説明

電流センサ

【課題】隣接導電路からの誘導磁界の影響を低減でき、十分な小型化が可能な電流センサを提供すること。
【解決手段】本発明の電流センサ(1)は、複数の導電路(10a〜10c)と、各導電路(10a〜10c)に配設される磁気検知素子(21)とを具備し、複数の導電路(10a〜10c)は、特定方向に延長する直線部(11a,11b)と、直線部(11a,11b)と連接するクランク部(12)と、をそれぞれ備え、クランク部(12)は、直線状の被測定部(12a)と、被測定部(12a)の一方の端部と連接すると共に直線部(11a)と連接する第1の腕部(12b)と、被測定部(12a)の他方の端部と連接すると共に直線部(11b)に連接する第2の腕部(12c)、と、を有し、直線部(11a,11b)の延長方向と第1の腕部(12b)及び第2の腕部(12c)の延長方向とのなす角度が鈍角であることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被測定電流の電流値を測定する電流センサに関し、例えば、複数の導電路を備えた電流センサに関する。
【背景技術】
【0002】
従来、3相交流のU相、V相及びW相の各被測定電流を通流する3つの導電路を備えた電流センサが知られている。この電流センサにおいては、U相、V相及びW相の被測定電流を通流する3つの導電路にそれぞれ磁気センサを配設し、この磁気センサを介して各導電路を通流する被測定電流からの誘導磁界を検出することにより、3相交流のU相、V相及びW相の被測定電流の電流値をそれぞれ測定する。
【0003】
ところで、複数の導電路を備えた電流センサにおいては、各導電路に配設された磁気センサに対して、隣接して配置された導電路を通流する被測定電流からの誘導磁界が印加され、測定精度に誤差が生じる場合がある。このような隣接して配置された導電路からの誘導磁界の影響を低減するためには、各導電路間に誘導磁界を吸収する磁気シールドを設けることが有効である。一方で、磁気シールドのみで隣接して配置された導電路からの誘導磁界を遮断しようとすると、磁気シールドを厚くする必要があり、電流センサの小型化が困難になると共に、製造コストも増大する。このため、磁気シールドを用いずに隣接導電路からの誘導磁界の影響を低減できる電流センサが提案されている(例えば、特許文献1参照)。
【0004】
かかる電流センサは、同一平面内に並列に配置されるクランク部を有する略S字形状を持つ3つの導電路を備える。各導電路は、特定方向に延長する第1直線部と、一方の端部で第1直線部の一方の端部と連接し、特定方向に直交する方向に延びる被測定部と、被測定部の他方の端部と一方の端部とが連接し、特定方向に延長する第2直線部とを有する。すなわち、各導電路は、第1直線部が特定方向に延長し、被測定部との連接部分で方向を変えて特定方向に直交する方向に延長し、第2直線部との連接部分で方向を変えて特定方向に延長する。各導電路の第1直線部の他方の端部には、電流センサに対する入力側の電流路(例えば、バッテリー側の電流路)が接続され、第2直線部の他方の端部には、電流センサからの出力側の電流路(例えば、モータ等の負荷側の電流路)が接続される。
【0005】
この電流センサにおいては、各導電路の被測定部が同一平面内で同一直線上になるように配置されるので、隣接して配設された各導電路の被測定部を通流する被測定電流からの誘導磁界の方向が互いに平行になる。このため、各磁気センサの感度軸を誘導磁界の方向と一致させることにより、磁気シールドを設けずに隣接する導電路を通流する被測定電流からの誘導磁界の影響を低減できる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−233692号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1記載の電流センサにおいては、クランク部を有するので、すなわち、各導電路の被測定部が電流センサの幅方向に延長するので、電流センサの幅方向においては、被測定部の長さの導電路数分の幅が必要となる。このため、直線状の導電路を用いた場合と比較し、電流センサの幅方向の寸法が大きくなり、入出力側の電流路を含めた電流センサ全体の小型化が困難となる問題があった。
【0008】
本発明は、かかる点に鑑みてなされたものであり、隣接して配置された導電路からの誘導磁界の影響を低減でき、入出力側の電流路を含めた全体の小型化を実現できる電流センサを提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の電流センサは、同一平面内に並設された複数の導電路と、各導電路にそれぞれ配設され、前記導電路を通流する被測定電流からの誘導磁界により出力信号を出力する磁電変換素子とを具備し、前記複数の導電路は、同一直線上に離間して配置された一対の直線部と、前記一対の直線部の間に前記直線部と連接するクランク部と、をそれぞれ備え、前記クランク部は、前記磁電変換素子が配設される共に両端部を持つ直線状の被測定部と、前記被測定部の一方の端部と連接すると共に一方の直線部と連接する第1の腕部と、前記被測定部の他方の端部と連接すると共に他方の直線部と連接する第2の腕部と、を有し、前記被測定部と前記第1の腕部とのなす角が直角であり、前記被測定部と前記第2の腕部とのなす角が直角であり、前記直線部と前記第1の腕部とのなす角度が鈍角であり、前記直線部と前記第2の腕部とのなす角度が鈍角であることを特徴とする。
【0010】
この構成によれば、隣接して配置された各導電路の被測定部を通流する被測定電流からの誘導磁界の方向が平行となるので、隣接して配設された各導電路を通流する被測定電流からの誘導磁界による磁電変換素子への影響を従来同様低減できる。また、被測定部が延びる方向に対して直角に連接する第1の腕部及び第2の腕部と一対の直線部の延長方向とのなす角度が鈍角となるようにクランク部を直線部に連接するので、直線部に接続される入出力側の電流路を同一直線上に配置することができる。これにより、入出力側の電流路を含めた電流センサ全体の小型化を実現できる。
【0011】
本発明の電流センサにおいては、前記複数の導電路に配設された各前記磁電変換素子は、前記直線部の延長方向と直交する方向に沿って配設されたことが好ましい。この構成により、隣接する各導電路の間隔を短くできるので、電流センサを更に小型化できる。
【0012】
本発明の電流センサにおいては、前記磁電変換素子は、当該磁電変換素子を配置された導電路の両側の導電路の被測定部が延長した方向に沿う2つの仮想線の間に配置されたことが好ましい。この構成により、各磁電変換素子が、各導電路のクランク部における第1の腕部又は第2の腕部と被測定部との境界部近傍を通流する被測定電流によって誘導磁界が乱れる領域外に配置されるので、隣接して配置された導電路からの誘導磁界の影響を更に低減することができる。
【0013】
本発明の電流センサにおいては、前記磁電変換素子は、感度軸の他に感度影響軸を有しており、前記感度影響軸が前記被測定部における被測定電流の通流方向に沿うように配設されたことが好ましい。この構成により、クランク部の第1の腕部及び第2の腕部を通流する被測定電流からの誘導磁界の方向に対して、感度影響軸の方向が略直交するので、感度影響軸に基づく出力信号の線形性の低下を抑制できる。
【0014】
本発明の電流センサにおいては、前記磁電変換素子は、前記被測定部の両面に配設された一対の磁電変換素子であることが好ましい。この構成により、一対の磁電変換素子に対する被測定電流からの誘導磁界の方向と外部磁界の方向とが逆になるので、一対の磁電変換素子の出力信号を差動又は合算演算することにより、外部磁界によるノイズ成分をキャンセルすることができる。
【0015】
本発明の電流センサにおいては、前記直線部及び前記クランク部が導電部材で一体に形成されたことが好ましい。この構成により、直線部とクランク部との境界部における電気抵抗を低減できるので、被測定電流が大電流の場合であっても、電流センサの発熱などを低減することができる。
【発明の効果】
【0016】
本発明によれば、隣接して配置された導電路からの誘導磁界の影響を低減でき、十分な小型化が可能な電流センサを提供することができる。
【図面の簡単な説明】
【0017】
【図1】一実施の形態に係る電流センサの平面図である。
【図2】一実施の形態に係る電流センサの磁気検知素子の配置を示す図である。
【図3】一実施の形態に係る電流センサの他の構成例を示す平面図である。
【図4】一実施の形態に係る電流センサの他の構成例を示す平面図である。
【図5】一実施の形態に係る電流センサの磁気検知素子の配置を示す図である。
【図6】一実施の形態に係る電流センサのブロック図である。
【発明を実施するための形態】
【0018】
本発明者は、同一平面内に並設されたクランク部を有する略S字形状を持つ複数の導電路を備えた電流センサにおいて、電流センサの小型化を妨げる要因が各導電路に対する入出力側の電流路の配置にあることに着目した。そして、本発明者らは、同一直線上に離間して設けられた一対の直線部の間にクランク部を有する略S字形状を持つ複数の導電路を同一平面内に並設し、一対の直線部とクランク部の一端部及び他端部を鈍角に連接することにより、隣接して配置された導電路を通流する被測定電流からの誘導磁界の影響を低減しつつ、電流センサ全体の小型化を実現できることを見出し、本発明を完成させるに至った。
【0019】
以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る電流センサ1の平面図である。図1に示すように、本実施の形態に係る電流センサ1は、略同一平面内に配置され被測定電流を通流する複数の導電路10a〜10cと、各導電路10a〜10cを通流する被測定電流からの誘導磁界により出力信号を出力する複数の磁気検知素子(磁電変換素子)21とを備える。なお、複数の導電路10a〜10cは、本発明の効果を奏する範囲であれば、必ずしも略同一平面内に配置する必要はない。
【0020】
複数の導電路10a〜10cは、平行に配置され所定の方向(図1におけるY軸方向)に延長し、互いに離間して配置された一対の直線部11a,11bを備える。各導電路10a〜10cの一対の直線部11a,11bは、それぞれ延長方向が略同一直線上に配置されている。各導電路10a〜10cの一方の直線部11aには、電流センサ1に対する入力側の電流路(例えば、バッテリー側の電流路)が接続され、各導電路10a〜10cの他方の直線部11bには、電流センサ1からの出力側の電流路(例えば、モータ等の負荷側の電流路)が接続される。
【0021】
離間して配置される一対の直線部11a,11bの一方の直線部11aと他方の直線部11bとの間には、クランク部12が連接されている。クランク部12は、磁気検知素子21が配設される領域を含み、両端部を持つ直線状の被測定部12aと、この被測定部12aの一方の端部に連接された第1の腕部12bと、被測定部12aの他方の端部に連接された第2の腕部12cと、を有する。各導電路10a〜10cの被測定部12aは、電流センサ1の幅方向に対して所定の角度θ1をなすように延長し、略同一直線上(図1の二点鎖線L1参照)に略平行に配置されている。
【0022】
第1の腕部12bは、被測定部12aが延長する方向に対して所定の角度を持って延長し、離間して配置された一方の直線部11aと連接している。本実施の形態においては、第1の腕部12bは、被測定部12aが延長する方向に対して直角に延長する。また、第1の腕部12bは、一方の直線部11aの延長方向と第1の腕部12bの延長方向とのなす角度θ2が鈍角となるように連接している。
【0023】
第2の腕部12cは、被測定部12aが延長する方向に対して所定の角度を持って延長し、離間して配置された他方の直線部11bと連接している。本実施の形態においては、第2の腕部12bは、被測定部12aが延長する方向に対して直角に延長する。第2の腕部12cは、他方の直線部11bの延長方向と第2の腕部12cの延長方向とのなす角度θ3が鈍角となるように連接している。
【0024】
本実施の形態においては、各導電路10a〜10cのクランク部12は、金属などの導電部材で一体に形成され、第1の腕部12bがY軸方向に延長し、被測定部12aとの連接部分で方向を変えてY軸方向に直交するX軸方向に被測定部12aが延長し、第2の腕部との連接部分で方向を変えて第2の腕部12cがY軸方向に延長する。
【0025】
すなわち、本実施の形態に係る電流センサ1においては、入出力側の電流路に接続される各導電路10a〜10cの一対の直線部11a,11bを略同一直線上に配置すると共に、各導電路10a〜10cの一対の直線部11a,11bの延長方向と各導電路10a〜10cの第1の腕部12b及び第2の腕部12cの延長方向とがなす角度θ2,θ3が鈍角となるように、一対の直線部11a,11bとクランク部12とが連接している。この構成により、一方の直線部11aに接続される入力側の電流路(例えば、バッテリー側の電流路)と他方の直線部11bに接続される出力側の電流路(例えば、モータ等の負荷側の電流路)とを略同一直線上に配置できるので、入出力側の電流路を含めた電流センサ全体のセンサ1全体の小型化を実現できる。なお、図1に示す電流センサ1においては、各導電路10a〜10cの一対の直線部11a,11bを略同一直線上に配置した例について示しているが、一対の直線部は、本発明の効果を奏する範囲であれば、必ずしも延長方向が略同一直線上となるように配置する必要はない。例えば、一方の直線部11aの延長方向に対して、他方の直線部11bの延長方向が所定の角度をなすように配置してもよい。
【0026】
また、本実施の形態に係る電流センサ1においては、各導電路10a〜10cのクランク部12は、それぞれの被測定部12aの延長方向が電流センサ1の幅方向DであるY軸方向に対して所定の角度θ1をなすように配置されると共に、それぞれの被測定部12aの延長方向が略同一直線上になるように配置される。このように配置することにより、所定の角度θ1に応じて電流センサ1の幅方向Dにおける寸法を小さくすることができるので、更に電流センサを小型化できる。
【0027】
さらに、本実施の形態においては、各導電路10a〜10cのクランク部12が、金属などの導電部材で一体に形成されるので、第1の腕部12b及び第2の腕部12cと被測定部12aとの間の境界部における電気抵抗を低減することができ、被測定電流が大電流の場合であっても、発熱などを抑制することができる。
【0028】
各導電路10a〜10cの被測定部12aの延長方向における中央部には、各導電路10a〜10cを通流する被測定電流からの誘導磁界H1により出力信号を出力する磁気検知素子21がそれぞれ配設される。各導電路10a〜10cの磁気検知素子21は、検出感度が最大となる感度軸S1の方向が誘導磁界H1の方向と略一致するように配設される。各導電路10a〜10cの磁気検知素子21は、各導電路10a〜10cの被測定部12aを通流する被測定電流からの誘導磁界H1により、それぞれ出力信号を出力する。各導電路10a〜10cの磁気検知素子21から出力された出力信号は、配線パターン(不図示)を介して演算回路としての信号処理回路22(図1において不図示、図6参照)に入力される。信号処理回路22では、被測定電流の電流値が算出される。
【0029】
図2は、電流センサ1の磁気検知素子21の配置を示す図である。なお、実際には、横から見ると各導電路10a〜10cが重なってしまうために、図2においては、図1に示した各導電路10a〜10cの軸方向(Y軸方向)を回転軸として、各導電路10a〜10cを時計回りに90°回転させた状態を示している。
【0030】
図2に示すように、各磁気検知素子21は、被測定部12aの一方側の面上に配設される。各磁気検知素子21は、感度軸S1が略同一方向に揃うように配設される。本実施の形態に係る電流センサ1においては、各導電路10a〜10cの被測定部12aが略平行に配置されるので、各導電路10a〜10cの被測定部12aを通流する被測定電流からの誘導磁界H1の方向が略同一方向(図2の点線参照)となる。このため、各導電路10a〜10cに配設される磁気検知素子21の感度軸S1の方向と被測定電流からの誘導磁界H1の方向とが略一致するように磁気検知素子21を配設することにより、隣接して配置された導電路10a〜10cを通流する被測定電流からの誘導磁界H1の影響を低減することができる。
【0031】
また、本実施の形態においては、各導電路10a〜10cの被測定部12aが略平行に配置されると共に、各導電路10a〜10cの第1の腕部12b及び第2の腕部12cが被測定部12aの延長方向に対して略直交する方向に延長する。この構成により、各導電路10a〜10cの被測定部12aを通流する被測定電流からの誘導磁界H1の方向が略平行になると共に、各導電路10a〜10cにおける被測定部12aを通流する被測定部からの誘導磁界H1の方向と第1の腕部12b及び第2の腕部12cを通流する被測定電流からの誘導磁界H2の方向(図1参照)とが直交する。このため、各導電路10a〜10cに配設される磁気検知素子21の感度軸S1の方向と被測定部12aを通流する被測定電流からの誘導磁界H1の方向とを略一致させることにより、隣接して配置された各導電路10a〜10cからの誘導磁界H1の影響を低減できると共に、各導電路10a〜10cの第1の腕部12b及び第2の腕部12cを通流する被測定電流からの誘導磁界H2に基づく出力信号が実質的にゼロとなる。これにより、各導電路10a〜10cの第1の腕部12b及び第2の腕部12cを通流する被測定電流からの誘導磁界H2の影響を低減できる測定精度が高い電流センサ1を実現できる。
【0032】
磁気検知素子21としては、被測定電流からの誘導磁界H1により出力信号を出力するものであれば、特に制限はない。磁気検知素子21としては、例えば、GMR(Giant Magneto Resistance)素子及びTMR(Tunnel Magneto Resistance)素子などの磁気抵抗効果素子や、磁束コンセントレータを用いて素子面内に磁界感度軸を持たせたホール素子や、ハードバイアスを備えたGMR素子及びTMR素子などを用いることができる。
【0033】
ところで、磁気検知素子21として、検出感度が高いGMR素子及び磁束コンセントレータを備えたホール素子や、ハードバイアスを備えたGMR素子及びTMR素子を用いる場合には、感度軸S1に対して直交する方向に、被測定電流の測定精度に影響を及ぼす感度影響軸S2(図1参照)が生じる場合がある。本実施の形態においては、磁気検知素子21としては、角度軸の他に感度影響軸S2を有するものを用いることも可能である。
【0034】
例えば、検出感度が高いGMR素子やホール素子においては、感度軸S1の方向に対して略直交する方向に、被測定電流からの誘導磁界H1により、感度軸S1に基づく出力信号に対して相対的に低い出力信号が生じる感度影響軸S2(GMR素子においては副感度軸)を有する。このように、感度影響軸S2が生じると、感度影響軸S2に基づく出力信号により、出力信号の線形性が低下するなど測定精度に影響を及ぼす場合がある。このような検出感度が高いGMR素子や磁束コンセントレータを備えたホール素子を磁気検知素子21として用いる場合においては、感度影響軸S2の方向が被測定部12aの延長方向と略一致するように、すなわち被測定部12aにおける被測定電流の通流方向に沿うように磁気検知素子21を配設することが好ましい。これにより、感度影響軸S2の方向が、被測定電流からの誘導磁界H1の方向と略直交するので、被測定電流からの誘導磁界H1による感度影響軸S2に基づく出力信号が実質的にゼロとなる。この結果、感度影響軸S2を有する検出感度が高いGMR素子やホール素子を用いた場合においても、感度影響軸S2に基づく出力信号に起因する電流センサの出力信号の線形性の低下を抑制することができる。
【0035】
また、ハードバイアスを備えたGMR素子やTMR素子においては、ハードバイアスからのバイアス磁界をGMR素子やTMR素子に印加することにより、磁化自由層の磁化方向をPIN層の磁化方向に平行させることが容易となるので、被測定電流からの誘導磁界H1による出力信号の線形性を向上することができる。また、バイアス磁界の印加によりGMR素子やTMR素子に印加される実効的な誘導磁界H1が減少するので、ヒステリシスを低減することもできる。この場合、ハードバイアスからのバイアス磁界の印加方向は、誘導磁界H1の方向に直交する方向であり、このバイアス磁界の印加方向が被測定電流の測定精度に影響を及ぼす感度影響軸S2となる。このようなハードバイアスを備えたGMR素子やTMR素子を磁気検知素子21として用いる場合には、ハードバイアスからのバイアス磁界の印加方向である感度影響軸S2が被測定部12aが延長する方向と略一致するように磁気検知素子21を配設することが好ましい。これにより、バイアス磁界の印加方向に対して略直交する方向から被測定電流による誘導磁界H1が印加されることになり、バイアス磁界に対する被測定電流からの誘導磁界H1の影響が実質的にゼロとなる。この結果、感度影響軸S2を有するハードバイアスを備えたGMR素子やTMR素子を磁気検知素子21として用いる場合においても、上述した出力信号の線形性の向上やヒステリシスの低減を実現できる。
【0036】
なお、上述した実施の形態においては、各導電路10a〜10cの被測定部12aの延長方向が略同一直線上になるように、各導電路10a〜10cを配置する例について説明したが、各導電路10a〜10cの配置は、本発明の効果の効果を奏する範囲で適宜変更可能である。
【0037】
図3は、電流センサ1の他の構成例を示す平面図であり、各導電路10a〜10cの配置を変更した電流センサ1の一例を示している。図3に示すように、この電流センサ1においては、各導電路10a〜10cに配設された各磁気検知素子21が、電流センサ1の一対の直線部11a,11bの延長方向(幅方向Dに略直交するY軸方向)と直交する方向(X軸方向)に沿って配設される(図3の二点鎖線L2参照)。このように各導電路10a〜10cを配置することにより、電流センサ1の幅方向Dに直交するY軸方向における寸法を低減することが可能となり、電流センサ1を更に小型化することができる。なお、その他の構成については、図1及び図2に示した電流センサ1と同様のため、説明を省略する。
【0038】
図4は、電流センサ1の他の構成例を示す平面図であり、各導電路10a〜10cの配置を変更した電流センサ1の他の例を示している。図4に示すように、クランク部12を有する導電路10a〜10cに被測定電流を通流する場合においては、クランク部12の
第1の腕部12b及び第2の腕部12cと被測定部12aとの間の境界部近傍に、特定の導電路(例えば、導電路10b)を通流する被測定電流からの誘導磁界H1,H2が、当該特定の導電路10bに隣接して配置された両側の導電路(例えば、導電路10a,10c)に影響を及ぼす特定領域A(図4の斜線領域参照)が生じる場合がある。この特定領域Aは、各導電路10a〜10cの被測定部12aが延長する方向に沿う仮想線(例えば、仮想線L3,L4)と第1の腕部12bが延長する方向に沿う仮想線(例えば、仮想線L5)又は第2の腕部12cが延長する方向に沿う仮想線(例えば、仮想線L6)との間における約90°の範囲に生じる。この特定領域Aに磁気検知素子21が配置されると、各磁気検知素子21が隣接して配置された導電路10a〜10cに被測定電流が通流した際に生じる誘導磁界H1,H2の影響を受ける場合がある。
【0039】
図4に示す電流センサ1においては、導電路10bの一方側に配置された導電路10aの被測定部12aが延長する方向に沿う仮想線L3と導電路10bの他方側に配置された導電路10cの被測定部12aが延長する方向に沿う仮想線L4との間に、導電路10bの磁気検知素子21が配置されるように導電路10bを配置する。すなわち、各磁気検知素子21が、当該磁気検知素子21を配置した導電路10a〜10cの両側の導電路10a〜10cの被測定部12aが延長する方向に沿う2つの仮想線(例えば、仮想線L3,L4)の間に配置されるように各導電路10a〜10aを配置する。このように、各導電路10a〜10cを配置することにより、各磁気検知素子21が各導電路10a〜10cの第1の導電路12b又は第2の導電路12cと被測定部12aとの境界部近傍に生じる特定領域A内に配置されることを回避できるので、隣接して配置された導電路10a〜10cからの誘導磁界の影響を特に低減することができる。なお、その他の構成については、図1及び図2に示した電流センサ1と同様のため、説明を省略する。
【0040】
また、上述した実施の形態においては、導電路10a〜10cの一方側の面上に磁気検知素子21を配設した例について説明したが、磁気検知素子21の配置は、本発明の効果を奏する範囲で適宜変更可能である。
【0041】
図5は、電流センサ1の磁気検知素子21の他の配置例を示す図である。なお、図5においては、図2と同様に図1に示した各導電路10a〜10cの軸方向(Y軸方向)を回転軸として、各導電路10a〜10cを時計回りに90°回転させた状態を示している。
【0042】
図5に示すように、この電流センサ1においては、磁気検知素子21として、各導電路10a〜10cの被測定部12aを挟むように、被測定部12aの両面に配設された一対の磁気検知素子21a,21bを用いる。この一対の磁気検知素子21a,21bは、感度軸S1の方向が被測定電流からの誘導磁界H1の方向と略一致すると共に、感度軸S1の方向が互いに逆方向となるように配設される。また、感度影響軸S2を有する一対の磁気検知素子21a,21bを用いた場合には、感度影響軸S2が被測定部12aの延長方向に沿うように配置される。このように一対の磁気検知素子21a,21bを配設した場合には、上述したように、隣接して配置された導電路10a〜10cからの誘導磁界H1の影響を低減できると共に、一対の磁気検知素子21a,21bの感度軸S1の方向に対して、被測定電流からの誘導磁界H1が同一方向から印加され、外部磁界Hαが逆方向から印加される。このため、一対の磁気検知素子21a,21bから被測定電流からの誘導磁界H1に基づく同相の出力信号が出力され、外部磁界Hαに基づく逆相の出力信号が出力される。したがって、一対の磁気検知素子21a,21bの出力信号を合算することにより、外部磁界Hαに基づくノイズ成分をキャンセルすることができる。なお、一対の磁気検知素子21a,21bの感度軸S1の方向を同一方向とした場合には、一対の磁気検知素子21a,21bから被測定電流からの誘導磁界H1に基づく逆相の出力信号が出力され、外部磁界Hαに基づく同相の出力信号が出力される。したがって、一対の磁気検知素子21a,21bの出力信号を差動演算することにより、外部磁界Hαに基づくノイズ成分をキャンセルすることができる。また、その他の構成については、図1及び図2に示した電流センサ1と同様のため、説明を省略する。
【0043】
図6は、本実施の形態に係る電流センサ1のブロック図である。図6に示す電流センサ1は、一対の磁気検知素子21a、21bと、それぞれの磁気検知素子21a、21bからの出力信号を信号処理(電流値を演算)して出力する信号処理回路(演算回路)22とから構成されている。なお、以下においては、図5に示す電流センサ1の演算処理について説明するが、図1〜図4に示す電流センサ1においても同様にして演算処理が実施される。
【0044】
磁気検知素子21aは、各導電路10a〜10cを通流する被測定電流からの誘導磁界H1を検出し、検出した誘導磁界H1の磁界強度に比例した大きさとなる電圧信号が信号処理回路22に出力される。例えば、地磁気などの外部磁界をHαとすると、磁気検知素子21aから出力される電圧信号Vaは、kを比例定数として下記式(1)で示される。なお磁気検知素子12aの感度軸S1の方向と同じ向きの磁界は+、逆向きの磁界を−としている。
Va=k×(H1−Hα) …(1)
【0045】
同様に、磁気検知素子21bは、各導電路10a〜10cを通流する被測定電流からの誘導磁界H1を検出し、検出した磁界強度に比例した大きさとなる電圧信号が信号処理回路22に出力される。例えば、地磁気などの外部磁界をHαとすると、磁気検知素子21bから出力される電圧信号Vbは、kを比例定数として下記式(2)で示される。なお、磁気検知素子21bの感度軸S1の方向と同じ向きの磁界は+、逆向きの磁界を−としている。
Vb=k×(H1+Hα) …(2)
【0046】
信号処理回路22は、磁気検知素子21a、21bから出力された電圧信号Va、Vbに対して差動演算処理を行う。例えば、図5に示すように、感度軸S1の方向が互いに逆向きとなるように磁気検知素子21a、21bが配置される場合、信号処理回路21は、磁気検知素子21a、21bから出力された電圧信号Va、Vbを下記式(3)に示すように加算して、導電路10a〜10cを通流する被測定電流の電流値を算出する。
Va+Vb=k×(H1−Hα)+k×(H1+Hα)=k×2H …(3)
【0047】
上記式(3)に示されるように、電圧信号Va,Vbを加算することにより、外部磁界Hαに基づく出力信号が相殺され、被測定電流Iからの誘導磁界H1に基づく出力信号が加算される。この結果、外部磁界Hαの影響を排除でき、電流値の測定精度を向上させることができる。なお、磁気検知素子21a,21bの感度軸S1の方向を略同一方向とした場合には、電圧信号Va,Vbを減算することにより、上記同様に、外部磁界Hαに基づく出力信号が相殺され、被測定電流Iからの誘導磁界H1に基づく出力信号が加算される。
【0048】
以上説明したように、本実施の形態に係る電流センサ1においては、入出力側の電流路に接続される各導電路10a〜10cの一対の直線部11a,11bを略同一直線上に配置すると共に、電流センサ1の幅方向Dと各導電路10a〜10cのクランク部12の被測定部12aの延長方向とが所定の角度θ1をなし、各導電路10a〜10cの一対の直線部11a,11bの延長方向とクランク部12の第1の腕部12bの延長方向とがなす角度θ2及び第2の腕部12cの延長方向とがなす角度θ3が鈍角になるようにクランク部12と一対の直線部11a,11bとを連接する。この構成により、一方の直線部11a及び他方の直線部11bに接続される電流センサ1の入出力側の電流路同一直線上に配置できるので、入出力側の電流路を含めた電流センサ全体のセンサ1全体の小型化を実現できる。
【0049】
なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。また、上記実施の形態において、「直角」、「平行」、「同相」、「逆相」、「同一直線」などの用語については、本発明の効果を発揮する範囲内であれば、完全な「直角」、「平行」、「同相」、「逆相」、「同一直線」でなくともよい。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
【0050】
例えば、本実施の形態においては、直線部11a,11bとクランク部12とが別部材で構成された例について説明したが、直線部11a,11b及びクランク部12を金属などの導電部材で一体に形成してもよい。この場合には、各部材の接続部の抵抗が減少するので、大電流を測定する場合などの発熱を抑制できる。
【0051】
また、上述した実施の形態においては、被測定部12a、第1の腕部12b及び第2の腕部12cを金属などの導電部材で一体に形成した例について説明したが、第1の腕部12b及び第2の腕部12cは、必ずしも一体形成する必要はなく、別部材として形成された被測定部12a、第1の腕部12b及び第2の腕部12を互いに接続してもよい。
【産業上の利用可能性】
【0052】
本発明は、隣接導電路からの誘導磁界の影響を低減でき、十分な小型化が可能な電流センサを実現できるという効果を有し、特に、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知する電流センサとして好適に用いることが可能である。
【符号の説明】
【0053】
1 電流センサ
10a〜10c 導電路
11a,11b 直線部
12 クランク部
12a 被測定部
12b 第1の腕部
12c 第2の腕部
21,21a,21b 磁気検知素子
22 信号処理回路

【特許請求の範囲】
【請求項1】
同一平面内に並設された複数の導電路と、各導電路にそれぞれ配設され、前記導電路を通流する被測定電流からの誘導磁界により出力信号を出力する磁電変換素子とを具備し、
前記複数の導電路は、同一直線上に離間して配置された一対の直線部と、前記一対の直線部の間に前記直線部と連接するクランク部と、をそれぞれ備え、
前記クランク部は、前記磁電変換素子が配設されると共に両端部を持つ直線状の被測定部と、前記被測定部の一方の端部と連接すると共に一方の直線部と連接する第1の腕部と、前記被測定部の他方の端部と連接すると共に他方の直線部と連接する第2の腕部と、を有し、
前記被測定部と前記第1の腕部とのなす角が直角であり、
前記被測定部と前記第2の腕部とのなす角が直角であり、
前記直線部と前記第1の腕部とのなす角度が鈍角であり、前記直線部と前記第2の腕部とのなす角度が鈍角であることを特徴とする電流センサ。
【請求項2】
前記複数の導電路に配設された各前記磁電変換素子は、前記直線部の延長方向と直交する方向に沿って配設されたことを特徴とする請求項1記載の電流センサ。
【請求項3】
前記磁電変換素子は、当該磁電変換素子を配置された導電路の両側の導電路の被測定部が延長した方向に沿う2つの仮想線の間に配置されたことを特徴とする請求項1又は請求項2記載の電流センサ。
【請求項4】
前記磁電変換素子は、感度軸の他に感度影響軸を有しており、前記感度影響軸が前記被測定部における被測定電流の通流方向に沿うように配設されたことを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。
【請求項5】
前記磁電変換素子は、前記被測定部の両面に配設された一対の磁電変換素子であることを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。
【請求項6】
前記直線部及び前記クランク部が導電部材で一体に形成されたことを特徴とする請求項1から請求項5のいずれかに記載の電流センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate