説明

電源検査装置、電源検査方法、電源装置

【課題】電源装置を停止させることなく、電源装置を検査することが可能な電源検査装置を提供する。
【解決手段】電源検査装置は、入力される三相交流電圧を整流する整流素子を含む整流回路と、整流回路の出力を平滑化するコンデンサと、を備える電源装置の整流回路及びコンデンサからの出力電流を測定する測定部と、測定部の測定結果に基づいて、出力電流の交流成分を検出する交流検出部と、交流検出部の検出結果に基づいて、整流素子が三相交流電圧のレベルに応じた所定のタイミングで動作するか、コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定する判定部と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電源検査装置、電源検査方法、電源装置に関する。
【背景技術】
【0002】
入力される交流電圧を整流、平滑化して直流電圧を生成する直流電源装置には蓄電池を含むものがある。このような直流電源装置は、一般に無停電電源装置と呼ばれ、交流電圧が入力されない場合には蓄電池を電源として直流電圧を生成する(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2002−101571号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
前述の直流電源装置において、蓄電池や交流電圧を整流する整流回路等が劣化していると、所望の直流電圧が生成されないことがある。このため、蓄電池は、直流電源装置が動作している間に、例えば特許文献1に開示されているような技術で診断される。一方、整流回路等に異常があるか否かの検査は、一般に直流電源装置の動作が停止されている間に実行される。この結果、整流回路等が検査される際には、直流電源装置とともに、直流電源装置の電源が供給される機器等も停止させる必要があった。
【0005】
本発明は上記課題を鑑みてなされたものであり、電源装置を停止させることなく、電源装置を検査することが可能な電源検査装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明の一つの側面に係る電源検査装置は、入力される三相交流電圧を整流する整流素子を含む整流回路と、前記整流回路の出力を平滑化するコンデンサと、を備える電源装置の前記整流回路及び前記コンデンサからの出力電流を測定する測定部と、前記測定部の測定結果に基づいて、前記出力電流の交流成分を検出する交流検出部と、前記交流検出部の検出結果に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するか、前記コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定する判定部とを備える。
【発明の効果】
【0007】
本発明によれば、電源装置を停止させることなく、電源装置を検査することが可能な電源検査装置を提供することができる。
【図面の簡単な説明】
【0008】
【図1】本発明の一実施形態である直流電源装置10の構成を示す図である。
【図2】サイリスタ50〜52の点弧角が180度の際の電源供給装置20の主要な波形を示す図である。
【図3】点弧角が180度でサイリスタ51が開放故障している際の電源供給装置20の主要な波形を示す図である。
【図4】サイリスタ50〜52の点弧角が90度の際の電源供給装置20の主要な波形を示す図である。
【図5】点弧角が90度でサイリスタ51が開放故障している際の電源供給装置20の主要な波形を示す図である。
【図6】コンデンサ31の容量値が低下した際の出力電流Ioutの波形を示す図である。
【図7】出力電流Ioutの特性を示す図である。
【図8】マイコン82が実現する機能ブロックを示す図である。
【図9】検査装置22が直流電源装置10に異常があるか否かを検査する処理の一例を示すフローチャートである。
【図10】判定処理S107の一例を示すフローチャートである。
【発明を実施するための形態】
【0009】
本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
図1は、本発明の一実施形態である直流電源装置10の構成例を示す図である。直流電源装置10は、例えば電気所(不図示)に設けられ、入力される三相交流電圧から、継電器等(不図示)を動作させるための電源を生成する装置であり、電源供給装置20、変流器21、及び検査装置22を含んで構成される。
【0010】
電源供給装置20は、三相交流電圧Vr,Vs,Vtから所望の出力電圧Voutを生成する装置であり、整流回路30、コンデンサ31、蓄電池32、制御装置33、電源線35,36及び配電用遮断器40〜45を含んで構成される。
【0011】
変流器21(測定部)は、整流回路30及びコンデンサ31から出力される電流Ioutを測定する。なお、変流器21は、いわゆる直流変流器であり、出力電流Ioutの直流成分及び交流成分を測定する。
【0012】
検査装置22は、変流器21の測定結果に基づいて、電源供給装置20における整流回路30、コンデンサ31、制御装置33の異常の有無を検査する。詳細は後述するが、例えば整流回路30やコンデンサ31が故障すると、出力電流Ioutの交流成分であるリップル電流が大きくなる。このような現象に基づいて、検査装置22は、例えば、出力電流Ioutのリップル電流の振幅レベルを検出し、整流回路30やコンデンサ31の異常の有無を検査する。また、例えば整流回路30や制御装置33が故障すると、出力電流Ioutに含まれる電流のうち、三相交流電圧Vrの周波数で変化する電流や、三相交流電圧Vrの周波数の高調波の周波数で変化する電流等が増加する。このため、検査装置22は、出力電流Ioutのうち、三相交流電圧Vrの周波数で変化する電流や、三相交流電圧Vrの周波数の高調波の周波数で変化する電流を検出し、整流回路30の異常の有無を検出する。
【0013】
なお、直流電源装置10が電源装置に相当し、変流器21及び検査装置22が電源検査装置に相当する。
【0014】
==電源供給装置20の構成==
ここで、電源供給装置20の構成について説明する。整流回路30は、入力される三相交流電圧Vr,Vs,Vtを整流して出力する回路であり、サイリスタ50〜52、ダイオード60〜62を含んで構成される。なお、サイリスタ50〜52、ダイオード60〜62はいわゆるブリッジ回路を構成する。
【0015】
コンデンサ31は、整流回路30で整流された電圧を平滑化し、直流の出力電圧Voutを生成する。コンデンサ31の一端は、配電用遮断器40を介して電源線35に接続され、コンデンサ31の他端は、配電用遮断器41を介して電源線36に接続される。
【0016】
蓄電池32は、電源線35,36の間に接続され、例えば、停電等で整流回路30に三相交流電圧Vr,Vs,Vtが入力されない場合に、電源線35,36に接続される負荷に直流電源を供給する。また蓄電池32は、蓄電池32の電池電圧Vbatが出力電圧Voutの直流レベルと一致するように充電される。
【0017】
制御装置33は、出力電圧Voutの直流レベルに基づいて、出力電圧Voutの直流レベルが所定のレベルとなるようにサイリスタ50〜52の点弧角を制御する装置である。詳細は後述するが、例えば出力電圧Voutのレベルを上昇させる場合、制御装置33は、サイリスタ50〜52の点弧角を大きくし、サイリスタ50〜52のオン期間(動作期間)を長くする。一方、出力電圧Voutのレベルを低下させる場合、制御装置33は、サイリスタ50〜52の点弧角を小さくし、サイリスタ50〜52のオン期間を短くする。また、制御装置33は、後述する検査装置22からの指示に基づいて、サイリスタ50〜52を制御する。具体的には、検査装置22から蓄電池32を均等充電させる指示が入力されると、出力電圧Voutの直流レベルが電圧V1から電圧V2へと上昇するようにサイリスタ50〜52の点弧角を大きくする。この結果、蓄電池32の電池電圧Vbatも電圧V1から電圧V2へと上昇するため、蓄電池32はいわゆる均等充電される。
【0018】
配電用遮断器40,41は、整流回路30、コンデンサ31を過電流から保護するための遮断器である。配電用遮断器42〜45の夫々は、接続される負荷を過電流から保護するための遮断器である。なお、前述した継電器等の機器(不図示)は、例えば配電用遮断器42,43の間に接続されることにより出力電圧Voutの電源が供給される。
【0019】
==電源供給装置20の動作==
ここで、サイリスタ50〜52の点弧角が180度の際に、整流回路30に含まれる整流素子の全てが正常である場合と、整流素子の何れか一つが例えば開放故障している場合の電源供給装置20の動作を説明する。なお、ここでは電源供給装置20は、負荷として接続された継電器(不図示)の内部に含まれる抵抗(不図示)に電源を供給することとする。つまり、本実施形態では、配電用遮断器42,43の間には、等価的に抵抗負荷が接続されていることになる。
【0020】
<<サイリスタ50〜52の点弧角が180度で整流素子が正常の場合>>
図2は、サイリスタ50〜52の点弧角が180度であり、整流回路30に含まれる整流素子の全てが正常である場合の電源供給装置20の主要な波形を説明するための図である。なお、時刻t0〜t6までの期間は、三相交流電圧Vr,Vs,Vtの夫々の1周期の期間である。
【0021】
まず、時刻t0においては、三相交流電圧Vrが最も高く、三相交流電圧Vsが最も低い。このため、サイリスタ50及びダイオード61が動作し、オンする。時刻t0〜時刻t1までの間において、三相交流電圧Vr,Vsの差は増加した後に低下する。このため、コンデンサ31の出力電圧Voutは、時刻t0から三相交流電圧Vr,Vsの差が最も大きくなる時刻まで上昇し、その後低下する。そして、時刻t1となると、三相交流電圧Vsよりも三相交流電圧Vtが低くなるため、サイリスタ50及びダイオード62がオンする。時刻t1〜t2までの間において、三相交流電圧Vr,Vtの差は増加した後に低下する。このため、出力電圧Voutは、時刻t1から三相交流電圧Vr,Vtの差が最も大きくなる時刻まで上昇し、その後低下する。
【0022】
時刻t2となると、三相交流電圧Vrよりも三相交流電圧Vsが高くなる。このため、サイリスタ51及びダイオード62がオンする。また、時刻t2〜t3までの間の出力電圧Voutは、時刻t0〜t1と同様に変化する。そして、時刻t3となると、三相交流電圧Vtよりも三相交流電圧Vrが低くなるため、サイリスタ51及びダイオード60がオンする。また、時刻t3〜t4までの間の出力電圧Voutは、時刻t0〜t1と同様に変化する。
【0023】
時刻t4となると、三相交流電圧Vsよりも三相交流電圧Vtが高くなるため、サイリスタ52及びダイオード60がオンする。また、時刻t4〜t5までの間の出力電圧Voutは、時刻t0〜t1と同様に変化する。時刻t5となると、三相交流電圧Vrよりも三相交流電圧Vsが最も低くなるため、サイリスタ52及びダイオード61がオンする。また、時刻t5〜t6までの間の出力電圧Voutは、時刻t0〜t1と同様に変化する。そして、時刻t6以降は、時刻t0〜t6までの動作が繰り返される。このように、整流回路30に含まれる整流素子の全てが正常である場合では、出力電圧Voutは、三相交流電圧Vr,Vs,Vtが全波整流された波形となる。また、出力電圧Voutには、三相交流電圧Vrの1周期の期間内に、図2に示すようなピークが6回含まれることになる。
【0024】
また前述のように、電源供給装置20は抵抗負荷を駆動するため、出力電流Ioutは、出力電圧Voutと同様に変化することになる。したがって、出力電流Ioutは、三相交流電圧Vrの周波数の6倍の周波数で変化することになる。
【0025】
<<サイリスタ50〜52の点弧角が180度でサイリスタ51が異常の場合>>
図3は、サイリスタ50〜52の点弧角が180度であり、例えば、サイリスタ51が開放故障している場合の電源供給装置20の主要な波形を説明するための図である。なお、サイリスタ50,52は、図2を用いて説明した場合と同様に動作する。つまり、三相交流電圧Vrが最も高くなる時刻t0〜t2までの期間と、三相交流電圧Vtが最も高くなる時刻t4〜t6までの期間とにおける出力電圧Voutは、図2と同様に変化するため詳細な説明は省略する。
【0026】
サイリスタ51が開放故障している場合、三相交流電圧Vsが最も高くなり、サイリスタ51がオンすべき時刻t2〜t4までの間において、サイリスタ51はオフしたままとなる。つまり、サイリスタ51は、三相交流電圧Vr,Vs,Vtのレベルに応じた所定のタイミングでオンしなくなる。この結果、時刻t2〜t4の間で出力電圧Voutは低下し、出力電流Ioutも同様に低下する。したがって、出力電流Ioutのリップル電流は、例えば図2に示す場合と比較すると増加する。さらに、出力電流Ioutは、三相交流電圧Vrの1周期の期間内に1回だけ大きく低下する。このため、出力電流Ioutに含まれる電流のうち、三相交流電圧Vrの周波数で変化する電流が大きくなる。
【0027】
<<サイリスタ50〜52の点弧角が90度で整流素子が正常の場合>>
図4は、サイリスタ50〜52の点弧角が90度であり、整流回路30に含まれる整流素子の全てが正常である場合の電源供給装置20の主要な波形を説明するための図である。なお、時刻t10〜t16までの期間は、三相交流電圧Vr,Vs,Vtの夫々の1周期の期間である。
【0028】
ここで、時刻t10〜t12までの期間においては、三相交流電圧Vrが最大となるため、サイリスタ50がオン可能となる。本実施形態の制御装置33は、サイリスタ50がオン可能な期間である時刻t10〜t12のうち、例えば、時刻t11〜t12までの50%の期間はサイリスタ50をオフすることとする。また、制御装置33は、サイリスタ51がオン可能な期間である時刻t12〜t14のうち、例えば、時刻t13〜t14までの50%の期間はサイリスタ51をオフすることとする。さらに、制御装置33は、サイリスタ52がオン可能な期間である時刻t14〜t16のうち、例えば、時刻t15〜t16までの50%の期間はサイリスタ52をオフすることとする。
【0029】
この結果、時刻t10〜t11,t12〜t13,t14〜t15の間にのみ三相交流電圧Vr,Vs,Vtは整流される。したがって、出力電圧Voutは、1周期の期間において、3回上昇することになる。また、出力電流Ioutは、出力電流Voutと同様に変化するため、出力電流Voutは三相交流電圧Vrの周波数の3倍の周波数で変化することになる。
【0030】
<<サイリスタ50〜52の点弧角が90度で整流素子が異常の場合>>
図5は、サイリスタ50〜52の点弧角が90度で制御される際に、サイリスタ51が開放故障している場合の電源供給装置20の主要な波形を説明するための図である。なお、サイリスタ50,52の動作は図4で示した場合と同様であるためここでは省略する。
【0031】
サイリスタ51が開放故障している場合、三相交流電圧Vsが最も高くなり、サイリスタ51がオン時刻t12〜t13においてもサイリスタ51はオフしたままとなる。この結果、出力電圧Voutは、時刻t10〜t11の期間と、時刻t14〜t15までの期間には上昇するが、時刻t11〜t14の間で低下する。したがって、出力電流Ioutは、三相交流電圧Vrの1周期の期間内に2回だけ大きく増加するため、出力電流Ioutに含まれる電流のうち、三相交流電圧Vrの周波数の2倍の周波数で変化する電流が増加する。また、図5に示したように、出力電圧Voutは、時刻t11〜t14の間に大きく低下するため、出力電流Ioutのリップル電流は、例えば図2に示す場合と比較すると増加する。
【0032】
<<コンデンサ31の容量が低下した場合の出力電流Ioutの変化>>
ここで、図1及び図6を参照しつつ、コンデンサ31の容量値が経年変化等により低下した場合の出力電流Ioutの変化について説明する。
コンデンサ31の容量値が経年変化等により低下すると、コンデンサ31のインピーダンスは増加するため、出力電流Ioutのリップル電流は、コンデンサ31に流れにくくなる。このため、コンデンサ31の容量値が低下すると、出力電流Ioutのリップル電流は増加する。なお、リップル電流の振幅レベルは、コンデンサ31の容量値の低下に応じて増加する。
【0033】
==出力電流Ioutの特性==
図7は、前述した各場合における出力電流Ioutの特性をまとめた図である。図7において、“基本波”とは、出力電流Ioutのうち、三相交流電圧Vrの周波数で変化する電流を意味し、“2次”とは、出力電流Ioutのうち、三相交流電圧Vrの周波数の2倍の周波数で変化する電流(以下、第2高調波電流とする)を意味する。さらに、“3次”とは、出力電流Ioutのうち、三相交流電圧Vrの周波数の3倍の周波数で変化する電流(以下、第3高調波電流とする)を意味し、“6次”とは、出力電流Ioutのうち、三相交流電圧Vrの周波数の6倍の周波数で変化する電流(以下、第6高調波電流とする)を意味する。また、“増加”とは、対象となる電流の振幅レベルが増加することを意味し、“小”とは、対象となる電流の振幅レベルの変化が小さいことを意味する。
【0034】
コンデンサ31の容量値が低下すると、例えば図6に示したように、出力電流Ioutにおけるリップル電流は増加する。また、サイリスタ50〜52の点弧角が例えば大きい場合(例えば180等)、出力電流Ioutの交流成分では、図2に示すように第6高調波電流が主要な電流となる。一方、サイリスタ50〜52の点弧角が小さい場合(例えば90度)、出力電流Ioutの交流成分では、図4に示すように第3高調波電流が主要な電流となる。したがって、コンデンサ31の容量値が低下すると、リップル電流は増加するとともに、リップル電流に含まれる第3高調波電流、または第6高調波電流が増加する。
【0035】
また、整流素子であるサイリスタ50〜52、ダイオード60〜62に開放故障等の不良があると、整流素子がオンされない期間が生じることとなるため出力電圧Voutは必ず低下する。このため、このような場合、出力電流Ioutにおけるリップル電流は増加する。また、サイリスタ50〜52の点弧角が例えば大きい場合(例えば180等)に、整流素子に開放故障等があると、図3に示すように、出力電流Ioutの交流成分のうち、基本波の電流が増加する。さらに、サイリスタ50〜52の点弧角が例えば小さい場合(例えば90度等)に、整流素子に開放故障等があると、図5に示すように、出力電流Ioutの交流成分のうち、第2高調波電流が増加する。
【0036】
なお、ここでは、整流素子に開放故障がある場合について説明したが、例えば、制御装置33が故障し、サイリスタ50〜52をオンできない場合や、所望のタイミングでサイリスタ50〜52をオンできない場合の出力電流Ioutも図3や図5に示した場合と同様である。つまり、制御装置33に故障が発生した場合も、出力電流Ioutのうち、基本波の電流、または、第2高調波電流が増加する。
【0037】
==検査装置22の詳細==
ここで、図1に示す検査装置22の詳細について説明する。検査装置22は、出力電流Ioutに基づいて、整流回路30、コンデンサ31、制御装置33の異常の有無を検査する。
【0038】
検査装置22は、ADコンバータ(ADC)80、記憶装置81、マイコン82、インターフェース回路(IF)83、及び表示器84を含んで構成される。
【0039】
ADコンバータ80は、変流器21で測定されるアナログの出力電流Ioutをデジタル値に変換する。記憶装置81は、マイコン82が実行するプログラムデータや、各種データを記憶する。
【0040】
マイコン82は、記憶装置81に記憶されたプログラムデータを実行することにより、各種機能を実現する。具体的には、マイコン82は図8に示すような、直流検出部90、交流検出部91、判定部92、及び処理部93の機能を実現する。
【0041】
直流検出部90は、デジタル化された出力電流Ioutに基づいて、出力電流Ioutの直流成分、すなわち直流レベルを検出する。
【0042】
交流検出部91は、デジタル化された出力電流Ioutに基づいて、出力電流Ioutにおける交流成分、すなわちリップル電流の振幅レベルを検出する。また、交流検出部91は、デジタル化された出力電流Ioutをフーリエ変換し、三相交流電圧Vrの周波数で変化する基本波の電流と、第2〜第6高調波電流とを検出する。
【0043】
判定部92は、直流検出部90及び交流検出部91の検出結果に基づいて、整流回路30、コンデンサ31、及び制御装置33に異常が有るかを判定する。判定部92は、出力電流Ioutの直流レベルとリップル電流の振幅レベルとの比、すなわち、直流成分に対するリップル電流の割合(リップル電流/直流電流)、基本波の電流、第2〜第6高調波電流の各振幅レベルを計算する。
【0044】
また、判定部92は、リップル電流の割合が所定以上である場合に、整流回路30、コンデンサ31、制御装置33の何れかに異常が有ると判定する。また、判定部92は、基本波の電流、第2〜第6高調波電流の各振幅レベルに基づいて、整流回路30等の異常の有無を判定する。具体的には、判定部92は、基本波の電流、または第2高調波電流の振幅レベルが最大である場合には、整流器30、または制御装置33に異常があると判定する。また、判定部92は、第3高調波電流の振幅レベルが所定以上であるか、第6高調波電流の振幅レベルが所定以上である場合にコンデンサ31に異常があると判定する。
【0045】
処理部93は、出力電流Ioutの直流レベルが所定値より小さい場合には、蓄電池32の均等充電を開始させるための均等充電指示を、インターフェース回路83を介して制御装置33に出力する。なお、蓄電池32の均等充電が開始されると、前述のようにサイリスタ50〜52の点弧角は大きくなるため、出力電流Ioutの直流レベルは増加する。また、処理部93は、判定部92が計算した、リップル電流の割合や、基本波、高調波電流の振幅レベル等を表示器84に表示させる。さらに、処理部93は、判定部92が整流回路30等に異常が有ることを判定すると、リップル電流の割合や、基本波、高調波電流等の波形や、判定した時刻を記憶装置81に記録する。また、処理部93は、判定部92が整流回路30等に異常が有ることを判定すると、異常があったことを示す警報を、インターフェース回路83に出力する。
【0046】
インターフェース回路83は、処理部93からの指示に基づいて、均等充電指示を制御装置33に出力し、直流電源装置10の外部に警報を出力する。
【0047】
表示器84は、リップル電流の割合や、基本波、高調波電流の振幅レベル等を表示する表示パネルである。このため、詳細は後述するが、例えば、利用者が表示器84のパネルを確認することにより、整流回路30等の異常の有無を判定することもできる。
【0048】
==検査装置22の処理の一例==
ここで、図9を参照しつつ、検査装置22が直流電源装置10に異常があるか否かを検査する処理の一例を説明する。検査装置22は、例えば所定周期ごとに図9に示した処理を実行することとする。また、図9に示すフローチャートの処理の主体はマイコン82が実現する各機能ブロックである。
【0049】
まず、直流検出部90は出力電流Ioutの直流レベルを検出する(S100)。そして、処理部93は、直流検出部90で検出された出力電流Ioutの直流レベルが所定以上であるか否かを判定する(S101)。直流レベルが所定以上である場合(S101:YES)、直流検出部90は出力電流Ioutの直流レベルを検出し、交流検出部91は、出力電流Ioutの交流成分であるリップル電流、基本波の電流、第2〜第6高調波電流を検出する(S104)。一方、直流レベルが所定以上でない場合(S101:NO)、処理部93は、蓄電池32の均等充電を開始させるべく均等充電指示を出力する(S102)。処理S102が実行されると、蓄電池23の均等充電が開始されるため、出力電流Ioutは増加し始める。そして、処理部93は、出力電流Ioutが十分増加するのに要する一定時間が経過すると(S103:YES)、直流検出部90に出力電流Ioutの直流レベルを検出させ、交流検出部91にリップル電流、基本波の電流、第2〜第6高調波電流を検出させる(S104)。そして、処理S104が実行されると、判定部92は、処理S104での検出結果に基づいて、リップル電流の割合、基本波の電流、第2〜第6高調波電流の各振幅レベルを計算する(S105)。処理部93は、判定部92が計算した、リップル電流の割合や、基本波、高調波電流の振幅レベルを表示器84に表示させる(S106)。そして、判定部92は、リップル電流の割合や、基本波、高調波電流の振幅レベルに基づいて、直流電源装置10に異常があるか否かの判定処理を実行する(S107)。
【0050】
ここで、判定処理S107は例えば、図10に示すような処理である。以下、判定処理の詳細を説明する。まず、判定部92はリップル電流の割合が所定以上かを判定する(S200)。リップル電流の割合が所定以上である場合(S200:YES)、判定部92は、整流回路30、コンデンサ31、制御装置33のうち少なくとも何れかに異常があることを判定する(S201)。一方、リップル電流の割合が所定以上でない場合(S200:NO)、判定部92は基本波、高調波電流のうち、レベルが最大となる電流を判定する(S202)。レベルが最大となる電流が、基本波の電流、または第2高調波電流である場合(S202:基本波、第2高調波)、判定部92は、整流回路30、または制御装置33に異常があることを判定する(S203)。一方、レベルが最大となる電流が、基本波の電流、第2高調波電流以外である場合(S202:基本波、第2高調波以外)、判定部92は、第3高調波電流が所定以上であるか、または第6高調波電流が所定以上であるかを判定する(S204)。そして、第3高調波電流が所定以上、または第6高調波電流が所定以上である場合(S204:YES)、判定部92は、コンデンサ31に異常があることを判定する(S205)。一方、第3高調波電流が所定以上、または第6高調波電流が所定以上でない場合(S204:NO)、判定部92は、直流電源装置10には異常が無いことを判定する(S206)。
【0051】
そして、図9に示すように、判定部92が異常ありと判定した場合(S108:YES)、処理部93は、リップル電流の割合や、基本波、高調波電流等の波形や、判定した時刻を記憶装置81に記録し、異常があったことを示す警報を出力する(S109)。一方、判定部92が異常なしと判定した場合(S108:NO)、処理は終了される。
【0052】
以上、本実施形態の直流電源装置10について説明した。本実施形態では、例えば、リップル電流の割合等に基づいて、整流回路30等に異常があるか否かが判定されたが、例えば、リップル電流の大きさのみに基づいて異常の有無を判定しても良い。例えば、図3,5に示すように、サイリスタ50〜52、ダイオード60〜62が三相交流電圧Vr,Vs,Vtに応じた所定のタイミングでオンしない場合にはリップル電流は増加する。また、図6に示すように、コンデンサ31の容量値が所定の値(例えば、出荷時の値)から低下すると、リップル電流は増加する。このため、リップル電流の大きさにのみ基づいて、サイリスタ50〜52等が所定のタイミングでオンしていないことや、コンデンサ31の容量値が低下していることを判定することができる。このような場合、直流電源装置10を停止させること無く、直流電源装置10の異常の検出が可能となる。また、異常が検出されると、利用者は直流電源装置10を停止し故障した素子等を交換できる。このため、故障した状態で直流電源装置10を動作させることを防ぐことができるため、直流電源装置10に対する負担を軽減できる。さらに、故障した素子が交換されると、出力電流Ioutにおけるリップル電流は小さくなる。このため、直流電源装置10が駆動する負荷への影響も小さくなる。また、出力電圧Voutに含まれる高調波等を検出する場合も、故障箇所の特定は可能となる。しかしながら、出力電圧Voutは、出力電流Ioutに比べ、直流電源装置10が駆動する負荷の影響を受け易い。このため、出力電流Ioutを測定することにより、精度良く故障箇所の特定が可能となる。
【0053】
一般に、直流電源装置10の負荷が小さい場合、リップル電流の変化は小さくなる。このため、リップル電流のみに基づいて整流回路30等の異常を検出することが難しい場合がある。本実施形態の判定部92は、出力電流Ioutの直流レベルとリップル電流の振幅レベルとの比、すなわち、リップル電流の割合に基づいて、サイリスタ50等の異常を判定している(例えば、処理S200)。したがって、例えば、リップル電流のみに基づいて異常の判定する場合と比べ、精度良く判定ができる。
【0054】
また、直流検出部90、交流検出部91の夫々は、蓄電池23が均等充電されて電圧V1から電圧V2へと上昇している間に、出力電流Ioutの直流成分、リップル電流を検出する(例えば、処理S102〜S104)。このため、例えば、直流電源装置10が駆動する負荷によらず、出力電流Ioutを増加させることができる。判定部92は、出力電流Ioutが増加した際に検出されたリップル電流等に基づいて整流回路30等の異常を判定するため、判定の精度を向上させることができる。
【0055】
また、判定部82は、例えば、処理S202〜S206にあるように、基本波の電流、高調波電流に基づいて、整流回路30等の異常の有無が判定する。このように、例えば、リップル電流の割合を用いない場合であっても、整流回路30等の異常の有無の判定は可能である。
【0056】
また、直流電源装置10の負荷電流が小さい場合、例えば整流回路30等が故障している場合であっても、出力電流Ioutに含まれる基本波の電流、高調波電流の増加は抑制される。交流検出部91は、蓄電池23が均等充電されて電圧V1から電圧V2へと上昇している間に、基本波の電流、第2〜第6高調波電流を検出する(例えば、処理S102〜S104)。このため、本実施形態では、異常の有無の判定の精度を向上させることができる。
【0057】
また、整流回路30がいわゆる全波整流回路として動作している際に、例えば、整流回路30の何れかの整流素子が故障すると、出力電流Ioutにおいては基本波の電流が増加する。このようは出力電流Ioutの特性を加味しつつ、判定部92は、交流検出部91で検出された基本波の電流を用いて判定処理(S107)を実施している。このため、判定部92は、整流素子が所定のタイミングで動作するか否か、すなわち、所定のタイミングでオンするかを判定できる(例えば、処理S202,S203)。なお、整流素子が所定のタイミングでオンしない場合には、整流回路30または、制御装置33の何れかが故障していることになるため、故障箇所の特定も可能となる。
【0058】
また、整流回路30がいわゆる全波整流回路として動作している際に、コンデンサ31の容量が低下すると第6高調波電流の振幅レベルが大きくなる。このようは出力電流Ioutの特性を加味しつつ、判定部92は、交流検出部91で検出された第6高調波電流を用いて判定処理(S107)を実施している。このため、判定部92は、コンデンサ31の容量が所定の値であるか否かを判定できる(例えば、処理S204)。また、コンデンサ31の容量が所定の値でない場合には、コンデンサ31に経年劣化が発生しているか、故障していることになり、コンデンサ31に異常が発生していることを特定できる。
【0059】
また、整流回路30は、サイリスタ50〜52を含んでいるため、整流回路30の何れかの整流素子に故障があった場合、第2高調波電流が増加することがある。このようは出力電流Ioutの特性を加味しつつ、判定部92は、基本波の電流、または第2高調波電流を用いて判定処理(S107)を実施している。このため、判定部92は、サイリスタ50〜52の点弧角によらず、整流素子が所定のタイミングでオンするか否かを判定できる(例えば、処理S202,S203)。
【0060】
また、整流回路30は、サイリスタ50〜52を含んでいるため、コンデンサ31の容量が低下すると第3高調波電流の振幅レベルが大きくなることがある。このようは出力電流Ioutの特性を加味しつつ、判定部92は、第3高調波電流、第6高調波電流を用いて判定処理(S107)を実施している。このため、判定部92は、サイリスタ50〜52の点弧角によらず、コンデンサ31の容量が所定の値であるか否かを判定できる(例えば、処理S204)。
【0061】
また、変流器21で出力電流Ioutを測定し、変流器21の測定結果に基づいてリップル電流を検出し、検出結果に基づいて故障箇所の判定をしても良い。
【0062】
前述した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく変更、改良されるとともに、本発明にはその等価物も含まれる。
【0063】
本実施形態では、処理S200,S202,S204の全てが実行されたが、何れか一つの処理であっても良い。
【0064】
変流器21及び検査装置22は、直流電源装置10の内部に設けられているが、外部に設けられていても良い。
【0065】
また、整流回路30は、全てダイオードで構成されても良いし、全てサイリスタで構成されても良い。また、整流回路30は、半波整流回路であっても良い。この場合には、点弧角が90度の場合と同様の出力電流Ioutが出力されるため、検査装置22を用いることにより、整流回路30等の異常を検出可能である。
【0066】
また、蓄電池32を含まないような一般的なAC−DCコンバータに含まれる整流回路等の異常も、変流器21及び検査装置22を用いることにより検出できる。
【0067】
また、直流電源装置10において、例えばコンデンサ31と蓄電池32との間にLCフィルタ等が設けられている場合であっても、コンデンサ31から出力される出力電流Ioutを検出することにより、整流回路30等の異常を検出することができる。
【0068】
また、前述したLCフィルタ等から負荷へ出力される電流を検出することとしても良い。このような場合、高調波成分等のレベルはLCフィルタにより減衰されるが、LCフィルタから出力される電流の周波数成分は本実施形態と同様である。このため、本実施形態と同様に整流回路30等の異常を検出できる。
【0069】
また、処理S202では、基本波の電流が最大となるかが判定されているが、例えば、基本波の電流の振幅レベルと所定レベルとを比較しても良い。
【符号の説明】
【0070】
10 直流電源装置
20 電源供給装置
21 変流器
22 検査装置
30 整流回路
31 コンデンサ
32 蓄電池
33 制御装置
35,36 電源線
40〜45 配電用遮断器
50〜52 サイリスタ
60〜62 ダイオード
80 ADコンバータ
81 記憶装置
82 マイコン
83 インターフェース回路
84 表示器
90 直流検出部
91 交流検出部
92 判定部
93 処理部

【特許請求の範囲】
【請求項1】
入力される三相交流電圧を整流する整流素子を含む整流回路と、前記整流回路の出力を平滑化するコンデンサと、を備える電源装置の前記整流回路及び前記コンデンサからの出力電流を測定する測定部と、
前記測定部の測定結果に基づいて、前記出力電流の交流成分を検出する交流検出部と、
前記交流検出部の検出結果に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するか、前記コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定する判定部と、
を備えることを特徴とする電源検査装置。
【請求項2】
請求項1に記載の電源検査装置であって、
前記測定部の測定結果に基づいて、前記出力電流の直流成分を検出する直流検出部を更に備え、
前記判定部は、
前記直流検出部で検出された前記出力電流の直流成分と、前記交流検出部で検出された前記出力電流の交流成分との比に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するか、前記コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定すること、
を特徴とする電源検査装置。
【請求項3】
請求項2に記載の電源検査装置であって、
前記電源装置は、
前記出力電流が供給されると充電される蓄電池を更に備え、
前記交流検出部は、
前記蓄電池の充電電圧が第1レベルから第2レベルへと上昇している間の前記測定部の測定結果に基づいて、前記出力電流の交流成分を検出し、
前記直流検出部は、
前記充電電圧が前記第1レベルから前記第2レベルへと上昇している間の前記測定部の測定結果に基づいて、前記出力電流の直流成分を検出すること、
を特徴とする電源検査装置。
【請求項4】
請求項1に記載の電源検査装置であって、
前記整流回路は全波整流回路であり、
前記交流検出部は、
前記測定部の測定結果に基づいて、前記出力電流のうち、前記三相交流電圧の何れか一相の電圧の周波数に応じた周波数の電流を検出し、
前記判定部は、
前記交流検出部の検出結果に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するか、前記コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定すること、
を特徴とする電源検査装置。
【請求項5】
請求項4に記載の電源検査装置であって、
前記電源装置は、
前記出力電流が供給されると充電される蓄電池を更に備え、
前記交流検出部は、
前記蓄電池の充電電圧が第1レベルから第2レベルへと上昇している間の前記測定部の測定結果に基づいて、前記出力電流のうち、前記何れか一相の電圧の周波数に応じた周波数の電流を検出すること、
を特徴とする電源検査装置。
【請求項6】
請求項4または請求項5に記載の電源検査装置であって、
前記交流検出部は、
前記出力電流のうち、前記何れか一相の電圧の周波数で変化する電流を検出し、
前記判定部は、
前記交流検出部の検出結果に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するかを判定すること、
を特徴とする電源検査装置。
【請求項7】
請求項4または請求項5に記載の電源検査装置であって、
前記交流検出部は、
前記出力電流のうち、前記何れか一相の電圧の周波数の6倍の周波数で変化する電流を検出し、
前記判定部は、
前記交流検出部の検出結果に基づいて、前記コンデンサの容量値が所定の値であるかを判定すること、
を特徴とする電源検査装置。
【請求項8】
請求項6に記載の電源検査装置であって、
前記全波整流回路は、前記整流素子としてサイリスタを含み、
前記電源装置は、前記電源装置から出力される出力電圧が所定の電圧となるよう、前記出力電圧に基づいて前記サイリスタを制御する制御装置を更に備え、
前記交流検出部は、
前記出力電流のうち、前記何れか一相の電圧の周波数で変化する電流と、前記何れか一相の電圧の周波数の2倍の周波数で変化する電流と、のうち少なくとも何れか一方を検出し、
前記判定部は、
前記交流検出部の検出結果に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するかを判定すること、
を特徴とする電源検査装置。
【請求項9】
請求項7に記載の電源検査装置であって、
前記全波整流回路は、前記整流素子としてサイリスタを含み、
前記電源装置は、前記電源装置から出力される出力電圧が所定の電圧となるよう、前記出力電圧に基づいて前記サイリスタを制御する制御装置を更に備え、
前記交流検出部は、
前記出力電流のうち、前記何れか一相の電圧の周波数の3倍の周波数で変化する電流と、前記何れか一相の電圧の周波数の6倍の周波数で変化する電流と、のうち少なくとも何れか一方を検出し、
前記判定部は、
前記交流検出部の検出結果に基づいて、前記コンデンサの容量値が所定の値であるかを判定すること、
を特徴とする電源検査装置。
【請求項10】
入力される三相交流電圧を整流する整流素子を含む整流回路と、前記整流回路の出力を平滑化するコンデンサと、を備える電源装置の前記整流回路及び前記コンデンサからの出力電流を測定し、
前記測定部の測定結果に基づいて、前記出力電流の交流成分を検出し、
前記交流検出部の検出結果に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するか、前記コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定すること、
を特徴とする電源検査方法。
【請求項11】
入力される三相交流電圧から出力電圧を生成する電源装置であって、
前記三相交流電圧を整流する整流素子を含む整流回路と、
前記整流回路の出力を平滑化して前記出力電圧を生成するコンデンサと、
前記整流回路及び前記コンデンサからの出力電流を測定し、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するか、前記コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定する検査装置と、
を備え、
前記検査装置は、
前記出力を測定する測定部と、
前記測定部の測定結果に基づいて、前記出力電流の交流成分を検出する交流検出部と、
前記交流検出部の検出結果に基づいて、前記整流素子が前記三相交流電圧のレベルに応じた所定のタイミングで動作するか、前記コンデンサの容量値が所定の値であるか、のうち少なくとも何れか一方を判定する判定部と、
を含むことを特徴とする電源装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−239642(P2011−239642A)
【公開日】平成23年11月24日(2011.11.24)
【国際特許分類】
【出願番号】特願2010−111268(P2010−111268)
【出願日】平成22年5月13日(2010.5.13)
【出願人】(000211307)中国電力株式会社 (6,505)
【Fターム(参考)】