説明

電気自動車充電装置、電気自動車充電方法、プログラムおよび記録媒体

【課題】大容量の受電設備が不要な構成において、電気自動車の蓄電池を充電する場合の電力効率を改善できるようにする。
【解決手段】電気自動車充電装置1は、AC−DC変換装置11、充電電力供給用蓄電池13、AC−DC変換装置11の出力側と充電電力供給用蓄電池13との間に設けられた双方向DC−DC変換装置12および制御装置14を備える。制御装置14は、動力用蓄電池41の非充電時に、AC−DC変換装置11および双方向DC−DC変換装置12を介して入力される交流電源17からの電力により充電電力供給用蓄電池13が充電され、動力用蓄電池41の充電時に、AC−DC変換装置11を介して出力される交流電源17からの電力、および双方向DC−DC変換装置12を介して出力される、充電電力供給用蓄電池13から放電された電力により動力用蓄電池41が充電されるように制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は電気自動車の蓄電池を充電する電気自動車充電装置、電気自動車充電方法、プログラムおよび記録媒体に関するものである。
【背景技術】
【0002】
近年、動力源として内燃機関に代えてモータを使用する電気自動車が開発されている。電気自動車は、電源として蓄電池を使用し、蓄電池からの電力供給によりモータを駆動して走行する。このため、内燃機関と比較して、エネルギー費用が安価、エネルギー効率が高い、騒音が極めて少ない、走行時に排気ガスを出さないなど、多数の利点を有している。
【0003】
電気自動車の蓄電池は、例えば一般家庭において、電力会社から供給される例えば100Vあるいは200Vなどの商用電源を利用して充電することができる。この場合、通常商用電源の交流電圧を直接電気自動車に供給し、電気自動車の中に搭載されたAC−DCコンバータにて直流電圧に変換し、その直流電圧を電気自動車の蓄電池に供給して充電する。
【0004】
一方、電気自動車の蓄電池は、電気自動車を駆動するモータに電力を供給するため、大容量のものとなっている。そのため、一般家庭において電力会社から供給される商用電源の電力では、電気自動車の蓄電池を充電するには非常に時間がかかってしまう。そこで、工場や店舗、事務所などの公共の施設に電気自動車の充電装置を設置すれば、この充電装置でAC−DCコンバータにて直流電圧に変換し、その直流電圧を電気自動車の蓄電池に供給して充電することができる。このとき、電気自動車の蓄電池を急速充電により短時間に充電するためには、電気自動車充電装置として、電力会社から大電力を受電するための受電設備と、大電流を出力できる大容量の電力変換装置が必要となる。この場合には、電気自動車充電装置が高コストのものとなる。
【0005】
そこで、例えば特許文献1には、電気自動車の動力源用のバッテリーとは別に、充電電力供給用のバッテリーを設け、そのバッテリーから供給する電力によって動力源用のバッテリーを充電する構成が提案されている。具体的には、特許文献1では、交流電源からの電力を充電装置を介して充電電力供給用のバッテリーに供給し、充電電力供給用のバッテリーを充電している。また、充電電力供給用のバッテリーからの電力を急速充電装置を介して動力源用のバッテリーに供給し、動力源用のバッテリーを充電している。
【0006】
同様に、特許文献2には、充電装置が設備用蓄電池を備え、この設備用蓄電池から供給する電力によって電気自動車の蓄電池を充電する構成が提案されている。具体的には、特許文献2では、充電装置において、交流電源からの電力を整流器により整流した後、充電器を介して設備用蓄電池に供給し、設備用蓄電池を充電している。また、電気自動車の蓄電池を充電する際には、設備用蓄電池の電力を上記充電器を介して電気自動車の蓄電池に供給し、蓄電池を充電している。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平6−253461号公報(1994年9月9日公開)
【特許文献2】特開平5−207668号公報(1993年8月31日公開)
【発明の概要】
【発明が解決しようとする課題】
【0008】
上記のように、特許文献1,2の構成では、電気自動車の蓄電池の充電を、電気自動車充電装置が備える充電電力供給用の蓄電池からの供給電力にて行っているため、大容量の交流からの受電設備が不要となっている。しかしながら、充電電力供給用の蓄電池のみからの電力により電気自動車の蓄電池を充電しているため、電力変換装置における電力損失が大きくなるという問題点を有している。
【0009】
すなわち、充電器を介して蓄電池に電力を供給する場合には、充電器において電力損失が発生する。特許文献1,2の構成では、いずれも、交流電源からの電力を充電器、例えばAC−DCコンバータもしくはDC−DCコンバータを介して充電電力供給用の蓄電池に供給している。また、充電電力供給用の蓄電池からの電力を充電器、例えばDC−DCコンバータを介して電気自動車の蓄電池に供給している。したがって、電気自動車の蓄電池に供給される電力は複数回の電力損失を受けており、そのような電力のみによって電気自動車の蓄電池を充電する上記従来の構成は、電力効率が低いものとなっている。
【0010】
したがって、本発明は、大容量の受電設備が不要な構成において、電気自動車の蓄電池を充電する場合の電力効率を改善することができる電気自動車充電装置、電気自動車充電方法、プログラムおよび記録媒体の提供を目的としている。
【課題を解決するための手段】
【0011】
上記の課題を解決するために、本発明の電気自動車充電装置は、電気自動車に搭載された動力用蓄電池を充電する電気自動車充電装置において、交流電源からの交流電力を直流電力に変換して出力するAC−DC変換装置と、充電電力供給用蓄電池と、前記AC−DC変換装置の出力側と前記充電電力供給用蓄電池との間に設けられた双方向DC−DC変換装置と、前記動力用蓄電池の非充電時には、前記AC−DC変換装置および双方向DC−DC変換装置を介して入力される前記交流電源からの電力により、前記充電電力供給用蓄電池が充電される一方、前記動力用蓄電池の充電時には、前記AC−DC変換装置を介して出力される前記交流電源からの電力、および前記双方向DC−DC変換装置を介して出力される、前記充電電力供給用蓄電池から放電された電力により、前記動力用蓄電池が充電されるように、前記AC−DC変換装置および前記双方向DC−DC変換装置を制御する制御装置とを備えている構成である。
【0012】
また、本発明の電気自動車充電方法は、電気自動車に搭載された動力用蓄電池を充電する電気自動車充電方法において、交流電源からの交流電力を直流電力に変換して出力するAC−DC変換装置と、充電電力供給用蓄電池と、前記AC−DC変換装置の出力側と前記充電電力供給用蓄電池との間に設けられた双方向DC−DC変換装置とを使用し、前記動力用蓄電池の非充電時には、前記AC−DC変換装置および双方向DC−DC変換装置を介して入力される前記交流電源からの電力により、前記充電電力供給用蓄電池を充電する一方、前記動力用蓄電池の充電時には、前記AC−DC変換装置を介して出力される前記交流電源からの電力、および前記双方向DC−DC変換装置を介して出力される、前記充電電力供給用蓄電池から放電された電力により、前記動力用蓄電池を充電する構成である。
【0013】
上記の構成によれば、動力用蓄電池の非充電時には、AC−DC変換装置および双方向DC−DC変換装置を介して入力される交流電源からの電力により、充電電力供給用蓄電池が充電される。一方、動力用蓄電池の充電時には、AC−DC変換装置を介して出力される交流電源からの電力、および双方向DC−DC変換装置を介して出力される、充電電力供給用蓄電池から放電された電力により、動力用蓄電池が充電される。
【0014】
したがって、動力用蓄電池の非充電時において、交流電源からの電力により充電電力供給用蓄電池を予め充電しておき、動力用蓄電池の充電時には、交流電源からの電力および充電電力供給用蓄電池から放電された電力により、動力用蓄電池を充電することができる。これにより、大容量の電力設備を備えることなく、動力用蓄電池の急速充電が可能となる。
【0015】
また、動力用蓄電池の充電時において、充電電力供給用蓄電池の放電により動力用蓄電池に供給される電力は、AC−DC変換装置および双方向DC−DC変換装置を経ることにより、複数回の電力損失を受けている。一方、交流電源からの電力は、AC−DC変換装置を経ることにより1回の電力損失を受けているだけである。したがって、交流電源からの電力および充電電力供給用蓄電池の放電による電力により動力用蓄電池を充電する本願発明の構成では、電力損失が少なく、動力用蓄電池を充電する場合の電力効率を改善することができる。
【0016】
上記の電気自動車充電装置において、前記双方向DC−DC変換装置は、単一の双方向DC−DC変換回路を備えている構成としてもよい。
【0017】
上記の構成によれば、双方向DC−DC変換装置としては、汎用の回路を備えた装置を用いることができる。
【0018】
上記の電気自動車充電装置において、双方向DC−DC変換装置は、並列接続され、出力方向が互いに逆方向の二つの片方向DC−DC変換回路を備えている構成としてもよい。
【0019】
上記の構成によれば、双方向DC−DC変換装置としては、汎用の回路を備えた装置を用いることができる。
【0020】
上記の電気自動車充電装置において、前記制御装置は、前記充電電力供給用蓄電池の残電力量を測定し、前記残電力量が上限値以上である場合に、前記充電電力供給用蓄電池に対する充電が停止されるように、前記AC−DC変換装置および前記双方向DC−DC変換装置を制御する構成としてもよい。
【0021】
上記の構成によれば、充電電力供給用蓄電池の残電力量が上限値以上である場合に、充電電力供給用蓄電池に対する充電が停止されるので、充電電力供給用蓄電池に対する過充電を防止することができる。
【0022】
上記の電気自動車充電装置において、前記制御装置は、前記充電電力供給用蓄電池の残電力量を測定し、前記残電力量が下限値以下である場合に、前記充電電力供給用蓄電池からの放電が停止されるように、前記双方向DC−DC変換装置を制御する構成としてもよい。
【0023】
上記の構成によれば、充電電力供給用蓄電池の残電力量が下限値以下である場合に、充電電力供給用蓄電池からの放電が停止されるので、充電電力供給用蓄電池が過放電により蓄電池としての機能に支障を来たす事態を防止することができる。
【発明の効果】
【0024】
本発明の構成によれば、動力用蓄電池の非充電時において、交流電源からの電力により充電電力供給用蓄電池を予め充電しておき、動力用蓄電池の充電時には、交流電源からの電力および充電電力供給用蓄電池から放電された電力により、動力用蓄電池を充電することができる。これにより、大容量の受電設備を備えることなく、動力用蓄電池の急速充電が可能となる。
【0025】
また、動力用蓄電池の充電時において、充電電力供給用蓄電池の放電により動力用蓄電池に供給される電力は、AC−DC変換装置および双方向DC−DC変換装置を経ることにより、複数回の電力損失を受けている。一方、交流電源からの電力は、AC−DC変換装置を経ることにより1回の電力損失を受けているだけである。したがって、交流電源からの電力および充電電力供給用蓄電池の放電による電力により動力用蓄電池を充電する本願発明の構成では、電力損失が少なく、動力用蓄電池を充電する場合の電力効率を改善することができる。
【図面の簡単な説明】
【0026】
【図1】本発明の実施の形態の電気自動車充電装置を備えた電気自動車充電システムの構成を示すブロック図である。
【図2】図1に示した双方向DC−DC変換装置が一つの双方向DC−DC変換回路を備えている例を示す回路図である。
【図3】図1に示した双方向DC−DC変換装置が二つの片方向DC−DC変換回路を備えている例を示す回路図である。
【図4】図1に示した電気自動車充電装置が充電電力供給用蓄電池を充電する場合の状態を示すブロック図である。
【図5】図1に示した電気自動車充電装置が動力用蓄電池を充電する場合の状態を示すブロック図である。
【図6】電気自動車の充電を図1に示した電気自動車充電装置にて行っている状態を示す説明図である。
【図7】図1に示した電気自動車充電装置の動作示すフローチャートである。
【発明を実施するための形態】
【0027】
本発明の実施の形態を図面に基づいて以下に説明する。図6は、電気自動車31の充電を電気自動車充電装置1にて行っている状態を示す説明図である。電気自動車31の充電を行う際には、電気自動車充電装置1が備える給電ケーブル2が電気自動車31に接続される。給電ケーブル2は、電気自動車充電装置1からの電力を電気自動車31に伝える電力ケーブルとしての機能、および電気自動車充電装置1と電気自動車31との通信のための通信ケーブルとしての機能を有している。
【0028】
図1は、本発明の実施の形態の電気自動車充電装置1を備えた電気自動車充電システムの構成を示すブロック図である。図1に示すように、電気自動車充電システムは、電気自動車充電装置1および電気自動車側システム3を備えている。
【0029】
電気自動車充電装置1は、AC−DC変換装置11、双方向DC−DC変換装置12、充電電力供給用蓄電池13、制御装置14、表示装置15および入力装置16を備えている。電気自動車側システム3は、電気自動車31に搭載され、動力用蓄電池41および電池残量測定部42を備えている。
【0030】
電気自動車充電装置1において、AC−DC変換装置11の入力側には、商用の交流電源17から交流電圧が供給される。この交流電圧のAC−DC変換装置11への供給は、例えば電気自動車充電装置1のプラグが交流電源17用のコンセントに接続されることにより行われる。
【0031】
AC−DC変換装置11は、交流電源17からの交流電圧を動力用蓄電池41の充電に適した直流電圧に変換して出力する。例えば、動力用蓄電池41の電池電圧が300Vであった場合、AC−DC変換装置11の出力電圧設定値は、動力用蓄電池41を充電するために、300Vよりも若干高い電圧となる。
【0032】
AC−DC変換装置11の出力側には、双方向DC−DC変換装置12の一方の入出力側および給電ケーブル2が接続されている。双方向DC−DC変換装置12は、AC−DC変換装置11からの出力電圧を充電電力供給用蓄電池13の充電に適した電圧に変換して充電電力供給用蓄電池13に供給する。また、充電電力供給用蓄電池13からの出力電圧を動力用蓄電池41の充電に適した電圧に変換して給電ケーブル2に供給する。
【0033】
例えば、充電電力供給用蓄電池13の電池電圧を350Vとした場合、充電電力供給用蓄電池13を充電する場合の双方向DC−DC変換装置12の出力電圧の設定値は、350Vよりも若干高い電圧となる。一方、充電電力供給用蓄電池13からの放電により動力用蓄電池41を充電する場合の双方向DC−DC変換装置12の出力電圧の設定値は、300Vよりも若干高い電圧となる。
【0034】
双方向DC−DC変換装置12の具体例を図2および図3に示す。図2は、双方向DC−DC変換装置12が備える双方向DC−DC変換回路の一例を示す回路図である。図3は、双方向DC−DC変換装置12が備える双方向DC−DC変換回路の他の例を示す回路図である。
【0035】
すなわち、双方向DC−DC変換装置12は、図2に示すように、一つの双方向DC−DC変換回路を備えた構成であってもよい。また、双方向DC−DC変換装置12は、図3に示すように、二つの片方向DC−DC変換回路からなる双方向DC−DC変換回路を備えた構成であってもよい。図3の回路において、二つの片方向DC−DC変換回路は、並列に接続され、出力方向が互いに逆方向となっている。
【0036】
充電電力供給用蓄電池13は、動力用蓄電池41の非充電時において、AC−DC変換装置11および双方向DC−DC変換装置12を介して入力される交流電源17からの電力により充電される。また、充電電力供給用蓄電池13に充電された電力は、動力用蓄電池41の充電時に放電され、双方向DC−DC変換装置12を介して給電ケーブル2に供給される。
【0037】
制御装置14は、電気自動車充電装置1のAC−DC変換装置11および双方向DC−DC変換装置12の動作を制御する。具体的には、制御装置14は、動力用蓄電池41の非充電時において、AC−DC変換装置11および双方向DC−DC変換装置12を動作させ、交流電源17から供給される電力により、充電電力供給用蓄電池13が充電されるように制御する。
【0038】
図4は、図1に示した電気自動車充電装置1が充電電力供給用蓄電池13を充電する場合の状態を示すブロック図である。図4に示すように、AC−DC変換装置11の能力を2kWとした場合、AC−DC変換装置11および双方向DC−DC変換装置12での電力損失を無視すると、充電電力供給用蓄電池13は2kWの電力により充電される。充電電力供給用蓄電池13の総電力容量を15kWhとした場合、単純計算では、充電電力供給用蓄電池13は空の状態から満充電となるまで7.5時間かかる。
【0039】
また、制御装置14は、充電電力供給用蓄電池13の充電状態を監視し、充電電力供給用蓄電池13の過充電および過放電を防止するように、充電電力供給用蓄電池13に対する充電、および充電電力供給用蓄電池13からの放電を制御している。例えば、充電電力供給用蓄電池13の残電力量が満充電に対する100%(上限値)であれば、充電電力供給用蓄電池13の過充電を防止するために、AC−DC変換装置11および双方向DC−DC変換装置12を停止させる。また、例えば、充電電力供給用蓄電池13の残電力量が満充電に対する20%(下限値)以下であれば、充電電力供給用蓄電池13の過放電を防止するために、双方向DC−DC変換装置12を停止させる。
【0040】
なお、充電電力供給用蓄電池13の残電力量の測定は、例えば充電電力供給用蓄電池13の電圧を測定することにより求めることができる。あるいは充電電力供給用蓄電池13に流入する電流の積算値と流出する電流の積算値との差から求めることができる。
【0041】
また、制御装置14は、動力用蓄電池41の充電時において、AC−DC変換装置11および双方向DC−DC変換装置12を動作させ、交流電源17から供給される電力および充電電力供給用蓄電池13から放電される電力により動力用蓄電池41が充電されるように制御する。
【0042】
図5は、図1に示した電気自動車充電装置1が動力用蓄電池41を充電する場合の状態を示すブロック図である。図5に示すように、AC−DC変換装置11の能力を2kWとし、双方向DC−DC変換装置12の能力を6kWとした場合、AC−DC変換装置11および双方向DC−DC変換装置12での電力損失を無視すると、動力用蓄電池41は8kWの電力により充電される。動力用蓄電池41の総電力容量を16kWhとした場合、単純計算では、動力用蓄電池41は空の状態から満充電まで2時間となる。
【0043】
また、制御装置14は、電池残量測定部42からの情報によって動力用蓄電池41の充電状態を監視し、動力用蓄電池41の過充電を防止するように、動力用蓄電池41に対する充電を制御している。具体的には、動力用蓄電池41の残電力量が満充電に対する100%(上限値)であれば、動力用蓄電池41の過充電を防止するために、AC−DC変換装置11および充電電力供給用蓄電池13を停止させる。
【0044】
なお、電池残量測定部42による動力用蓄電池41の残電力量の測定は、充電電力供給用蓄電池13の場合と同様、例えば動力用蓄電池41の電圧を測定することにより求めることができる。あるいは、動力用蓄電池41に流入する電流の積算値と流出する電流の積算値との差から求めることができる。
【0045】
表示装置15は、制御装置14に制御され、各種情報を表示する。入力装置16は、ユーザの操作により、制御装置14に対して各種設定を行うためのものである。
【0046】
上記の構成において、本実施の形態の電気自動車充電装置1の動作について以下に説明する。図7は電気自動車充電装置1の動作示すフローチャートである。
【0047】
電気自動車31の充電を行う際には、ユーザにより給電ケーブル2が電気自動車31に接続される。これにより、電気自動車充電装置1から電気自動車31の動力用蓄電池41への電力供給、および電気自動車充電装置1と電気自動車側システム3との通信が可能となる。
【0048】
図7に示すように、電気自動車充電装置1の電源がONにされると(S11)、制御装置14は、給電ケーブル2が電気自動車31に接続されているかどうかを判定する(S12)。
【0049】
S12の判定において、給電ケーブル2が電気自動車31に接続されていれば、上記のように、電気自動車側システム3との通信が可能になる。したがって、制御装置14は、電気自動車側システム3と通信可能であれば、給電ケーブル2が電気自動車31に接続されていると判定する。一方、制御装置14は、電気自動車側システム3と通信不能であれば、給電ケーブル2が電気自動車31に接続されていないと判定する。
【0050】
S12の判定の結果、給電ケーブル2が電気自動車31に接続されていなければ、制御装置14は、充電電力供給用蓄電池13の充電が可能か否かを判定する(S13)。
【0051】
S13の判定を行うために、制御装置14は充電電力供給用蓄電池13の残電力量を測定する。そして、例えば、充電電力供給用蓄電池13の残電力量が満充電に対して100%(上限値)であれば、充電不可と判定する。一方、充電電力供給用蓄電池13の残電力量が満充電に対して100%(上限値)未満であれば充電可能と判定する。
【0052】
S13の判定の結果、充電電力供給用蓄電池13の充電が不可であれば、制御装置14は、さらに充電電力供給用蓄電池13の充電中かどうかを判定する(S14)。この判定の結果、充電電力供給用蓄電池13の充電中でなければ、制御装置14は、電源がOFFにされたかどうかを判定し(S15)、電源がOFFにされると処理を終了する。一方、S15において、電源がOFFにされなければ、S12に戻り、S12以降の処理を繰り返す。
【0053】
また、S14の判定の結果、充電電力供給用蓄電池13の充電中であれば、充電電力供給用蓄電池13の充電を終了し(S17)、S15に進む。S15では、電源がOFFにされたかどうかを判定し、電源がOFFにされると処理を終了する。一方、電源がOFFにされなければ、S12に戻り、S12以降の処理を繰り返す。
【0054】
また、S13の判定の結果、充電電力供給用蓄電池13は充電が可能であれば、制御装置14は、充電電力供給用蓄電池13の充電を開始させ(S16)、S12の処理に戻る。
【0055】
S16の処理における電気自動車充電装置1の動作状態は図4に示すものとなる。S16の処理では、制御装置14に制御されてAC−DC変換装置11および双方向DC−DC変換装置12が動作する。この場合、AC−DC変換装置11は、交流電源17からの交流電圧を動力用蓄電池41の充電に適した直流電圧に変換して出力する。また、双方向DC−DC変換装置12は、AC−DC変換装置11からの出力電圧(直流電圧)を充電電力供給用蓄電池13の充電に適した直流電圧に変換して充電電力供給用蓄電池13に供給する。これにより、交流電源17から供給される電力を使用して充電電力供給用蓄電池13が充電される。
【0056】
また、S12の判定の結果、給電ケーブル2が電気自動車31に接続されていれば、制御装置14は、入力装置16からのユーザによる動力用蓄電池41に対しての充電実行の指示の有無を判定する(S18)。この判定において、入力装置16からのユーザによる動力用蓄電池41に対しての充電実行の指示がなければ、S15に進む。
【0057】
一方、S18の判定において、入力装置16からのユーザによる動力用蓄電池41に対しての充電実行の指示があれば、さらに動力用蓄電池41は充電が可能か否かを判定する(S19)。
【0058】
S19の判定を行うために、制御装置14は電気自動車側システム3の電池残量測定部42から動力用蓄電池41の残電力量を示す情報を取得する。そして、取得した情報に基づき、例えば、動力用蓄電池41の残電力量が満充電に対して100%(上限値)であれば、充電不可と判定する。一方、動力用蓄電池41の残電力量が満充電に対して100%(上限値)未満であれば充電可能と判定する。
【0059】
S19の判定の結果、動力用蓄電池41の充電が不可であれば、さらに、動力用蓄電池41が充電中であるか否かを判定する(S25)。S25の判定の結果、動力用蓄電池41が充電中でなければ、S15の処理に進む。一方、S25の判定の結果、動力用蓄電池41が充電中であれば、動力用蓄電池41の充電を終了し(S26)、その後、S15の処理に進む。なお、動力用蓄電池41の充電を終了する場合、制御装置14は、AC−DC変換装置11および双方向DC−DC変換装置12の動作を停止させる。
【0060】
また、S19の判定の結果、動力用蓄電池41は充電可能であれば、制御装置14は、充電電力供給用蓄電池13は充電中かどうかを判定する(S20)。
【0061】
S20の判定の結果、充電電力供給用蓄電池13が充電中でなければ、S22に進む。一方、S20の判定の結果、充電電力供給用蓄電池13が充電中であれば、充電電力供給用蓄電池13の充電を終了して(S21)、S22に進み、動力用蓄電池41の充電を開始させる(S22)。
【0062】
S22の処理における電気自動車充電装置1の動作状態は図5に示すものとなる。S22の処理では、制御装置14に制御されてAC−DC変換装置11および双方向DC−DC変換装置12が動作する。この場合、AC−DC変換装置11は、交流電源17からの交流電圧を動力用蓄電池41の充電に適した直流電圧に変換して出力する。また、充電電力供給用蓄電池13からは放電が行われ、双方向DC−DC変換装置12は、充電電力供給用蓄電池13からの出力電圧(直流電圧)を動力用蓄電池41の充電に適した直流電圧に変換して出力する。したがって、給電ケーブル2から電気自動車31の動力用蓄電池41に供給される電力は、交流電源17をAC−DC変換装置11により直流電圧に変換された電力と、充電電力供給用蓄電池13から放電され、双方向DC−DC変換装置12から出力される電力とを合計したものとなる。
【0063】
制御装置14は、S22での動力用蓄電池41の充電開始後に、充電電力供給用蓄電池13の状態を監視しており、充電電力供給用蓄電池13の残電力量に基づいて、充電電力供給用蓄電池13は放電可能かどうかを判定する(S23)。
【0064】
S23の判定において、制御装置14は、例えば、充電電力供給用蓄電池13の残電力量が満充電に対して20%(下限値)以下であれば放電不可と判定する。一方、充電電力供給用蓄電池13の残電力量が満充電に対して20%(下限値)を超えていれば放電可能と判定する。
【0065】
S23での判定の結果、充電電力供給用蓄電池13は放電可能と判定すると、制御装置14は、S19の処理に戻りS19以下の処理を繰り返す。一方、S23での判定の結果、充電電力供給用蓄電池13は放電不可と判定すると、制御装置14は、充電電力供給用蓄電池13の放電を終了し(S24)、S19の処理に戻りS19以下の処理を繰り返す。
【0066】
なお、充電電力供給用蓄電池13の放電を終了する場合、制御装置14は双方向DC−DC変換装置12の動作を停止させる。この場合、動力用蓄電池41に対する充電は、AC−DC変換装置11からの出力のみによって行われる。
【0067】
上記のように、本実施の形態の電気自動車充電装置1では、動力用蓄電池41の非充電時において、交流電源17からの電力により充電電力供給用蓄電池13を予め充電しておくことができる。そして、動力用蓄電池41には、交流電源17からの電力および充電電力供給用蓄電池13から放電された電力により、動力用蓄電池41を充電することができる。これにより、大容量の電力設備を備えることなく、動力用蓄電池41の急速充電が可能となっている。
【0068】
また、動力用蓄電池41の充電時において、充電電力供給用蓄電池13の放電により動力用蓄電池41に供給される電力は、AC−DC変換装置11および双方向DC−DC変換装置12を経ることにより、複数回の電力損失を受けている。一方、交流電源17からの電力は、AC−DC変換装置11を経ることにより1回の電力損失を受けているだけである。したがって、交流電源17からの電力および充電電力供給用蓄電池13の放電による電力により動力用蓄電池41を充電する電気自動車充電装置1の構成では、電力損失が少なく、動力用蓄電池41を充電する場合の電力効率を改善することができる。
【0069】
また、双方向DC−DC変換装置12は、単一の双方向DC−DC変換回路を備えた構成、あるいは並列接続され、出力方向が互いに逆方向の二つの片方向DC−DC変換回路を備えた構成であるから、汎用の回路を備えた装置を用いることができる。
【0070】
また、充電電力供給用蓄電池13の残電力量が上限値以上である場合に、充電電力供給用蓄電池13に対する充電が停止されるので、充電電力供給用蓄電池13に対する過充電を防止することができる。この構成は、動力用蓄電池41に対しても同様である。
【0071】
また、充電電力供給用蓄電池13の残電力量が下限値以下である場合に、充電電力供給用蓄電池13からの放電が停止されるので、充電電力供給用蓄電池13が過放電により蓄電池としての機能に支障を来たす事態を防止することができる。
【0072】
最後に、電気自動車充電装置1の各ブロック、特に制御装置14は、ハードウェアロジックによって構成してもよいし、次のようにCPUを用いてソフトウェアによって実現してもよい。
【0073】
すなわち、電気自動車充電装置1は、各機能を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである電気自動車充電装置1の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記電気自動車充電装置1に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
【0074】
上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD−ROM/MO/MD/DVD/CD−R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。
【0075】
また、電気自動車充電装置1を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
【0076】
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【符号の説明】
【0077】
1 電気自動車充電装置
2 給電ケーブル
3 電気自動車側システム
11 AC−DC変換装置
12 双方向DC−DC変換装置
13 充電電力供給用蓄電池
14 制御装置
15 表示装置
16 入力装置
17 交流電源
31 電気自動車
41 動力用蓄電池
42 電池残量測定部

【特許請求の範囲】
【請求項1】
電気自動車に搭載された動力用蓄電池を充電する電気自動車充電装置において、
交流電源からの交流電力を直流電力に変換して出力するAC−DC変換装置と、
充電電力供給用蓄電池と、
前記AC−DC変換装置の出力側と前記充電電力供給用蓄電池との間に設けられた双方向DC−DC変換装置と、
前記動力用蓄電池の非充電時には、前記AC−DC変換装置および双方向DC−DC変換装置を介して入力される前記交流電源からの電力により、前記充電電力供給用蓄電池が充電される一方、前記動力用蓄電池の充電時には、前記AC−DC変換装置を介して出力される前記交流電源からの電力、および前記双方向DC−DC変換装置を介して出力される、前記充電電力供給用蓄電池から放電された電力により、前記動力用蓄電池が充電されるように、前記AC−DC変換装置および前記双方向DC−DC変換装置を制御する制御装置とを備えていることを特徴とする電気自動車充電装置。
【請求項2】
前記双方向DC−DC変換装置は、単一の双方向DC−DC変換回路を備えていることを特徴とする請求項1に記載の電気自動車充電装置。
【請求項3】
双方向DC−DC変換装置は、並列接続され、出力方向が互いに逆方向の二つの片方向DC−DC変換回路を備えていることを特徴とする請求項1に記載の電気自動車充電装置。
【請求項4】
前記制御装置は、前記充電電力供給用蓄電池の残電力量を測定し、前記残電力量が上限値以上である場合に、前記充電電力供給用蓄電池に対する充電が停止されるように、前記AC−DC変換装置および前記双方向DC−DC変換装置を制御することを特徴とする請求項1から3に記載の電気自動車充電装置。
【請求項5】
前記制御装置は、前記充電電力供給用蓄電池の残電力量を測定し、前記残電力量が下限値以下である場合に、前記充電電力供給用蓄電池からの放電が停止されるように、前記双方向DC−DC変換装置を制御することを特徴とする請求項1から3に記載の電気自動車充電装置。
【請求項6】
電気自動車に搭載された動力用蓄電池を充電する電気自動車充電方法において、
交流電源からの交流電力を直流電力に変換して出力するAC−DC変換装置と、充電電力供給用蓄電池と、前記AC−DC変換装置の出力側と前記充電電力供給用蓄電池との間に設けられた双方向DC−DC変換装置とを使用し、
前記動力用蓄電池の非充電時には、前記AC−DC変換装置および双方向DC−DC変換装置を介して入力される前記交流電源からの電力により、前記充電電力供給用蓄電池を充電する一方、前記動力用蓄電池の充電時には、前記AC−DC変換装置を介して出力される前記交流電源からの電力、および前記双方向DC−DC変換装置を介して出力される、前記充電電力供給用蓄電池から放電された電力により、前記動力用蓄電池を充電することを特徴とする電気自動車充電方法。
【請求項7】
請求項1から5のいずれか1項に記載の制御装置としてコンピュータを機能させるためのプログラム。
【請求項8】
請求項7に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−152035(P2012−152035A)
【公開日】平成24年8月9日(2012.8.9)
【国際特許分類】
【出願番号】特願2011−9180(P2011−9180)
【出願日】平成23年1月19日(2011.1.19)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】