説明

露形状分布測定装置及び露形状分布測定方法

【課題】試料上で結露させた上で、露の形状及び分布を精度よく測定できるようにする。
【解決手段】測定装置10は、試料台16と、プローブ18と、プローブ18の先端部を振動させる励振部20と、プローブ18の先端部の振動に応じてプローブ18の先端部と露又は試料Wとの接触又は近接を判定する判定部と、試料台16に対するプローブ18の相対的な位置を変えさせる変位機構22と、試料台16に対するプローブ18の相対変位量を測定する相対変位量導出部と、試料表面を露点以下に冷却可能な冷却機構48と、判定部による前記接触又は近接の有無及び相対変位量導出部によって導出された相対変位量に基づいて、冷却機構48によって冷却された試料表面に発生した露の形状及び分布を測定する測定部と、が含まれている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、露形状分布測定装置及び露形状分布測定方法に関するものである。
【背景技術】
【0002】
従来、下記特許文献1に開示されているように液膜の膜厚を測定可能な膜厚測定装置が知られている。この特許文献の膜厚測定装置では、基材上の液膜に対してプローブをZ軸方向(膜厚方向)に移動させて、プローブ先端部の振動減衰を利用することにより液膜の膜厚を測定することが可能となっている。
【0003】
一方、下記非特許文献1に開示されているように、試料表面の結露水を顕微鏡で直接観察することが知られている。この方法では、数mmオーダーから数μmオーダーの結露を観察することができる。
【0004】
また、下記非特許文献2に開示されているように、既知偏光状態の入射光を試料に反射させ、その反射光の偏光状態の変化から試料表面にある薄膜の厚さを導出することが知られている。
【0005】
また、下記非特許文献3には、干渉計内の参照光と測定光間に複数の位相差を与え、そのときの干渉光の強度変化を測定することで、参照光と測定光の位相差を算出し、測定光の波長および位相差から試料各点における高さを求めることが開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開第WO2005/090909号パンフレット
【非特許文献】
【0007】
【非特許文献1】井端他、asbil Technical Review 2006年12月号、p52−60、株式会社山武
【非特許文献2】”エリプソメトリーの基礎”、ジェー・エー・ウーラム・ジャパン株式会社、平成20年7月30日検索、インターネット<URL:http://www.jawjapan.com/Tutorial_1.html>
【非特許文献3】Shigeaki Matsumoto、”The measurement of tiny dew droplets at the initial deposition stage and dew point using a phase-shift interference microscope”、Meas.Sci.Technol.14、2003年、2075−2080、IOP Publishing Ltd.
【発明の概要】
【発明が解決しようとする課題】
【0008】
近年、電子機器等の精密機器において、結露による配線間の絶縁不良を原因とする故障の増加が懸念されている。また近年実用化されている鉛フリーはんだやナノ材料等においては、結露に伴う新たな種類の故障が発生しており、その故障メカニズムを明らかにすることが望まれている。また以前は不具合や故障の原因とならなかった微小結露が、今後、機器の寿命に影響を与える要因となるおそれもあるため、微小結露を正確に計測できる技術の開発が要望されている。しかしながら、前述した従来の技術には、液膜等の膜厚の測定を精度よくできるものはあるが、個々の水滴の形状を精度よく測定できるものはない。また結露を観察することはできても、個々の露の形状を精度よく測定できるものはない。
【0009】
そこで、本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、試料上で結露させた上で、露の形状及び分布を精度よく測定できるようにすることにある。
【課題を解決するための手段】
【0010】
前記の目的を達成するため、本発明は、試料表面上の露の形状及び分布を測定する装置であって、試料がセットされる試料台と、プローブと、前記プローブの先端部を振動させる励振部と、前記プローブの先端部の振動に応じて前記プローブの先端部と前記露又は前記試料との接触又は近接を判定する判定部と、前記試料台に対する前記プローブの相対的な位置を変えさせる変位機構と、前記試料台に対する前記プローブの相対変位量を測定する相対変位量導出部と、試料表面を露点以下に冷却可能な冷却機構と、前記判定部による前記接触又は近接の有無及び前記相対変位量導出部によって導出された相対変位量に基づいて、前記冷却機構によって冷却された試料表面に発生した露の形状及び分布を測定する測定部と、が含まれている露形状分布測定装置である。
【0011】
本発明では、冷却機構によって試料表面を露点以下に冷却することにより試料表面に結露させることができる。そして、プローブの先端部を振動させながら、試料台に対するプローブの相対的な位置を変え、プローブの先端部の振動に応じてプローブ先端部と露又は試料との接触又は近接を判定し、その判定結果に基づいて露の形状及び分布を測定する。つまり、プローブの先端部が露又は試料に接触又は近接するとせん断力を受けるので、プローブ振動の振幅が減衰する。測定部がこの減衰を検出するとともに、そのときのプローブの相対変位量を検出することにより露の形状及び分布を精度よく測定することができる。また、微小な露形状及び分布を測定することもできるので、濡れ性等の試料の物性測定への利用が可能となる。また試料の表面検査に利用することも可能となる。
【0012】
ここで、前記変位機構は、前記試料台に対する前記プローブの相対的な位置を直交3軸方向にそれぞれ変えさせることができ、前記直交3軸方向におけるそれぞれの相対変位量を測定可能である変位測定部が設けられているのが好ましい。この態様では、直交3軸方向におけるそれぞれの相対変位量を測定するので、試料台に対するプローブの3次元位置を正確に算出することができ、この算出データを利用して露の形状及び分布を測定することができる。
【0013】
また、前記励振部は、前記プローブに接触するように配設される水晶振動子と、前記水晶振動子の共振周波数の信号を発生させる信号発生部と、を有するのが好ましい。この態様では、プローブ先端部と露又は試料との接触により生ずる水晶振動子の共振特性の変化を利用するので、プローブと露又は試料との接触を正確に検出することができる。
【0014】
また、前記冷却機構は、前記試料表面を冷却する冷却部と、前記試料表面の温度を検出する試料温度検出部と、前記試料表面の温度が所定の温度になるように前記冷却部を制御する試料温度制御部と、を有するのが好ましい。この態様では、試料表面を所定の温度に制御できるので、試料表面での結露量を正確に制御することができる。また試料表面での結露を再現性よく発生させることができるので、露形状及び分布の測定結果の信頼性を向上することができる。
【0015】
前記冷却部は、ペルチエ素子の吸熱部によって構成されていてもよい。この態様では、ペルチエ素子への印加電圧により冷却能力を調整することができる。
【0016】
これに代え、前記冷却部は、冷却空気を前記試料に接触させるように冷却空気を供給する冷風供給部を有してもよい。この態様では、試料に接触させる冷却空気流量又は冷却空気温度を調整することにより、冷却能力を調整することができる。
【0017】
前記露形状分布測定装置は、前記試料を収納可能な測定空間を有する測定槽と、前記測定空間内に所定の温湿度の空気を流通させる空調部と、前記測定空間内の温度を検出する周囲温度検出部と、前記測定空間内の湿度を検出する周囲湿度検出部と、前記測定空間内の温度が所定の温度及び湿度になるように制御する環境制御部と、を有するのが好ましい。この態様では、試料周囲の温度及び湿度を調整するので、結露を再現性よく発生させることができる。このため露形状及び分布の測定結果の信頼性を向上することができる。
【0018】
本発明は、試料表面上の露の形状及び分布を測定する方法であって、試料表面を露点以下に冷却する冷却ステップと、プローブの先端部を振動させながら、試料がセットされた試料台に対する前記プローブの相対的な位置を変え、前記先端部の振動に応じて前記先端部と前記露又は前記試料との接触又は近接を判定して、前記冷却ステップで冷却された試料表面に発生した露の形状及び分布を測定する測定ステップと、が含まれている露形状分布測定方法である。
【0019】
前記冷却ステップ及び前記測定ステップにおいて、前記試料は、所定温度に制御された測定空間に収納されているのが好ましい。
【発明の効果】
【0020】
以上説明したように、本発明によれば、試料上で結露させた上で、露の形状及び分布を精度よく測定することができる。
【図面の簡単な説明】
【0021】
【図1】本発明の実施形態に係る測定装置の概略構成を示す図である。
【図2】前記測定装置の変位測定部及びZ軸変位機構の構成を説明するための概略図である。
【図3】前記測定装置のX軸及びY軸変位機構の構成を説明するための概略図である。
【図4】前記測定装置の冷却部の構成を説明するための概略図である。
【図5】前記測定装置の制御系統の一部を示すブロック図である。
【図6】プローブと露又は試料との接触又は近接の検出を説明するための特性図である。
【図7】本発明のその他の実施形態に係る測定装置の概略構成を示す図である。
【図8】本発明のその他の実施形態による冷却部の構成を説明するための概略図である。
【発明を実施するための形態】
【0022】
以下、本発明の一実施形態について、図面を参照しつつ説明する。
【0023】
図1及び図2に示すように、本実施形態に係る露形状分布測定装置(以下、単に測定装置という)10は、試料表面で結露させて、その露の形状及び分布を測定するための装置であり、装置本体12と試験制御部14と空調部42とを備えている。装置本体12は、試料Wをセットするための試料台16と、プローブ18と、プローブ18の先端部を振動させる励振部20と、直交3軸方向において試料台16に対するプローブ18の相対的位置を変えさせる変位機構22と、を備えている。
【0024】
変位機構22は、図3に示すように、試料台16を水平面内のX軸方向に移動させるためのX軸変位機構23と、試料台16を水平面内のY軸方向(X軸方向と直交する方向)に移動させるためのY軸変位機構24と、プローブ18を垂直方向に移動させるためのZ軸変位機構25とを有する。
【0025】
図2にも示すように、Z軸変位機構25は、Z軸ステージ27を基台29に固定されたスタンド30に対して垂直方向(Z軸方向)に移動させるためのものであり、粗調整機構25aと微調整機構25bとを有する。粗調整機構25aは、例えば、モータ駆動方式の駆動機構であり、Z軸ドライバ32(図5参照)によって駆動される。図略のモータを駆動させることでZ軸ステージ27をZ軸方向に移動させる。微調整機構25bは、PZT系圧電セラミクスを用いた圧電アクチュエータを有しており、この圧電アクチュエータは、例えば高電圧増幅器によって構成されるZ軸ドライバ32によって駆動される。この圧電アクチュエータは、例えば送り幅を100nmとして駆動させることにより、nm精度で変位量を制御することができる。
【0026】
Y軸変位機構24は、Y軸ステージ36をY軸方向に移動させるための機構であり、図3に示すように、粗調整機構24aと微調整機構24bとを有する。粗調整機構24aは、例えば、モータ駆動方式の駆動機構であり、Y軸ドライバ33(図5参照)によって駆動される。図略のモータを駆動させることでY軸ステージ36をY軸方向に移動させる。微調整機構24bは、PZT系圧電セラミクスを用いた圧電アクチュエータを有している。この圧電アクチュエータは、基台29に設置されており、例えば高電圧増幅器によって構成されるY軸ドライバ33によって駆動される。圧電アクチュエータを駆動することにより、Y軸ステージ36をY軸方向に移動させることができる。この圧電アクチュエータは、例えば送り幅を100nmとして駆動させることにより、nm精度で変位量を制御することができる。
【0027】
X軸変位機構23は、X軸ステージである試料台16をX軸方向に移動させるための機構であり、粗調整機構23aと微調整機構23bとを有する。粗調整機構23aは、例えば、モータ駆動方式の駆動機構であり、X軸ドライバ34(図5参照)によって駆動される。図略のモータを駆動させることで試料台16をY軸ステージ36に対してX軸方向に移動させる。微調整機構23bは、PZT系圧電セラミクスを用いた圧電アクチュエータを有している。この圧電アクチュエータは、Y軸ステージ36に設置されており、例えば高電圧増幅器によって構成されるX軸ドライバ34によって駆動される。圧電アクチュエータを駆動することにより、Y軸ステージ36上で試料台16をX軸方向に移動させることができる。これにより、試料台16は、基台29に対してX軸方向及びY軸方向の任意の位置に移動可能である。この圧電アクチュエータは、例えば送り幅を100nmとして駆動させることにより、nm精度で変位量を制御することができる。
【0028】
図1に戻る。
【0029】
試料台16には、試料Wを収納可能な測定空間Sを有する測定槽40が設けられている。測定槽40は試料台16に設置されているため、試料台16とともに水平方向に移動する。測定槽40の上面には、プローブ18を挿通させる開口40aが設けられている。そして、プローブ18の下端部は測定空間S内に配置されている。なお、図示省略しているが、測定槽40には、試料Wの出し入れができるように開閉扉が設けられている。
【0030】
測定空間S内には、前記空調部42によって所定の温湿度に調整された空気が流通する。空調部42は、空気の温湿度を所定の温湿度に調整するとともに、この調整された空気を給気通路41を通して測定空間S内に導入する。測定空間S内の空気は排気通路43を通して空調部42に戻されるため、測定時には測定空間S内の空気が常時流通する。
【0031】
測定装置10には、測定空間S内の温度(試料雰囲気の温度)を検出する周囲温度検出部としての周囲温度センサ44と、測定空間S内の湿度(試料雰囲気の湿度)を検出する周囲湿度検出部としての周囲湿度センサ45と、が設けられ、これらセンサ44,45の検出信号は、試験制御部14に入力される。図5に示すように、試験制御部14には、温湿度測定部47が設けられており、温湿度測定部47は、センサ44,45からの検出信号に応じて、測定空間S内の温度及び湿度を導出する。試験制御部14の演算装置59には、環境制御部46が一機能として含まれており、環境制御部46は、温湿度測定部47によって導出された温度及び湿度に基づいて、空調部42を制御する。つまり、環境制御部46は、センサ44,45からの検出結果に基づいて、測定空間S内の温度が所定の温度及び湿度になるように空調部42を制御する。なお、空調部42は、除湿空気又は加熱空気を供給可能であり、試料Wを乾燥させて再測定の準備を行うことも可能である。
【0032】
試料Wは、冷却機構48によって試料表面が露点以下になるように冷却される。冷却機構48は、試料表面を冷却する冷却部50と、試料表面の温度を検出する試料温度検出部としての試料温度センサ51と、試料表面の温度が所定の温度になるように冷却部50を制御する試料温度制御部52と、を有する。本実施形態では、冷却部50は、ペルチエ素子の吸熱部によって構成されており、図4に示すように、試料台16の上に載置されている。試料温度制御部52は、試験制御部14の演算装置59の一機能として含まれているものであり、試料温度センサ51の検出結果に基づいてペルチエ素子へ印加する電圧を制御する。なお、冷却機構48は、ペルチエ素子を有する構成に限られるものではない。例えば、熱媒体を導入可能に構成された冷却板を用い、この冷却板内に熱媒体を導入して冷却板の温度を調整する機構等を例示することができる。
【0033】
前記プローブ18は、下方に向かって延びるように上端部で前記Z軸ステージ27に固定されている。プローブ18の下端部(先端部)は、先鋭化されていて、容易に撓む。
【0034】
前記励振部20は、水晶振動子55を有する。水晶振動子55の形状は限定されるものではないが、本実施形態では、例えば音叉のように2つの対称な突起を有する音叉型の水晶振動子55として構成されている。水晶振動子55は、振動子固定部57を介してZ軸ステージ27に固定されている。そして、水晶振動子55の突起にプローブ18が接触している。
【0035】
水晶振動子55の2つの突起間の間隔は、例えば約0.2mmであり、プローブ18の水晶振動子55に接触する部分での直径は、例えば125μmである。プローブ18としては、例えば光ファイバから作ることができ、例えば直径が約10μmのコアと、直径が約125μmのクラッドからなる。光ファイバを溶融延伸することにより、先端部が尖鋭化され、先端部の直径は例えば100nm以下にテーパ状に加工されている。
【0036】
水晶振動子55は2つの電極55a,55bを備えており、一方の電極55aは、試験制御部14に含まれる電流検出器58(図5参照)に接続され、他方の電極55bは試験制御部14に含まれる信号発生器56(図5参照)に接続されている。電極55a,55b間に交流信号、例えば正弦波信号を印加すると、水晶振動子55の有する圧電効果によって水晶振動子55の突起が振動する。水晶振動子55を振動させると、これに接触しているプローブ18もあわせて振動させることができる。特に水晶振動子55の共振周波数又はその近傍の周波数をもつ信号を印加したときに振幅は大きくなる。
【0037】
図5に示すように、電流検出器58には、信号発生器56の出力信号の一部を分岐して得られる参照信号が接続される。電流検出器58から出力された信号は、後述の演算装置59に入力される。
【0038】
前記試験制御部14は、露の形状及び分布を演算によって導出可能なものであり、図5に示すように、前記X軸ドライバ34と、前記Y軸ドライバ33と、前記Z軸ドライバ32と、前記信号発生器56と、前記電流検出器58と、前記温湿度測定部47と、変位測定部61と、演算装置59と、入力装置70と、出力装置71とを備えている。
【0039】
変位測定部61は、試料台16に対するプローブ18の相対変位量を測定するものである。変位測定部61は、直交3軸方向における試料台16に対するプローブ18の相対変位量を測定するためのものであり、Y軸ステージ36に対する試料台16のX軸方向の変位量を測定するX軸方向測定部61aと、基台29に対するY軸ステージ36のY軸方向の変位量を測定するY軸方向測定部61bと、基台29に対するプローブ18のZ軸方向変位を測定するZ軸方向測定部61cと、を有する。
【0040】
X軸方向測定部61aは、超精密測長器によって構成されており、図2に示すように、Y軸ステージ36に固定された固定側部61eと、試料台16に固定された遊走側部61fとからなり、X軸方向におけるこれらの相対変位量からX軸方向の移動量を測定する。Y軸方向測定部61b及びZ軸方向測定部61cも同様に超精密測長器によって構成されている。すなわち、Y軸方向測定部61bは、基台29に固定された固定側部61gと、Y軸ステージ36に固定された遊走側部61hとを有する。またZ軸方向測定部61cは、スタンド30に固定された固定側部61iと、Z軸ステージ27に固定された遊走側部61jとを有する。
【0041】
入力装置70には、キーボード、外部メモリ等が含まれ、入力装置70は、演算装置59に対する指令を入力可能に構成されている。出力装置71には、表示部、プリンタ等が含まれ、出力装置71は、演算装置59による演算結果等を出力可能に構成されている。
【0042】
演算装置59は、CPU、ROM、RAM等からなり、ROMに格納されたプログラムを実行することにより所定の機能を発揮する。演算装置59の機能には、少なくとも、前記環境制御部46と、前記試料温度制御部52と、相対変位量導出部63と、判定部60と、測定部62と、解析部66と、プローブ制御部67と、が含まれる。
【0043】
相対変位量導出部63は、変位測定部61の測定結果を用い、試料台16を基準とするプローブ18の相対変位量を導出する。プローブ制御部67は、相対変位量導出部63によって導出されたプローブ18の相対変位量に基づいて、X軸、Y軸、Z軸ドライバ34,33,32に信号を出力する。これにより、プローブ18は、目標位置に正確に制御される。
【0044】
判定部60は、プローブ18の先端部の振動に応じてプローブ18の先端部と露又は試料Wとの接触又は近接を判定する。測定部62は、判定部60によるプローブ18と露又は試料Wとの接触又は近接の有無及び相対変位量導出部63によって測定された相対変位量に基づいて、試料表面上の露の形状及び分布を測定する。なお、上記の「接触」とは、プローブ18の先端部が実際に露等に接触した場合をいい、「近接」とは、実際には露等に接触していないものの、プローブ18の先端部が、露等との相互作用によってプローブ18の振幅が変化する程度に露等と所定範囲内まで近接した場合をいう。
【0045】
判定部60は、プローブ18の先端部の振幅の変化からプローブ18と露又は試料Wとの接触又は近接を判定する。その原理を図6を参照しながら説明する。プローブ18の先端部が被測定試料Wの表面から十分はなれているときには、プローブ18が振動するときの振幅は一定値を保つ(図6中のA領域)。一方、プローブ18の先端部が露の表面に接触又は所定範囲内に近接するとプローブ18の振幅は減衰する(図6中のB領域)。これは、プローブ18の先端部が露の表面からせん断力(シア・フォース)を受けるためと解される。この振幅の減衰は非常に急峻であるため、この振幅変化の検出により、プローブ18先端部と露の上面との接触又は近接を検出することができる。さらに、プローブ18の先端部が試料Wの表面に接触又は近接するとプローブ18の振動の振幅はさらに減衰する(図6のD領域)。この振幅減衰まではプローブ18の振幅は一定値を保つ(図6中のC領域)。このD領域での振幅減衰も非常に急峻であるので、この振幅変化の検出により、プローブ18先端部と試料表面との接触又は近接を検出できる。
【0046】
測定部62は、B領域からD領域までのプローブ18の変位量から露の高さを導出する。また測定部62は、X軸方向及びY軸方向における複数個所で露の高さ(又は上面位置)を測定し、これらを連続点として測定結果を統計処理することにより露の形状を導出するとともに、露の分布を測定する。露の形状を導出するには、例えば、接触が検知されたときの座標データ(x、y、z)を順次記憶していき、これら座標データから回帰曲面を演算して粒径を導出することが可能である。なお、露の形状は、3次元形状として特定してもよく、あるいは水平面内の2次元形状として特定してもよい。2次元形状として特定する場合には、粒径で露の形状を規定することができる。粒径は回帰計算によって算出してもよく、あるいは所定方向の露の幅を複数個所測定しておいて、そのうちの最大幅を採用してもよい。
【0047】
なお、試験制御部14が指示するZ軸変位量データとZ軸変位機構25で変位する実際の変位量との関係を予め校正しておくことによって、試験制御部14が指示するZ軸変位量データにより、実際のZ軸方向の変位量を取得することができる。X軸方向、Y軸方向についても同様である。
【0048】
解析部66には、測定部62によって測定された露の形状を試料表面の傾きに応じて補正する補正処理部66aと、画像処理部66bとが含まれている。補正処理部66aは、試料表面が基準平面に対して傾斜している場合に、その傾斜角度に応じて露の幅(又は粒径)を補正する処理を行う。基準平面は、Z軸方向に垂直な方向の平面であり、予め記憶されているものである。一方、試料表面は、プローブ18の先端部と試料表面との接触位置(Z軸方向)を複数取得し、それを平均化したものである。補正処理部66aは、基準平面と試料表面とのなす角度θを演算し、測定部62が導出した露の幅(又は粒径)を補正する。
【0049】
画像処理部66bは、出力装置71の表示部に露の画像を表示するための処理を行う制御部である。表示部には、XY平面内での露の形状の二次元表示をするとともに、Z軸方向の高さを色分けする等の処理を行うことができる。
【0050】
ここで、本実施形態による測定装置10による測定方法について説明する。
【0051】
まず、試料台16に試料Wをセットし、測定槽40内を所定の温度及び湿度に調整する。その後、ペルチエ素子を駆動して試料Wを冷却する。このとき試料表面が露点以下になるように冷却を行う(冷却ステップ)。これに伴い、試料表面では結露が生ずる。
【0052】
次に、試料表面上の露の形状を測定する(測定ステップ)。具体的には、X軸変位機構23及びY軸変位機構24を駆動することにより試料台16を所定の位置にセットし、水晶振動子55によってプローブ18の先端部を振動させながらZ軸変位機構25によりプローブ18を降下させる。これにより、試料Wがセットされた試料台16に対するプローブ18のZ軸方向の位置が変わる。そして、プローブ18の先端部が露の表面又は試料表面と接触又は所定範囲内に近接すると、前述したようにプローブ18の振幅が急激に変化するので、この振幅変化が発生するまでのプローブ18の移動量に基づいて、露の高さを導出し、これをX軸方向及びY軸方向の複数個所で繰返し測定することにより、露の形状及び分布を測定する。
【0053】
以上説明したように、本実施形態では、冷却機構48によって試料表面を露点以下に冷却することにより試料表面で結露させることができる。そして、プローブ18の先端部を振動させながら、試料台16に対するプローブ18の相対的な位置を変え、プローブ18の先端部の振動に応じてプローブ18先端部と露又は試料Wとの接触又は近接を判定し、その判定結果に基づいて露の形状及び分布を測定する。つまり、プローブ18の先端部が露又は試料Wに接触又は近接するとせん断力を受けるので、プローブ18の振動の振幅が減衰する。測定部62がこの減衰を検出するとともに、そのときのプローブ18の相対変位量を検出することにより露の形状及び分布を精度よく測定することができる。また、微小な露形状及び分布を測定することもできるので、濡れ性等の試料Wの物性測定への利用が可能となる。また試料Wの表面検査に利用することも可能となる。
【0054】
しかも本実施形態では、直交3軸方向における相対変位量をそれぞれ測定するので、試料台16に対するプローブ18の3軸方向相対位置をそれぞれ正確に算出することができ、この算出データを利用して露の形状及び分布を測定することができる。
【0055】
また本実施形態では、プローブ18先端部と露又は試料Wとの接触又は近接により生ずる水晶振動子55の共振特性の変化を利用するので、プローブ18と露又は試料Wとの接触又は近接を正確に検出することができる。
【0056】
また本実施形態では、冷却機構48によって試料表面を所定の温度に制御できるので、試料表面での結露量を正確に制御することができる。また試料表面での結露を再現性よく発生させることができるので、露形状及び分布の測定結果の信頼性を向上することができる。
【0057】
また本実施形態では、測定槽40を設けて試料W周囲の温度及び湿度を調整するようにしたので、結露を再現性よく発生させることができる。このため露形状及び分布の測定結果の信頼性を向上することができる。
【0058】
なお、本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、前記実施形態では試料台16がY軸ステージ36上に設置される構成について説明したが、これに代え、試料台16が基台29に固定されるとともに、プローブ18を支持するスタンド30がX軸方向及びY軸方向に可動するように設けられる構成としてもよい。この構成では、プローブ18が、X軸方向、Y軸方向及びZ軸方向に移動可能となる。
【0059】
また、前記実施形態では、プローブ18がZ軸方向に移動可能な構成としたが、これに代え、プローブ18がスタンド30に対して固定されるとともに、試料台16がZ軸ステージにも支持されることでZ軸方向に移動可能な構成としてもよい。この構成では、試料台16が、X軸方向、Y軸方向及びZ軸方向に移動可能となる。
【0060】
また、前記実施形態では、スタンド30、Z軸ステージ27、水晶振動子55が測定槽40の外側に配設される構成としたが、これに代え、図7に示すように、測定槽40内にスタンド30、Z軸ステージ27、水晶振動子55、プローブ18が収納される構成としてもよい。図1の構成では、測定空間Sの容積を小さくすることができるので、測定空間S内の温度湿度の変化を早くすることができる。一方、図7の構成では、測定槽40にプローブ18を挿通させる開口40aを設ける必要がなくなるので、測定槽40内を気密状に構成し易くなる。
【0061】
また、前記実施形態では、冷却部50がペルチエ素子の吸熱部によって構成される例を説明したが、これに限られるものではない。例えば、図8に示すように、冷却部50が冷却空気を試料Wに接触させるように冷却空気を供給する冷風供給部である冷却空気供給機構78を有する構成としてもよい。この態様では、冷却空気が流通する冷風路79が試料台16に設けられ、この冷風路69の上面に試料保持部80が設けられる構成となる。この試料保持部80は、例えばパンチ孔が設けられていて、試料Wが冷却空気によって直接冷却されるようにしてもよい。
【0062】
また、前記実施形態では、測定槽40を設ける構成について説明したが、測定槽40、空調部42、周囲温度センサ44、周囲湿度センサ45、温湿度測定部47及び環境制御部46が省略された構成としてもよい。
【0063】
また、前記実施形態では、測定部62が、B領域までのプローブ18の変位量に基づいて露の上面位置を導出するとともにD領域までのプローブ18の変位量に基づいて露の下面を導出する構成としたが、これに限られるものではない。例えば、試料表面の位置を予め記憶しておき、B領域にあるプローブ18の位置と、記憶された試料表面の位置との差分に基づいて、露の高さを導出するようにしてもよい。こうすれば、プローブ18の先端部がC領域に入ったことが検知された時点でプローブ18を戻す制御を行うことが可能となる。そして1つの露に対してX軸方向及びY軸方向の複数位置で繰り返し測定を行うことにより、露の形状を導出することができる。なお、この場合には、露の下面(試料表面)の傾斜角度に応じた補正処理は、省略されることになる。
【符号の説明】
【0064】
16 試料台
18 プローブ
20 励振部
22 変位機構
23 X軸変位機構
24 Y軸変位機構
25 Z軸変位機構
29 基台
40 測定槽
42 空調部
44 周囲温度センサ
45 周囲湿度センサ
46 環境制御部
48 冷却機構
50 冷却部
51 試料温度センサ
52 試料温度制御部
55 水晶振動子
56 信号発生器
60 判定部
61 変位測定部
61a X軸方向測定部
61b Y軸方向測定部
61c Z軸方向測定部
62 測定部
63 相対変位量導出部

【特許請求の範囲】
【請求項1】
試料表面上の露の形状及び分布を測定する装置であって、
試料がセットされる試料台と、
プローブと、
前記プローブの先端部を振動させる励振部と、
前記プローブの先端部の振動に応じて前記プローブの先端部と前記露又は前記試料との接触又は近接を判定する判定部と、
前記試料台に対する前記プローブの相対的な位置を変えさせる変位機構と、
前記試料台に対する前記プローブの相対変位量を導出する相対変位量導出部と、
試料表面を露点以下に冷却可能な冷却機構と、
前記判定部による前記接触又は近接の有無及び前記相対変位量導出部によって導出された相対変位量に基づいて、前記冷却機構によって冷却された試料表面に発生した露の形状及び分布を測定する測定部と、が含まれている露形状分布測定装置。
【請求項2】
前記変位機構は、前記試料台に対する前記プローブの相対的な位置を直交3軸方向にそれぞれ変えさせることができ、
前記直交3軸方向におけるそれぞれの相対変位量を測定可能である変位測定部が設けられている請求項1に記載の露形状分布測定装置。
【請求項3】
前記励振部は、前記プローブに接触するように配設される水晶振動子と、前記水晶振動子の共振周波数の信号を発生させる信号発生部と、を有する請求項1又は2に記載の露形状分布測定装置。
【請求項4】
前記冷却機構は、前記試料表面を冷却する冷却部と、前記試料表面の温度を検出する試料温度検出部と、前記試料表面の温度が所定の温度になるように前記冷却部を制御する試料温度制御部と、を有する請求項1から3の何れか1項に記載の露形状分布測定装置。
【請求項5】
前記冷却部は、ペルチエ素子の吸熱部によって構成されている請求項4に記載の露形状分布測定装置。
【請求項6】
前記冷却部は、冷却空気を前記試料に接触させるように冷却空気を供給する冷風供給部を有する請求項4に記載の露形状分布測定装置。
【請求項7】
前記試料を収納可能な測定空間を有する測定槽と、
前記測定空間内に所定の温湿度の空気を流通させる空調部と、
前記測定空間内の温度を検出する周囲温度検出部と、
前記測定空間内の湿度を検出する周囲湿度検出部と、
前記測定空間内の温度が所定の温度及び湿度になるように制御する環境制御部と、を有する請求項1から6の何れか1項に記載の露形状分布測定装置。
【請求項8】
試料表面上の露の形状及び分布を測定する方法であって、
試料表面を露点以下に冷却する冷却ステップと、
プローブの先端部を振動させながら、試料がセットされた試料台に対する前記プローブの相対的な位置を変え、前記先端部の振動に応じて前記先端部と前記露又は前記試料との接触又は近接を判定して、前記冷却ステップで冷却された試料表面に発生した露の形状及び分布を測定する測定ステップと、が含まれている露形状分布測定方法。
【請求項9】
前記冷却ステップ及び前記測定ステップにおいて、前記試料は、所定温度に制御された測定空間に収納されている請求項8に記載の露形状分布測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−107493(P2010−107493A)
【公開日】平成22年5月13日(2010.5.13)
【国際特許分類】
【出願番号】特願2009−84467(P2009−84467)
【出願日】平成21年3月31日(2009.3.31)
【出願人】(000108797)エスペック株式会社 (282)
【出願人】(504132881)国立大学法人東京農工大学 (595)
【Fターム(参考)】