説明

非接触給電装置

【課題】漏れ磁束の発生を抑制し、給電効率を向上することができる非接触給電装置を提供する。
【解決手段】非接触給電システム10では、各コイル40,50の巻線42,52は、各コア41,51の厚み方向両方の面に配置されており、両方コア41,51の厚み方向片側の面同士が、向かい合うように配置されている。また対向面41aに配置されている送電用巻線42のうち一部分42aの送電用巻線42は重畳されて巻回されており、重畳された最上層の送電用巻線42の一部分42aが送電用巻線42の他の部分42bよりも受電コイル50側に位置している。これによって漏れ磁束の一部を、送電コイル40と受電コイル50とで形成される磁束経路と錯交させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、外部の電源から車両の電池に非接触で電力を給電する非接触給電装置に関する。
【背景技術】
【0002】
電気自動車およびハイブリッド車などの電動車両には、走行用の電力を外部電源から充電可能とする電池が装備されている。充電用の電力を給電する方法としては、給電側の電源口と車両の充電口とをケーブルで接続するプラグイン式の給電装置、およびケーブルを用いない非接触式の給電装置が知られている。
【0003】
特許文献1に記載の非接触給電装置に関する技術では、外部に設置された1次側コイルと、車体下部に設置された2次側コイル間で電磁場を介して、1次側コイル(以下、「設備側コイル」ということがある)から2次側コイル(以下、「車体側コイル」ということがある)へ送電が行われる。これによって車体側コイルは、電磁結合により電流が流れることによって、対向する設備側コイルからの給電を受ける。
【0004】
特許文献1に記載の技術では、設備側コイルおよび車体側コイルは、コアの周りにコイルを巻回する構造をしている。このコイル構成では、コアの表面に渦巻き状にコイルを形成している構成に比べて、同じ体格でコイル幅を大きくすることができる。コイル幅を大きくすると、設備側コイルと車体側コイルとの磁気結合が強くなり、位置ずれに対して強くなる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−172084号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
前述の特許文献1に記載の技術では、設置側コイルから流れる磁束のうち、設置側コイルと車体側コイルとの間のエアギャップにて車体側コイルに鎖交せずに、直接、設置側コイルに戻る漏れ磁束経路が多く存在する。このような漏れ磁束経路が多く存在するので、磁束を有効利用できていないという問題がある。
【0007】
そこで、本発明は前述の問題点を鑑みてなされたものであり、漏れ磁束の発生を抑制し、給電効率を向上することができる非接触給電装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は前述の目的を達成するために以下の技術的手段を採用する。
【0009】
請求項1に記載の発明では、1次側コイル(40)から2次側コイル(50)へ非接触で送電を行う非接触給電装置(10)であって、
板状の1次側コア(41)、および1次側コアに巻回される巻線(42)を含む1次側コイルと、
板状の2次側コア(51)、および2次側コアに巻回される巻線(52)を含む2次側コイルと、を含み、
各コイルの巻線の少なくとも一部は、各コアの厚み方向両方の面に配置されており、
両方のコアは、厚み方向の片側の面同士が向かい合うように配置され、
1次側コアにおける2次側コア側の対向面(41a)に配置されている巻線のうち、巻線の一部分(42a)が他の部分(42b)よりも2次側コイル側に位置していることを特徴とする非接触給電装置である。
【0010】
請求項1に記載の発明に従えば、各コイルの巻線の少なくとも一部は、各コアの厚み方向両方の面に配置されており、両方のコアは厚み方向の片側の面同士が、向かい合うように配置されている。巻線が厚み方向の面に位置しているので、コアの表面に渦巻き状にコイルを形成している構成に比べて、同じ体格でコイル幅を大きくすることができる。コイル幅を大きくすると、1次側コイルと2次側コイルとの磁気結合が強くなるので、1次側コイルと2次側コイルとの位置が多少ずれた場合であっても、送電を行うことができる。
【0011】
また1次側コアの対向面に配置されている巻線のうち、巻線の一部分が他の部分よりも2次側コイル側に位置している。巻線の一部分が2次側コイル側に位置しているので、1次側コイルに電流を流すと、対向面に位置する巻線を囲い2次側コイルに向かって凸となるような磁束経路を作ることができる。凸となった磁束経路は、2次側コイルとの距離が他の部分よりも小さくなり、さらに凸となった磁束経路の一部は2次側コイルに向かって傾斜するので、一部の磁束が送電するための磁束経路に至る。したがって漏れ磁束の一部を、1次側コイルと2次側コイルとで形成される磁束経路と錯交させることができる。これによって漏れ磁束を少なくすることができる。したがって1次側コイルで発生する磁束を送電のために、より多く用いることができる。このように本発明では、漏れ磁束の発生を抑制し、給電効率を向上することができる非接触給電装置を実現することができる。
【0012】
また請求項2に記載の発明では、対向面に配置されている巻線の一部分は重畳されて巻回されており、重畳された最上層の巻線の一部分が他の部分よりも2次側コイル側に位置していることを特徴とする。
【0013】
請求項2に記載の発明に従えば、対向面に配置されている巻線の一部分は重畳されて巻回されている。そして重畳された最上層の一部分が他の部分よりも2次側コイル側に位置している。したがって前述のように、1次側コイルに、2次側コイルに向かって凸となるような磁束経路を作ることができる。これによって前述と同様の漏れ磁束を低減する効果を達成することができる。
【0014】
さらに請求項3に記載の発明では、対向面は、2次側コアに向かって凸となるように湾曲してなることを特徴とする。
【0015】
請求項3に記載の発明に従えば、対向面は、2次側コアに向かって凸となるように湾曲してなる。このような対向面に巻線を巻回すると、凸状に巻線を配列することができる。これによって1次側コイルに、2次側コイルに向かって凸となるような磁束経路を作ることができる。したがって前述と同様の漏れ磁束を低減する効果を達成することができる。
【0016】
さらに請求項4に記載の発明では、対向面は、2次側コアに向かって凸となる凸部(80)を有し、
凸部の先端に巻線が巻回されており、
対向面に配置されている巻線のうち、凸部の先端に配置されている巻線の一部分が他の部分よりも2次側コイル側に位置していることを特徴とする。
【0017】
請求項4に記載の発明に従えば、対向面に配置されている巻線のうち、対向面が有する凸部の先端に配置されている巻線の一部分が、他の部分よりも2次側コイル側に位置している。凸部の先端に巻線が巻回されるので、1次側コイルに、2次側コイルに向かって凸となるような磁束経路を作ることができる。これによって前述と同様の漏れ磁束を低減する効果を達成することができる。
【0018】
さらに請求項5に記載の発明では、非金属からなり、対向面の一部に設けられ、2次側コアに向かって延びるスペーサ(70)をさらに含み、
スペーサの先端に巻線が巻回されており、
対向面に配置されている巻線のうち、スペーサの先端に配置されている巻線の一部分が他の部分よりも2次側コイル側に位置していることを特徴とする。
【0019】
請求項5に記載の発明に従えば、対向面に配置されている巻線のうち、対向面に設けられるスペーサの先端に配置されている巻線の一部分が、他の部分よりも2次側コイル側に位置している。スペーサの先端に巻線が巻回されるので、1次側コイルに、2次側コイルに向かって凸となるような磁束経路を作ることができる。これによって前述と同様の漏れ磁束を低減する効果を達成することができる。また非金属からなるスペーサの内部は、磁束経路が形成されないので、スペーサの内部に漏れ磁束経路が形成されることを防止することができる。
【0020】
さらに請求項6に記載の発明では、対向面に配置されている巻線は、対向面において巻線が延びる方向に交差する方向であって、対向面に沿うような方向に配列されており、
2次側コイル側に位置する巻線の一部分は、1次側コアにおいて配列された方向の中央に位置していることを特徴とする。
【0021】
請求項6に記載の発明に従えば、対向面に配置されている巻線は、対向面において巻線が延びる方向に交差する方向であって、対向面に沿うような方向に配列されている。このように配列することによって、同じ巻線長さでコイル幅を大きくすることができる。したがって1次側コイルと2次側コイルとの磁気結合を強くすることができ、互いの位置が多少ずれた場合であっても、送電することができる。
【0022】
また2次側コイル側に位置する巻線の一部分は、1次側コアにおいて配列方向の中央に位置している。これによって中央を凸とする磁束経路を作ることができる。中央を凸とすることによって、2次側コイルの両方の端部に凸の頂点を近づけることができる。したがって漏れ磁束のより多くを1次側コイルと2次側コイルとで形成される磁束経路と錯交させることができる。これによって漏れ磁束をさらに少なくすることができる。
【0023】
さらに請求項7に記載の発明では、1次側コアにおける幅方向の両端部には、2次側コアに向かって凸となる1次側突出部(43)が形成されており、1次側突出部における先端を除く部分に巻線が巻回されて、1次側コイルの一部が構成されており、
2次側コアにおける幅方向の両端部には、1次側コアに向かって凸となる2次側突出部(53)が形成されており、2次側突出部における先端を除く部分に2次側突出部に巻線が巻回されて、2次側コイルが構成されており、
1次側突出部と2次側突出部とは、対向するように配置され、
対向面に配置されている巻線の一部分は重畳されて巻回されており、重畳された最上層の巻線の一部分が他の部分よりも2次側コイル側に位置していることを特徴とする。
【0024】
請求項7に記載の発明に従えば、1次側コアおよび2次側コアにおける幅方向の両端部には、対向するコアに向かって凸となる1次側突出部および2次側突出部がそれぞれ形成されており、1次側突出部および2次側突出部に巻線が巻回されて、1次側コイルおよび2次側コイルの一部が構成されている。したがってたとえば、1次側コアおよび2次側コアの断面形状がU字状であり、その両端部が1次側突出部および2次側突出部に対応する。また各突出部における先端部分に巻線が巻回されるので、対向する両端部が、磁束経路となる。また対向面に配置されている巻線の一部分は重畳されて巻回されている。そして重畳された最上層の巻線の一部分が他の部分よりも2次側コイル側に位置している。したがって前述のように、1次側コイルに、2次側コイルに向かって凸となるような磁束経路を作ることができる。これによって前述と同様の漏れ磁束を低減する効果を達成することができる。
【0025】
さらに請求項8に記載の発明では、1次側コアにおける対向面の反対側の面である背面(41b)に配置されている巻線は、重畳することなく配列されていることを特徴とする。
【0026】
請求項8に記載の発明に従えば、1次側コアの背面に配置されている巻線は、重畳することなく配列されている。本発明のように重畳することなく巻線を配列することで1次側コアの厚みを薄くすることができる。
【0027】
さらに請求項9に記載の発明では、1次側コアにおける対向面の反対側の面である背面に設けられ、背面に位置する巻線から外部への磁界の漏洩を抑制する抑制部(60)をさらに含むことを特徴とする。
【0028】
請求項9に記載の発明に従えば、背面に抑制部を設けることによって、外部への磁界の漏洩を防止することができる。これによって漏れ磁束を少なくすることができる。
【0029】
さらに請求項10に記載の発明では、1次側コイルから2次側コイルへ非接触で送電を行い、かつ2次側コイルから1次側コイルへ送電を行う非接触給電装置であって、
2次側コイルにおける1次側コア側の対向面に配置されている巻線のうち、巻線の一部分が他の部分よりも1次側コイル側に位置していることを特徴とする。
【0030】
請求項10に記載の発明に従えば、2次側コアの対向面に配置されている巻線のうち、巻線の一部分が他の部分よりも1次側コイル側に位置している。巻線の一部分が1次側コイル側に位置しているので、2次側コイルに電流を流すと、対向面に位置する巻線を囲い1次側コイルに向かって凸となるような磁束経路を作ることができる。したがって2次側コイルから1次側コイルへ送電する場合には、前述の1次側コイルにおける凸状の磁束経路による効果を達成することができる。これによって、双方向の送電が可能な構成であっても、送電するときの漏れ磁束を抑制した非接触給電装置を実現することができる。
【0031】
なお、前述の各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【図面の簡単な説明】
【0032】
【図1】第2実施形態の非接触給電システム10を示すブロック図である。
【図2】送電コイル40を示す平面図である。
【図3】送電コイル40および受電コイル50を示す側面図である。
【図4】送電コイル40および受電コイル50を側面から見た断面図である。
【図5】比較例のコイル40,コイル50を側面から見た断面図である。
【図6】第2実施形態のコイル40A,50Aを側面から見た断面図である。
【図7】第3実施形態のコイル40B,50Bを側面から見た断面図である。
【図8】第4実施形態のコイル40C,50Cを側面から見た断面図である。
【図9】第5実施形態のコイル40D,50Dを側面から見た断面図である。
【図10】第6実施形態のコイル40E,50Eを側面から見た断面図である。
【図11】第7実施形態のコイル40F,50Fを側面から見た断面図である。
【図12】第8実施形態のコイル40G,50Gを側面から見た断面図である。
【図13】第9実施形態のコイル40H,50Hを側面から見た断面図である。
【図14】第10実施形態のコイル40I,50Iを側面から見た断面図である。
【発明を実施するための形態】
【0033】
以下、図面を参照しながら本発明を実施するための形態を、複数の形態について説明する。各実施形態で先行する実施形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。また各実施形態にて構成の一部を説明している場合、構成の他の部分は、先行して説明している実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
【0034】
(第1実施形態)
本発明の第1実施形態に関して、図1〜図5を用いて説明する。図1は、第1実施形態の非接触給電システム10の電気的構成を示すブロック図である。図2は、送電コイル40を示す平面図である。図3は、送電コイル40および受電コイル50を示す側面図である。非接触給電システム10は、たとえば電気自動車、およびプラグインハイブリッド自動車などのメインバッテリに充電する場合に適用することができる。非接触給電システム10は、2次電池であるメインバッテリ21と車両22の外部に設置される外部電源30との間で、非接触で電磁誘導方式によって電力を伝送するシステムである。電磁誘導方式は、送電側と受電側との間で発生する誘導磁束を利用して電力を送る方式のことである。非接触給電システム10は、車両22に搭載される受電回路23および車両側パッド24、ならびに車両22の外部に設置される送電回路31および地上側パッド32を含んで構成される。また地上側パッド32および車両側パッド24を総称して、非接触給電装置という。
【0035】
先ず、送電回路31に関して説明する。送電回路31は、たとえば、家庭、集合住宅、コインパーキングなどの駐車設備、商業施設、および公共施設などに設けられる。送電回路31は、車両22にとって外部となる外部電源30、および送電コイル40に接続される。外部電源30は、たとえば系統電源である。送電回路31は、車両22の受電コイル50に給電する際に動作する。送電回路31は、外部電源30からの電力を車両22に送電する。送電回路31は、図示は省略するが、制御部、整流回路、高周波変換回路、通信回路、および共振回路を含んで構成される。
【0036】
制御部は、送電回路31の各部を制御し、送電の開始および停止などを制御する。高周波変換回路は、外部電源30から供給された電力を高周波の電力に変換し、共振回路に与える。共振回路は、効率よく電力伝送するため、高周波変換回路から与えられた電力の電圧と電流との位相を一致するように変換し、地上側パッド32に与える。また通信回路は、制御部によって制御され、受電回路23と通信し、通信した情報を制御部に与える。
【0037】
次に、地上側パッド32に関して説明する。地上側パッド32は、非接触で電力を送電する送電コイル(1次側コイル)40を内部に有し、地上に露出するように設けられる。地上側パッド32の外郭は、送電コイル40を覆い一部が地上に露出する。
【0038】
送電コイル40は、地上側パッド32に内蔵される。送電コイル40は、地上側パッド32とともに駐車設備に画成された駐車スペース内に各々設置または埋設され、所定の通電によって電磁界を発生するように構成されている。送電コイル40は、車両22側に設けられた受電コイル50との間で非接触による電力の受け渡しを行う。送電コイル40は、送電回路31に接続され、送電回路31から与えられる高周波電力を電磁誘導により受電コイル50が搭載される車両22へ電力を送電する。
【0039】
次に、車両側パッド24に関して説明する。車両側パッド24は、非接触で電力を受電する受電コイル(2次側コイル)50を内部に有し、車外に露出するように車両22に設けられる。
【0040】
受電コイル50は、車両側パッド24に内蔵される。受電コイル50は、送電コイル40との間で非接触による電力の受け渡しを行う。受電コイル50は、送電コイル40が発生した電磁界の影響により、受電コイル50にも電磁界が発生し、受電コイル50に電流が流れ、電圧が発生する。受電コイル50は、受電回路23に接続され、発生した高周波電力を受電回路23に与える。
【0041】
次に、受電回路23に関して説明する。受電回路23は、車両22において外部電源30から給電される電力を充電する際に動作する回路である。受電回路23は、車両側パッド24に内蔵される受電コイル50から給電された電力を直流電圧として出力し、メインバッテリ21を充電する。受電回路23は、図示は省略するが、共振回路、通信回路、整流回路、および昇圧回路を含んで構成される。
【0042】
共振回路は、効率よく電力伝送するため、受電コイル50から供給された電力の電圧と電流との位相を一致するように変換し整流回路に与える。整流回路は、ダイオードおよびコンデンサから構成されている。整流回路は、ダイオードにより、共振回路から供給された高周波電力を整流し、コンデンサで平滑化した後、昇圧回路に供給する。昇圧回路は、整流回路からの電力の電圧を所定電圧まで、たとえば最大まで昇圧し、車両22に搭載されるメインバッテリ21に供給する。また通信回路は、車両制御装置25によって制御され、送電回路31と通信し、通信した情報を車両制御装置25に与える。
【0043】
次に、車両22に搭載されるその他の構成に関して説明する。車両22には、メインバッテリ21、インバータ26、モータジェネレータ(MG)27、DC/DCコンバータ28、補機29a、補機バッテリ29b、および車両制御装置25を含んで構成される。車両22は、メインバッテリ21の電力を基にして、モータジェネレータ27などの負荷が駆動されるようになっている。また補機バッテリ29bの電力を基にして、車両制御装置25、空調ユニット(図示せず)および電動パワーステアリングユニット(図示せず)などの補機29aが駆動されるようになっている。
【0044】
メインバッテリ21は、高圧のバッテリであり、その端子電圧が高圧となるように設定されている。メインバッテリ21は、充放電可能に構成された電池であり、たとえばニッケル水素電池、リチウムイオン電池などを使用することができる。
【0045】
補機バッテリ29bは、端子電圧がメインバッテリ21よりも低い低電圧バッテリである。補機バッテリ29bは、メインバッテリ21を電力供給源としており、メインバッテリ21の電圧がDC/DCコンバータ28によって降下されて、降下された出力電圧が引加されるようになっている。
【0046】
インバータ26は、メインバッテリ21とモータジェネレータ27との間において電力形態の変換および電力量を調整する電力変換部である。インバータ26は、メインバッテリ21の直流電力を交流電力に変換(DC/AC変換)するとともに、モータジェネレータ27に必要とされる電力量を調整する。また、インバータ26は、減速時において車両22の駆動輪からの駆動力によって、モータジェネレータ27が回転駆動されることで交流の回生電力が得られたときには、交流の回生電力を直流電力に変換(AC/DC変換)してメインバッテリ21に供給し充電する。このようにインバータ26は、双方向の電力変換を可能としている。
【0047】
モータジェネレータ27は、電動機および発電機の両機能を有する3相交流の回転電機である。モータジェネレータ27の回転軸の一方の端部は、内燃機関(図示せず)の出力軸に直結されており、他方の端部は、変速装置(図示せず)を介して駆動輪に機械的に連結されている。モータジェネレータ27は、インバータ26によって電力変換および電力調整された電量が供給されると、回転数および駆動トルクが制御されて、駆動輪に必要とされる駆動力を与える電動機として機能する。また、モータジェネレータ27は、減速時において駆動輪からの駆動力によって回転駆動されると、交流の回生電力を発生する発電機として機能する。モータジェネレータ27の作動は、車両制御装置25によって制御される。
【0048】
車両制御装置25は、受電回路23を介して送電回路31と通信して、送電回路31の動作を把握しつつ、受電回路23の作動を制御する。車両制御装置25は、補機バッテリ29bを直接の電源とする。
【0049】
次に、送電コイル40および受電コイル50の構成に関して説明する。先ず、受電コイル50に関して説明する。受電コイル50は、板状の受電コア(2次側コア)51および受電コア51に巻回される受電用巻線52を含んで構成される。受電コア51は、本実施形態では平板状に形成される。受電コア51は、透磁率が高い材料からなり、たとえばフェライトで成形される。受電用巻線52は、電気抵抗が少ない材料からなり、たとえばリッツ線が用いられる。
【0050】
受電用巻線52は、受電コア51の厚み方向両方の面に配置されている。換言すると、巻回される受電用巻線52の巻回軸線は、受電コア51における厚み方向に略直交(略直交は直交も含む)する方向に延びる。また受電コア51の厚み方向の両面に配置されている複数の受電用巻線52は、受電用巻線52が延びる方向(図3の紙面の厚み方向)に交差する方向であって、配置されている面に沿うような方向(図3の紙面の左右方向)に配列されている。また受電用巻線52は、図3に示すように、1列で配列されている。受電用巻線52の端部は、受電回路23に接続される。
【0051】
次に、送電コイル40に関して説明する。送電コイル40は、板状の送電コア(1次側コア)41および送電コア41に巻回される送電用巻線42を含んで構成される。送電コア41は、本実施形態では平板状に形成される。送電コア41は、透磁率が高い材料からなり、たとえばフェライトで成形される。送電用巻線42は、電気抵抗が少ない材料からなり、たとえばリッツ線が用いられる。
【0052】
送電用巻線42は、送電コア41の厚み方向両方の面に配置されている。換言すると、巻回される送電用巻線42の巻回軸線は、送電コア41における厚み方向に略直交(略直交は直交も含む)する方向に延びる。送電用巻線42は、送電回路31に接続される。
【0053】
受電コア51と送電コア41とは、送電するときには、図3に示すように、厚み方向一方の面である厚み方向片側の面同士が向かい合うように配置される。換言すると、送電するときには、受電コア51と送電コア41とは厚み方向の一方の面が対向するように配置される。
【0054】
送電コア41における厚み方向両面のうち、受電コア51に向いている面を対向面41aと称し、他の面を背面41bと称する。したがって対向面41aは図3において上方に位置する面であり、背面41bは図3の下方に位置する面である。図3に示すように、対向面41aに配置されている送電用巻線42のうち一部分42aの送電用巻線42は重畳されて巻回されており、重畳された最上層の送電用巻線42の一部分42aが送電用巻線42の他の部分42bよりも受電コイル50側に位置している。本実施形態では、部分的に3重に重畳されている。換言すると、図2に示すように、送電用巻線42の一部分42aを、幅方向ではなく厚み方向に巻回している。この受電コイル50側に位置する送電用巻線42の一部分42aは、送電コア41の幅方向(図3の紙面の左右方向)の中央に位置する。ここで中央は、幅方向の中心を含み、ある程度の幅がある部分である。
【0055】
また送電コア41の背面41bに配置されている送電用巻線42の一部分も重畳されて巻回されている。本実施形態では、背面41bでは送電用巻線42が部分的に2重に重畳されている。また重畳される送電用巻線42の一部分42a以外の送電用巻線42は、巻線が延びる方向(図3の紙面の厚み方向)に交差する方向であって、配置されている面に沿うような方向(図3の紙面の左右方向)に配列されている。重畳されていない送電用巻線42は、1列で配列されている。
【0056】
図4は、送電コイル40および受電コイル50を側面から見た断面図である。図5は、比較例の送電コイル40および受電コイル50を側面から見た断面図である。比較例の送電コイル40および受電コイル50の構成は、送電コイル40の重畳される巻線部分が異なり、残余の構成は等しい。また図4および図5では、磁束経路を破線を用いて示す。
【0057】
図4に示すように、対向面41aに配置されている送電用巻線42のうち、一部分42aが他の部分42bよりも受電コイル50側に位置している。一部の送電用巻線42が受電コイル50側に位置しているので、送電コイル40に電流を流すと図4に示すように、対向面41aに位置する送電用巻線42を囲い受電コイル50に向かって凸となるような磁束経路を作ることができる。凸となった磁束経路は、受電コイル50との距離が他の部分よりも小さくなり、さらに凸となった磁束経路の一部は受電コイル50に向かって傾斜するので、一部の磁束が送電するための磁束経路に至る。
【0058】
これに対して図5に示す比較例では、対向面41aに配置される送電用巻線42が1列に配列されるので、送電用巻線42を囲って形成される磁束経路は平坦状である。したがって平坦状の磁束経路をとおる磁束は、漏れ磁束となり送電に寄与することができない。
【0059】
本実施形態では、比較例では用いることができなかった漏れ磁束の一部を、送電コイル40と受電コイル50とで形成される磁束経路と錯交させることができる。図4では、磁束が錯交し、磁束密度が大きくなる部分を仮想線で囲って示す。これによって本実施形態では、比較例よりも漏れ磁束を少なくすることができる。
【0060】
また重畳される送電用巻線42の高さ寸法hは、送電コア41と受電コア51との間隔tとの関係で設定される。高さ寸法hに対する間隔tの比率(間隔t/高さ寸法h)が大きすぎると、間隔が広くなり、錯交する磁束が少なくなるからである。間隔tは、高さ寸法hのたとえば9倍以下に設定されるのが好ましい。
【0061】
また送電用巻線42の幅寸法Wは、間隔tとの関係で設定される。幅寸法Wに対する間隔tの比率(間隔t/幅寸法W)が大きすぎると、間隔が広くなり、錯交する磁束が少なくなるからである。間隔tは、幅寸法Wのたとえば3倍以下に設定されるのが好ましい。
【0062】
以上説明したように本実施形態の非接触給電システム10では、各コイル40,50の巻線42,52は、各コア41,51の厚み方向両方の面に配置されており、両方コア41,51の厚み方向片側の面同士が、向かい合うように配置されている。各巻線42,52が厚み方向の面に位置しているので、各コア41,51の表面に渦巻き状にコイルを形成している構成に比べて、同じ体格でコイル幅を大きくすることができる。コイル幅を大きくすると、送電コイル40と受電コイル50との磁気結合が強くなるので、送電コイル40と受電コイル50との位置が多少ずれた場合であっても、送電を行うことができる。
【0063】
また図4および図5にて説明したように、漏れ磁束の一部を、送電コイル40と受電コイル50とで形成される磁束経路と錯交させることができる。これによって漏れ磁束を少なくすることができる。したがって送電コイル40で発生する磁束を送電のために、より多く用いることができる。このように漏れ磁束の発生を抑制し、給電効率を向上することができる非接触給電システム10を実現することができる。
【0064】
また本実施形態では、対向面41aに配置されている送電用巻線42は、対向面41aにおいて送電用巻線42が延びる方向に交差する方向であって、対向面41aに沿うような方向に隣接する送電用巻線42と接触するように密に配列されている。このように配列することによって、同じ巻線長さでコイル幅を大きくすることができる。したがって送電コイル40と受電コイル50との磁気結合を強くすることができ、互いの位置が多少ずれた場合であっても、送電することができる。また密に送電用巻線42を配列することによって、疎に配列するよりも隣接する送電用巻線42間から磁束が漏れることを防止することができる。
【0065】
また対向面41aに位置する送電用巻線42の一部分42aは、送電コア41において配列方向の中央に位置している。これによって中央を凸とする磁束経路を作ることができる。中央を凸とすることによって、受電コイル50の両方の幅方向の端部に凸の頂点を近づけることができる。したがって漏れ磁束のより多くを送電コイル40と受電コイル50とで形成される磁束経路と錯交させることができる。これによって漏れ磁束をさらに少なくすることができる。
【0066】
(第2実施形態)
次に、本発明の第2実施形態に関して、図6を用いて説明する。図6は、第2実施形態の送電コイル40Aおよび受電コイル50Aを側面から見た断面図である。図6では、磁束経路を破線を用いて示す。本実施形態では、第1実施形態に対して、送電コイル40Aの背面41bおよび受電コイル50Aの反対側の面(図6の上方の面)に、漏れ磁束を低減するために導電板60を配置した点に特徴を有する。
【0067】
導電板60は、送電コア41の背面41bに設けられ、背面41bに位置する送電用巻線42から外部への磁界の漏洩を抑制する抑制部としての機能を有する。導電板60は、たとえばアルミニューム(Al)、銅、鉄および銀などからなる。導電板60は、各巻線42,52を収容するための凹部60aが形成され、各巻線42.52に接触するように配置される。また導電板60は、送電コイル40Aの背面41bおよび受電コイル50Aの反対側の面の全てを覆うように配置される。これによって導電板60は、外部に向かう磁束を抑制する。したがって送電コイル40Aと受電コイル50Aとの間を循環する磁束が増加し、結合係数を高めることができる。
【0068】
(第3実施形態)
次に、本発明の第3実施形態に関して、図7を用いて説明する。図7は、第3実施形態の送電コイル40Bおよび受電コイル50Bを側面から見た断面図である。図7では、磁束経路を破線を用いて示す。本実施形態では、送電コア41の背面41bに配置されている送電用巻線42は、重畳することなく配列されている点が、前述の第1実施形態とは異なる。本実施形態のように重畳することなく送電用巻線42を1列に配列することによって、送電コイル40Bの厚みを薄くすることができる。
【0069】
(第4実施形態)
次に、本発明の第4実施形態に関して、図8を用いて説明する。図8は、第4実施形態の送電コイル40Cおよび受電コイル50Cを側面から見た断面図である。図8では、磁束経路を破線を用いて示す。本実施形態では、非金属からなるスペーサ70を介して、送電用巻線42が巻回されている点に特徴を有する。
【0070】
スペーサ70は、非金属からなり、送電コア41の対向面41aの一部に設けられ、受電コア51に向かって延びるスペーサとして機能する。スペーサ70は、非金属材料からなり、たとえば樹脂および木材からなる。スペーサ70の先端には図8に示すように1本の送電用巻線42が巻回されている。送電コア41の対向面41aに配置されている送電用巻線42のうち、スペーサ70に配置されている送電用巻線42の一部分42aが他のの部分42bよりも受電コイル50C側に位置している。
【0071】
これによって対向面41aに配置されている送電用巻線42のうち、対向面41aに設けられるスペーサ70の先端に配置されている送電用巻線42の一部分42aが、他の部分42bよりも受電コイル50C側に位置させることができる。スペーサ70の先端に送電用巻線42が巻回されるので、送電コイル40Cに、受電コイル50Cに向かって凸となるような磁束経路を作ることができる。これによって前述と同様の漏れ磁束を低減する効果を達成することができる。また非金属からなるのでスペーサ70の内部は、磁束経路が形成されないので、スペーサ70の内部に漏れ磁束経路が形成されることを防止することができる。さらにスペーサ70の長さ寸法(図8の上下方向の寸法)を調節することによって、最も受電コイル50C側に位置する送電用巻線42の位置を調節することができる。したがってスペーサ70の長さ寸法を調節することによって、最適な送電効率を有するように、容易に設定することができる。
【0072】
またスペーサ70の先端における幅方向の寸法は、1本の送電用巻線42が配置される寸法に限るものではなく、複数本の送電用巻線42が配置される寸法であってもよい。
【0073】
(第5実施形態)
次に、本発明の第5実施形態に関して、図9を用いて説明する。図9は、第5実施形態の送電コイル40Dおよび受電コイル50Dを側面から見た断面図である。図9では、磁束経路を破線を用いて示す。本実施形態では、送電コア41が受電コイル50D側に凸となる凸部80を有し、凸部80の先端に送電用巻線42が巻回されている点に特徴を有する。対向面41aに配置されている送電用巻線42のうち、凸部80に配置されている送電用巻線42の一部分42aが送電用巻線42の他の部分42bよりも受電コイル50D側に位置している。
【0074】
このように凸部80の先端に送電用巻線42が巻回されるので、送電コイル40Dに、受電コイル50Dに向かって凸となるような磁束経路を作ることができる。これによって前述の第1実施形態と同様の漏れ磁束を低減する効果を達成することができる。
【0075】
さらに凸部80の長さ寸法(図9の上下方向の寸法)を調節することによって、最も受電コイル50D側に位置する送電用巻線42の一部分42aの位置を調節することができる。したがって凸部80の長さ寸法を調節することによって、最適な送電効率を有するように、容易に設定することができる。
【0076】
また凸部80の先端における幅方向の寸法は、複数本の送電用巻線42が配置される寸法に限るものではなく、少なくとも1本の送電用巻線42が配置される寸法であればよい。
【0077】
(第6実施形態)
次に、本発明の第6実施形態に関して、図10を用いて説明する。図10は、第6実施形態の送電コイル40Eおよび受電コイル50Eを側面から見た断面図である。図10では、磁束経路を破線を用いて示す。本実施形態では、送電コア41が受電コイル50D側に凸となる凸部80Eを2つ有し、凸部80Eの先端、および隣接する凸部80Eの間に密に送電用巻線42が巻回されている点に特徴を有する。2つの凸部80Eの高さ位置は、略等しい。
【0078】
対向面41aに配置されている送電用巻線42のうち、凸部80Eの先端に配置されている送電用巻線42の一部分42aが送電用巻線42の他の部分42bよりも受電コイル50E側に位置している。
【0079】
このように送電用巻線42の一部分42aが中央に配置されていない場合であっても、中央を挟んで2つの凸部80Eを配置し、その先端に送電用巻線42が巻回されるので、送電コイル40Eに、受電コイル50Eに向かって凸となるような磁束経路を作ることができる。これによって前述の第1実施形態と同様の漏れ磁束を低減する効果を達成することができる。
【0080】
また凸部80Eは、送電コア41と一体に形成されているが、別体であってもよい。また凸部80Eは、前述のスペーサ70のように非金属材料であってもよい。
【0081】
(第7実施形態)
次に、本発明の第7実施形態に関して、図11を用いて説明する。図11は、第7実施形態の送電コイル40Fおよび受電コイル50Fを側面から見た断面図である。図11では、磁束経路を破線を用いて示す。本実施形態では、送電コア41の対向面41aが受電コイル50F側に凸となるように湾曲しており、湾曲した対向面41aに送電用巻線42が巻回されている点に特徴を有する。湾曲した対向面41aに巻線を巻回すると、図11に示すように、凸状に巻線を配列することができる。これによって送電コイル40Fに、受電コイル50Fに向かって凸となるような磁束経路を作ることができる。したがって前述の第1実施形態と同様の漏れ磁束を低減する効果を達成することができる。
【0082】
(第8実施形態)
次に、本発明の第8実施形態に関して、図12を用いて説明する。図12は、第8実施形態の送電コイル40Gおよび受電コイル50Gを側面から見た断面図である。図12では、磁束経路を破線を用いて示す。本実施形態では、送電コア41および受電コア51の形状が断面U字状の平板である点に特徴を有する。
【0083】
送電コア41における幅方向(図12の左右方向)の両端部には、受電コア51に向かって凸となる送電突出部(1次側突出部)43が形成されており、送電突出部43における先端を除く部分に送電用巻線42が巻回されて、送電コイル40Gの一部が構成されている。したがって送電コア41の断面形状がU字状であり、その両端部が送電突出部43に対応する。
【0084】
送電突出部43に巻回される送電用巻線42は、送電突出部43の幅方向両方の面に配置されている。換言すると、送電突出部43に巻回される送電用巻線42の巻回軸線は、送電コア41における厚み方向に延びる。
【0085】
また受電コア51における幅方向(図12の左右方向)の両端部には、送電コア41に向かって凸となる受電突出部(2次側突出部)53が形成されており、受電突出部53の先端を除く部分に受電用巻線52が巻回されて、受電コイル50Gが構成されている。したがって受電コア51の断面形状がU字状であり、その両端部が受電突出部53に対応する。
【0086】
受電突出部53に巻回される受電用巻線52は、受電突出部53の幅方向両方の面に配置されている。換言すると、受電突出部53に巻回される受電用巻線52の巻回軸線は、受電コア51における厚み方向に延びる。
【0087】
また送電突出部43と受電突出部53とは、厚み方向に対向するように配置される。そして送電コア41の対向面41aに配置されている送電用巻線42のうちの一部分42aは、前述の第1実施形態と同様に、重畳されて巻回されており、重畳された最上層(本実施形態では4層目)の一部分42aが送電用巻線42の他の部分42bよりも受電コイル50G側に位置している。したがって前述のように、送電コイル40Gに、受電コイル50Gに向かって凸となるような磁束経路を作ることができる。これによって前述の第1実施形態と同様の漏れ磁束を低減する効果を達成することができる。
【0088】
(第9実施形態)
次に、本発明の第9実施形態に関して、図13を用いて説明する。図13は、第9実施形態の送電コイル40Hおよび受電コイル50Hを側面から見た断面図である。図13では、受電コイル50Hから送電コイル40Hへ送電したときの磁束経路を破線を用いて示す。本実施形態では、送電コイル40Hと受電コイル50Hとの構成が同一である点に特徴を有する。また前述の第1実施形態では、送電コイル40Hから受電コイル50Hへ送電するのみであったが、本実施形態では受電コイル50Hから送電コイル40Hへ送電して、車両22の電力を系統へ逆潮する非接触給電システム10に採用される。
【0089】
したがって送電回路31は、前述の受電回路23としても機能を有し、受電回路23は送電回路31としても機能を有する。また受電回路23には、メインバッテリ21からの直流電力を交流電力に変換(DC/AC変換)する機能を有する。これによって受電回路23は、送電回路31として機能することができる。
【0090】
本実施形態では、受電コイル50Hが送電コイル40Hと同一の構成であるので、受電コイル50Hから送電コイル40Hへ送電する場合には、図13に示すように、前述の送電コイル40Hにおける凸状の磁束経路による効果を達成することができる。これによって、双方向の送電が可能な構成であっても、送電するときの漏れ磁束を抑制した非接触給電装置を実現することができる。
【0091】
(第10実施形態)
次に、本発明の第10実施形態に関して、図14を用いて説明する。図14は、第10実施形態の送電コイル40Iおよび受電コイル50Iを側面から見た断面図である。図14では、受電コイル50Iから送電コイル40Iへ送電したときの磁束経路を破線を用いて示す。本実施形態では、前述の第9実施形態と同様に、受電コイル50Iから送電コイル40Iへ送電して、車両22の電力を系統へ逆潮する非接触給電システム10に採用される。
【0092】
したがって送電回路31は、前述の受電回路23としても機能を有し、受電回路23は送電回路31としても機能を有する。また受電回路23には、メインバッテリ21からの直流電力を交流電力に変換(DC/AC変換)する機能を有する。これによって受電回路23は、送電回路31として機能することができる。
【0093】
受電コイル50は、前述の第8実施形態の送電コイル40Gと同様の構成である。したがって受電コア51の対向面51aに配置されている受電用巻線52のうちの一部分52aは、前述の第1実施形態と同様に、重畳されて巻回されており、重畳された最上層(本実施形態では4層目)の一部分52aが受電用巻線52の他の部分52bよりも送電コイル40I側に位置している。したがって受電コイル50Iから送電コイル40Iへ送電する場合には、図14に示すように、前述の送電コイル40における凸状の磁束経路による効果を達成することができる。これによって、双方向の送電が可能な構成であっても、送電するときの漏れ磁束を抑制した非接触給電装置を実現することができる。
【0094】
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。
【0095】
前述の第1実施形態では、非接触給電装置は、車両22に充電する際に用いられるが、車両22のような移動体に限るものではなく、他の固定された電力消費媒体に使用してもよい。給電された電力は、充電への使用に限るものではなく、給電された電力を逐次、負荷で消費する装置に給電してもよい。
【0096】
また各コアは、フェライト以外の磁性体材料、たとえば、ダストコアや珪素鋼板など交流損失の少ない強磁性体を用いて形成してもよく、各巻線は、リッツ線以外の線で構成してよい。
【0097】
また各図に示した送電用巻線42および受電用巻線52の巻数は、一例であって、図に示す数に限るものではない。
【符号の説明】
【0098】
10…非接触給電システム(非接触給電装置)
21…メインバッテリ
22…車両
23…受電回路
24…車両側パッド
31…送電回路
32…地上側パッド
40…送電コイル(1次側コイル)
41…送電コア(1次側コア)
41a…対向面
41b…背面
42a…送電用巻線の一部分
42b…送電用巻線の他の部分
42…送電用巻線(巻線)
43…送電突出部(1次側突出部)
50…受電コイル(2次側コイル)
51…受電コア(2次側コア)
52…受電用巻線(巻線)
53…受電突出部(2次側突出部)
60…導電板(抑制部)
70…スペーサ
80…凸部

【特許請求の範囲】
【請求項1】
1次側コイル(40)から2次側コイル(50)へ非接触で送電を行う非接触給電装置(10)であって、
板状の1次側コア(41)、および前記1次側コアに巻回される巻線(42)を含む1次側コイルと、
板状の2次側コア(51)、および前記2次側コアに巻回される巻線(52)を含む2次側コイルと、を含み、
前記各コイルの前記巻線の少なくとも一部は、前記各コアの厚み方向両方の面に配置されており、
前記両方のコアは、前記厚み方向の片側の面同士が向かい合うように配置され、
前記1次側コアにおける前記2次側コア側の対向面(41a)に配置されている前記巻線のうち、前記巻線の一部分(42a)が他の部分(42b)よりも前記2次側コイル側に位置していることを特徴とする非接触給電装置。
【請求項2】
前記対向面に配置されている前記巻線の一部分は重畳されて巻回されており、前記重畳された最上層の前記巻線の一部分が前記他の部分よりも前記2次側コイル側に位置していることを特徴とする請求項1に記載の非接触給電装置。
【請求項3】
前記対向面は、前記2次側コアに向かって凸となるように湾曲してなることを特徴とする請求項1または2に記載の非接触給電装置。
【請求項4】
前記対向面は、前記2次側コアに向かって凸となる凸部(80)を有し、
前記凸部の先端に前記巻線が巻回されており、
前記対向面に配置されている前記巻線のうち、前記凸部の先端に配置されている前記巻線の一部分が前記他の部分よりも前記2次側コイル側に位置していることを特徴とする請求項1〜3のいずれか1つに記載の非接触給電装置。
【請求項5】
非金属からなり、前記対向面の一部に設けられ、前記2次側コアに向かって延びるスペーサ(70)をさらに含み、
前記スペーサの先端に前記巻線が巻回されており、
前記対向面に配置されている前記巻線のうち、前記スペーサの先端に配置されている前記巻線の一部分が前記他の部分よりも前記2次側コイル側に位置していることを特徴とする請求項1〜3のいずれか1つに記載の非接触給電装置。
【請求項6】
前記対向面に配置されている前記巻線は、前記対向面において前記巻線が延びる方向に交差する方向であって、前記対向面に沿うような方向に配列されており、
前記2次側コイル側に位置する前記巻線の一部分は、前記1次側コアにおいて前記配列された方向の中央に位置していることを特徴とする請求項1〜5のいずれか1つに記載の非接触給電装置。
【請求項7】
前記1次側コアにおける幅方向の両端部には、前記2次側コアに向かって凸となる1次側突出部(43)が形成されており、前記1次側突出部における先端を除く部分に前記巻線が巻回されて、前記1次側コイルの一部が構成されており、
前記2次側コアにおける幅方向の両端部には、前記1次側コアに向かって凸となる2次側突出部(53)が形成されており、前記2次側突出部における先端を除く部分に前記2次側突出部に前記巻線が巻回されて、前記2次側コイルが構成されており、
前記1次側突出部と前記2次側突出部とは、対向するように配置され、
前記対向面に配置されている前記巻線の一部分は重畳されて巻回されており、重畳された最上層の前記巻線の一部分が前記他の部分よりも前記2次側コイル側に位置していることを特徴とする請求項1に記載の非接触給電装置。
【請求項8】
前記1次側コアにおける前記対向面の反対側の面である背面(41b)に配置されている前記巻線は、重畳することなく配列されていることを特徴とする請求項1〜7のいずれか1つに記載の非接触給電装置。
【請求項9】
前記1次側コアにおける前記対向面の反対側の面である背面に設けられ、前記背面に位置する前記巻線から外部への磁界の漏洩を抑制する抑制部(60)をさらに含むことを特徴とする請求項1〜8のいずれか1つに記載の非接触給電装置。
【請求項10】
前記1次側コイルから前記2次側コイルへ非接触で送電を行い、かつ前記2次側コイルから前記1次側コイルへ送電を行う非接触給電装置であって、
前記2次側コイルにおける前記1次側コア側の対向面に配置されている前記巻線のうち、前記巻線の一部分が他の部分よりも前記1次側コイル側に位置していることを特徴とする請求項1〜9のいずれか1つに記載の非接触給電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−231603(P2012−231603A)
【公開日】平成24年11月22日(2012.11.22)
【国際特許分類】
【出願番号】特願2011−98349(P2011−98349)
【出願日】平成23年4月26日(2011.4.26)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】