
以下、本実施形態の電子内視鏡装置1で実行される自動エンハンス処理について説明する。図4は、本実施形態のシステムコントローラで実行される自動エンハンス処理のフローチャートである。図5は、本実施形態の測距センサの構成を説明するブロック図である。図6は、図4の自動エンハンス処理で実行される距離測定ルーチンのフローチャートである。なお、本処理は、フロントパネル218の操作によって、自動エンハンス処理が指示された時に実行される。
【0045】
本ルーチンが開始されると、ステップS101が実行される。ステップS101では、距離測定サブルーチンが呼び出され、測距センサ310によって観察者とモニタ300との距離(すなわち、観察距離x2)が求められる。
【0046】
図5に示されるように、測距センサ310は、モニタ300に対して左側に位置する人を検出するセンサS1と、モニタ300の正面に位置する人を検出するセンサS2と、モニタ300に対して右側に位置する人を検出するセンサS3とを有する。上述したように、センサS1、S2、S3は、それぞれ熱線センサと超音波センサを有しており、所定の検出角度内に人が存在するか否かと、人が存在する場合に、その人間とセンサ間の距離を測定することが可能である。
【0047】
距離測定サブルーチンが呼び出されると、ステップS201が実行される。ステップS201では、センサS1の熱線センサが人を検出したか否かが判断される。センサS1の熱線センサが人を検出した場合(S201:YES)、処理はS202に進む。一方、ステップS201において、センサS1の熱線センサが人を検出しない場合(S201:NO)、処理はS203に進む。
【0048】
ステップS202では、センサS1の超音波センサにより、ステップS201で検出した人との距離D1を測定しメモリ(不図示)に格納する。次いで、ステップS203に進む。
【0049】
ステップS203では、センサS2の熱線センサが人を検出したか否かが判断される。センサS2の熱線センサが人を検出した場合(S203:YES)、処理はS204に進む。一方、ステップS203において、センサS2の熱線センサが人を検出しない場合(S203:NO)、処理はS205に進む。
【0050】
ステップS204では、センサS2の超音波センサにより、ステップS203で検出した人との距離D2を測定しメモリ(不図示)に格納する。次いで、ステップS205に進む。
【0051】
ステップS205では、センサS3の熱線センサが人を検出したか否かが判断される。センサS3の熱線センサが人を検出した場合(S205:YES)、処理はS206に進む。一方、ステップS205において、センサS3の熱線センサが人を検出しない場合(S205:NO)、処理はS207に進む。
【0052】
ステップS206では、センサS3の超音波センサにより、ステップS205で検出した人との距離D3を測定しメモリ(不図示)に格納する。次いで、ステップS207に進む。
【0053】
ステップS207では、ステップS202、S204、S206で測定し、メモリに格納した距離D1、D2、D3の情報(データ)をシステムコントローラ202に転送し、本サブルーチンを終了する。
【0054】
距離測定サブルーチンが終了すると、処理はS102に進む(図4)。ステップS102は、観察距離x2における最適なエンハンス周波数F2を求めるエンハンス周波数演算ステップである。本ステップでは、システムコントローラ202は、距離測定サブルーチンで得られた距離D1、D2、D3の最小値を求め、この最小値を観察者までの距離(すなわち、観察距離x2)として演算を行う。具体的には、観察距離x2と既知の観察距離x1とから定数α(=x2/x1)を求め、これと既知の定数β及びモニタ300が解像できる最大の空間周波数Fnを式(9)に代入することによって、観察距離x2における最適なエンハンス周波数F2を求める。次いで、ステップS103に進む。
【0055】
ステップS103では、S102で求められたエンハンス周波数F2を中心としたエンハンス処理が行われる。すなわち、システムコントローラ202は、信号処理回路220を制御し、ドライバ信号処理回路112から入力される画像データに対して、エンハンス周波数F2がピークとなるようにエンハンス処理を行う。そして、エンハンス処理された画像データは、信号処理回路220でビデオ信号に変換され、モニタ300に出力される。次いで、ステップS104に進む。
【0056】
ステップS104では、フロントパネル218の操作によって、自動エンハンス処理の終了指示が入力されたか否か(スイッチSWがOFFされたか否か)を判断する。自動エンハンス処理の終了指示が入力された場合(S104:YES)、自動エンハンス処理は終了する。一方、自動エンハンス処理の終了指示が入力されていない場合(S104:NO)、処理はS102に戻る。
【0057】
以上のステップS102〜S104のループが実行されることによって、観察者とモニタ300との距離が逐次測定され、その距離に応じた自動エンハンス処理が実行されることとなる。
【0058】
従って、本実施形態の自動エンハンス処理によれば、モニタ300と術者との距離に応じて最適なエンハンス処理が行われることとなり、術者は、常に最適なエンハンス処理がなされた画像を見ながら内視鏡を操作することが可能となる。また、術者は、内視鏡を操作しながら別の操作を行う必要が無いため、内視鏡の操作に集中することができ、結果として、診断時間が短縮される。
【符号の説明】
【0059】
1 電子内視鏡装置
100 電子内視鏡
200 電子内視鏡用プロセッサ
202 システムコントローラ
220 信号処理回路
300 モニタ
310 測距センサ


【特許請求の範囲】
【請求項1】
内視鏡画像を映像信号として出力する電子内視鏡と、モニタと、前記映像信号を処理して前記モニタに表示可能なビデオ信号を生成する電子内視鏡用プロセッサと、を備えた電子内視鏡装置であって、
前記モニタと該モニタの前面に位置する観察者との距離を測定する距離測定手段を備え、
前記電子内視鏡用プロセッサは、前記映像信号から画像を生成し、該画像の所定の空間周波数を中心にエンハンス処理する信号処理回路を備え、
前記信号処理回路は、前記距離測定手段によって測定された距離に基づいて前記所定の空間周波数を変更する
ことを特徴とする電子内視鏡装置。
【請求項2】
前記信号処理回路は、前記モニタと前記観察者の距離が所定の基準距離の時に最適なエンハンス処理が行われるように定められた基準空間周波数と、前記モニタが解像できる最大の空間周波数と、前記距離測定手段によって測定された距離と、に基づいて前記所定の空間周波数を変更することを特徴とする請求項1に記載の電子内視鏡装置。
【請求項3】
前記距離測定手段は、複数のセンサユニットを備え、
前記複数のセンサユニットのそれぞれが、前記観察者が存在するか否かを検出する人感センサと、前記モニタと前記観察者との間の距離を測定する測距センサと、を備えることを特徴とする請求項1又は請求項2に記載の電子内視鏡装置。
【請求項4】
前記信号処理回路は、前記複数のセンサユニットによって測定された前記モニタと前記観察者との間の距離のうち、最小距離に基づいて前記所定の空間周波数を変更することを特徴とする請求項3に記載の電子内視鏡装置。
【請求項5】
前記人感センサは、熱線センサであり、前記測距センサは、超音波センサであることを特徴とする請求項3又は請求項4に記載の電子内視鏡装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−75807(P2012−75807A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2010−226206(P2010−226206)
【出願日】平成22年10月6日(2010.10.6)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】