説明

顕微鏡装置、該制御プログラム、及び該制御方法

【課題】観察倍率の変更時における煩わしい試料移動ステージの移動操作を行う必要がなく、かつ観察倍率を迅速にかつ適正に選択する顕微鏡装置を提供する。
【解決手段】予め低倍対物レンズ及び所定ズーム倍率の条件で取得された第1の座標誤差及び第1の倍率誤差と、各高倍対物レンズ及び各ズーム倍率の組み合わせに基づく第2の座標誤差及び第2の倍率誤差とが格納されている顕微鏡装置は、ユーザが低倍観察像の所定領域を指定すると、その指定領域の中心座標を取得して第1の座標誤差で補正すると共に、拡大する倍率を算出し倍率の誤差を第1の倍率誤差で補正した後、対物レンズの倍率及びズーム倍率の組み合わせにより得られる実倍率のうち前記補正した倍率に最も近い実倍率となる組み合わせを特定し、前記補正した中心座標を第2の座標誤差により補正し、この補正内容に基づいて、対物レンズ、ズーム倍率、ステージ位置を調整する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、顕微鏡により撮像した画像上でのマップ機能に関する。
【背景技術】
【0002】
従来、顕微鏡は、微細な試料の拡大像の撮影及び記録が可能であるため、生物分野における研究や検査等を始め、工業分野でも広く利用されている。このような顕微鏡は、一般的に、回転式レボルバに取り付けられた拡大倍率の異なる複数の対物レンズを備えている。そこで、顕微鏡は、レボルバを回転されて対物レンズを切り換えて、任意の対物レンズを観察光路に挿入することにより、観察倍率を変更している。また、顕微鏡は、複数の対物レンズ以外に、ズーム変倍機構を併せ持ち、連続的に観察倍率を変更することもできる。
【0003】
観察倍率の変更においては、通常は低倍から高倍への対物レンズの切替に伴って、観察しようとする部位の目標位置がずれて観察視野から外れる現象が発生する。そのため、予め高倍にて目標位置を視野中心に移動させておき、その目標位置が観察視野から外れてしまうことを防いでいる。
【0004】
顕微鏡観察において、そのような操作を倍率の変更毎に全て手動で行うと、顕微鏡操作に多くの時間を浪費してしまう。また、手動による顕微鏡操作では変化スピードの速い試料に対応できないことがある。また、顕微鏡操作に時間をかけすぎると、蛍光試料の褪色などを引き起こしてしまう。
【0005】
このような問題を解決するために、例えば、特許文献1では、試料の観察像を表示するモニタ手段と、このモニタ手段に表示された観察像の所望の領域を指定する指示手段と、この指示手段による観察像の指定領域をモニタ手段のほぼ全画面に表示するのに必要な対物倍率と、前記試料移動ステージの位置を演算する演算手段と、この演算手段で演算されたデータに基づいて対物レンズを観察光路に挿入する対物切替機構と、試料移動ステージを駆動する駆動手段を備えた顕微鏡変倍装置が開示されている。これにより、特許文献1では、観察像にて指定された所望の領域に即した倍率に対応する対物レンズを前記観察光路に自動的に挿入すると共に、指定領域を観察視野のほぼ中央に自動的に位置させるようにしている。
【0006】
なお、本願に関連する特許文献として、特許文献2、特許文献3がある。
【特許文献1】特開平3−296011号公報
【特許文献2】特開平11−250238号公報
【特許文献3】特開2002−197451号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上記のような従来の顕微鏡においては、顕微鏡画像のディストーション(歪曲収差)による観察視野内での座標のズレ分布や、ディストーションによる観察視野内での倍率のズレ分布などは、補正が十分でない。また、連続的に変倍するようなズーム倍率には、補正が対応できていない。特に、対物レンズや回転レボルバの部品精度による同心ズレ補正データの取得方法が明確にはされていない。
【0008】
図11A及び図11Bは、従来におけるナビゲーションマップ画像上の任意の領域を拡大表示させた例を示す。顕微鏡にて低倍対物レンズで撮影した観察試料の全体画像(以下、マクロ観察像という)101をナビゲーションマップ画像として取得する。パーソナルコンピュータのモニタを参照しながら、そのマクロ観察像101において詳細観察を行いたい領域を、マウスでドラッグ操作を行って、ROI(Region Of Interest)103で矩形に囲う。すると、そのROI103で囲った範囲の大きさに対応してズーム倍率が変倍し、そのROI103の中心位置に試料移動ステージが移動する。それから、高倍対物レンズに切り替わってそのROI103の詳細画像(ミクロライブ画像102)が表示される。
【0009】
図11Aでは、マクロ観察像101の中央辺りの観察領域をROI103で囲って、そのROI103で囲ったミクロライブ像102が表示されている。図11Bでは、マクロ観察像101の右上辺りの観察領域をROI103で囲って、そのROI103で囲ったミクロライブ像102が表示されている。
【0010】
このとき、低倍対物レンズのディストーションによる観察視野内の座標のズレ分布と倍率のズレ分布、ズームレンズのズーム心のハシリ(ズームする毎にズーム心がずれていくこと)とズーム倍率誤差、及び高倍対物レンズの中心座標のズレと倍率誤差に基づいて、マクロ観察像101で指定したROI103の範囲とそのROI103に基づいて表示されるミクロライブ像102との間において、座標値と倍率値に誤差が生じる。そのため、ROI103で指定した範囲をミクロライブ画像102で正しく表示できない。このような場合、ユーザは、ミクロライブ画像102を確認しながら、再度試料移動ステージの位置の微調整及びズーム調整する必要があった。
【0011】
上記の課題に鑑み、本発明では、表示装置に表示された低倍観察像の所定領域を指定すると、該所定領域の高倍観察像が表示される顕微鏡装置において、観察倍率の変更時における煩わしい試料移動ステージの移動操作を行う必要がなく、かつ観察倍率を迅速にかつ適正に選択することができる顕微鏡装置を提供する。
【課題を解決するための手段】
【0012】
本発明にかかる顕微鏡装置は、観察試料が載置され、観察光軸に対して垂直方向に移動可能な試料移動ステージと、前記観察光軸に挿入される倍率の異なる複数の対物レンズを切り換えるレボルバと、ズーム倍率を変倍させるズーム変倍手段と、前記対物レンズを介して前記観察試料の光学像を撮像する撮像手段と、ユーザからの指示操作に基づいて、前記対物レンズのうちの第1の対物レンズで第1のズーム倍率で撮像した第1の観察像の所定領域を指定領域として指定することができる領域指定手段と、前記第1の対物レンズ及び前記第1のズーム倍率に基づいて得られる観察像の第1の座標誤差及び第1の倍率誤差が格納された第1の誤差情報格納手段と、前記対物レンズのうちの第2の対物レンズと、変倍可能な範囲で変倍させた前記ズーム倍率との組み合わせに基づいて得られる第2の観察像の第2の座標誤差及び第2の倍率誤差がされた第2の誤差情報格納手段と、前記指定領域の中心座標である指定中心座標を前記第1の座標誤差で補正して第1の補正中心座標とすると共に、前記第1の観察像に対する前記指定領域の大きさに基づいて該指定領域を拡大する倍率を算出し、該倍率を前記第1の倍率誤差で補正して第1の補正倍率とする第1の誤差補正手段と、前記第2の対物レンズの倍率及び前記ズーム倍率の組み合わせに基づく倍率のうち前記第1の補正倍率に最も近い倍率となる組み合わせを特定し、前記第1の補正中心座標を前記第2の座標誤差で補正して第2の補正中心座標とする第2の誤差補正手段と、前記特定した対物レンズの倍率及び前記ズーム倍率の組み合わせに基づいて、前記レボルバを制御して前記対物レンズを切り換えると共に、前記ズーム変倍手段を制御して前記ズーム倍率を変倍させ、かつ、前記第2の補正中心座標に基づいて、前記試料移動ステージを移動させる制御を行う制御手段と、を備えることを特徴とする。
【0013】
前記顕微鏡装置において、前記第1の誤差情報格納手段は、前記試料移動ステージ上における所定位置が前記第1の対物レンズを介することで移動した距離を前記第1の座標誤差として格納し、前記試料移動ステージ上における所定の2点間の距離と前記第1の対物レンズを介することで伸縮した該2点間の距離との比率を前記第1の倍率誤差として格納していることを特徴とする。
【0014】
前記顕微鏡装置において、前記第1の誤差情報格納手段は、前記第1の観察像の中心から同心円状に複数の領域に区分けし、該区分けした領域毎に前記第1の座標誤差と前記第1の倍率誤差が算出されて格納されていることを特徴とする。
【0015】
前記顕微鏡装置において、前記第2の誤差情報格納手段は、前記第1の対物レンズ及び前記第1のズーム倍率で撮像した第1の観察像に対する前記第2の対物レンズ及び前記各ズーム倍率の組み合わせで撮像した前記第2の観察像の座標誤差を前記第2の座標誤差として格納し、該第2の対物レンズ及び前記各ズーム倍率の組み合わせによって得られる各倍率について表示倍率に対する実倍率の比率を前記第2の倍率誤差として格納していることを特徴とする。
【0016】
前記顕微鏡装置において、前記第2の誤差情報格納手段は、前記第1の観察像内の前記第1の補正中心座標に対応する前記第2の観察像内の座標と、該第2の観察像の観察視野の中心座標との差分を前記第2の座標誤差として格納し、前記第2の対物レンズでのズーム倍率毎の総合表示倍率と総合実倍率との比率を前記第2の倍率誤差として格納していることを特徴とする。
【0017】
前記顕微鏡装置は、さらに、前記試料移動ステージ上に前記観察光軸に対して挿脱可能であって方眼模様が付された基準チャートを備えることを特徴とする。
本発明にかかる、観察試料が載置され、観察光軸に対して垂直方向に移動可能な試料移動ステージと、前記観察光軸に挿入される倍率の異なる複数の対物レンズを切り換えるレボルバと、ズーム倍率を変倍させるズーム変倍機構と、前記対物レンズを介して前記観察試料の光学像を撮像する撮像装置と、ユーザからの指示操作に基づいて、前記対物レンズのうちの第1の対物レンズで第1のズーム倍率で撮像した第1の観察像の前記所定領域を指定領域として指定することができる領域指定機能と、前記第1の対物レンズ及び前記第1のズーム倍率に基づいて得られる観察像の第1の座標誤差及び第1の倍率誤差が格納された第1の誤差情報格納装置と、前記対物レンズのうちの第2の対物レンズと、変倍可能な範囲で変倍させた前記ズーム倍率との組み合わせに基づいて得られる第2の観察像の第2の座標誤差及び第2の倍率誤差がされた第2の誤差情報格納装置と、を備える顕微鏡装置の動作を制御する処理をコンピュータに実行させる顕微鏡制御プログラムは、前記指定領域の中心座標である指定中心座標を前記第1の座標誤差で補正して第1の補正中心座標とすると共に、前記第1の観察像に対する前記指定領域の大きさに基づいて該指定領域を拡大する倍率を算出し、該倍率を前記第1の倍率誤差で補正して第1の補正倍率とする第1の誤差補正処理と、前記第2の対物レンズの倍率及び前記ズーム倍率の組み合わせに基づく倍率のうち前記第1の補正倍率に最も近い倍率となる組み合わせを特定し、前記第1の補正中心座標を前記第2の座標誤差で補正して第2の補正中心座標とする第2の誤差補正処理と、前記特定した対物レンズの倍率及び前記ズーム倍率の組み合わせに基づいて、前記レボルバを制御して前記対物レンズを切り換えると共に、前記ズーム変倍機構を制御して前記ズーム倍率を変倍させ、かつ、前記第2の補正中心座標に基づいて、前記試料移動ステージを移動させる制御を行う駆動制御処理と、をコンピュータに実行させる。
【0018】
本発明にかかる、観察試料が載置され、観察光軸に対して垂直方向に移動可能な試料移動ステージと、前記観察光軸に挿入される倍率の異なる複数の対物レンズを切り換えるレボルバと、ズーム倍率を変倍させるズーム変倍機構と、前記対物レンズを介して前記観察試料の光学像を撮像する撮像装置と、ユーザからの指示操作に基づいて、前記対物レンズのうちの第1の対物レンズで第1のズーム倍率で撮像した第1の観察像の前記所定領域を指定領域として指定することができる領域指定機能と、前記第1の対物レンズ及び前記第1のズーム倍率に基づいて得られる観察像の第1の座標誤差及び第1の倍率誤差が格納された第1の誤差情報格納装置と、前記対物レンズのうちの第2の対物レンズと、変倍可能な範囲で変倍させた前記ズーム倍率との組み合わせに基づいて得られる第2の観察像の第2の座標誤差及び第2の倍率誤差がされた第2の誤差情報格納装置と、を備える顕微鏡装置の動作を制御する顕微鏡制御方法は、前記指定領域の中心座標である指定中心座標を前記第1の座標誤差で補正して第1の補正中心座標とすると共に、前記第1の観察像に対する前記指定領域の大きさに基づいて該指定領域を拡大する倍率を算出し、該倍率を前記第1の倍率誤差で補正して第1の補正倍率とし、前記第2の対物レンズの倍率及び前記ズーム倍率の組み合わせに基づく倍率のうち前記第1の補正倍率に最も近い倍率となる組み合わせを特定し、前記第1の補正中心座標を前記第2の座標誤差で補正して第2の補正中心座標とし、前記特定した対物レンズの倍率及び前記ズーム倍率の組み合わせに基づいて、前記レボルバを制御して前記対物レンズを切り換えると共に、前記ズーム変倍機構を制御して前記ズーム倍率を変倍させ、かつ、前記第2の補正中心座標に基づいて、前記試料移動ステージを移動させる制御を行う、ことを特徴とする。
【発明の効果】
【0019】
本発明にかかる顕微鏡装置を用いることにより、観察倍率の変更時における煩わしい試料移動ステージの移動操作を行う必要がなく、かつ観察倍率を迅速にかつ適正に選択することができる。
【発明を実施するための最良の形態】
【0020】
本発明にかかる顕微鏡装置は、表示装置に表示された低倍観察像の所定領域を指定すると、該表示装置に該所定領域の高倍観察像を表示させることができる。本発明にかかる顕微鏡装置は、試料移動ステージ、レボルバ、ズーム変倍手段、撮像手段、領域指定手段、第1の誤差情報格納手段、第2の誤差情報格納手段、第1の誤差補正手段、第2の誤差補正手段、制御手段から構成される。
【0021】
試料移動ステージは、観察試料が載置され、観察光軸に対して垂直方向に移動可能なステージである。試料移動ステージは、本実施形態でいえば、例えば、試料移動ステージ3である。
【0022】
レボルバは、前記観察光軸に挿入される倍率の異なる複数の対物レンズを切り換えるものである。レボルバは、本実施形態でいえば、例えば、レボルバ6である。
ズーム変倍手段は、倍率を連続変倍させるレンズ駆動機構である。ズーム変倍手段は、本実施形態でいえば、例えば、ズーム変倍機構9である。
【0023】
撮像手段は、前記対物レンズを介して前記観察試料の光学像を撮像する。撮像手段は、本実施形態でいえば、例えば、TVカメラ10である。
領域指定手段は、ユーザからの指示操作に基づいて、前記対物レンズのうちの第1の対物レンズ(低倍対物レンズ)で第1のズーム倍率で撮像した第1の観察像(マクロ観察像)の前記所定領域を指定領域として指定することができる。領域指定手段は、本実施形態でいえば、例えば、PCマウス21のドラック操作によってTVモニタ20に表示された低倍観察像の所定領域を指定するときに用いられるROI103である。
【0024】
第1の誤差情報格納手段には、前記第1の対物レンズ及び前記第1のズーム倍率に基づいて得られる観察像の第1の座標誤差及び第1の倍率誤差が格納されている。第1の誤差情報格納手段は、本実施形態で言えば、例えば、マクロ観察像補正テーブルまたはこのテーブルに対応する補完式である。
【0025】
第2の誤差情報格納手段には、前記対物レンズのうち第2の対物レンズ(高倍対物レンズ)と変倍可能な範囲で変倍させた前記ズーム倍率との組み合わせに基づいて得られる第2の観察像(ミクロライブ像)の第2の座標誤差及び第2の倍率誤差がされている。第2の誤差情報格納手段は、本実施形態で言えば、例えば、ミクロライブ像補正テーブルまたはこのテーブルに対応する補完式である。
【0026】
第1の誤差補正手段は、前記指定領域の中心座標である指定中心座標を前記第1の座標誤差で補正して第1の補正中心座標とすると共に、前記第1の観察像に対する前記指定領域の大きさに基づいて該指定領域を拡大する倍率を算出し、該倍率を前記第1の倍率誤差で補正して第1の補正倍率とする。第1の誤差補正手段は、本実施形態で言えば、例えば、制御装置25により実行される図10A及び図10BのS40〜S42の処理に相当する。
【0027】
第2の誤差補正手段は、前記第2の対物レンズの倍率及び前記ズーム倍率の組み合わせに基づく倍率のうち前記第1の補正倍率に最も近い倍率となる組み合わせを特定し、前記第1の補正中心座標を前記第2の座標誤差で補正して第2の補正中心座標とする。第2の誤差補正手段は、本実施形態で言えば、例えば、制御装置25により実行される図10A及び図10BのS44〜S45の処理に相当する。
【0028】
制御手段は、前記特定した対物レンズの倍率及び前記ズーム倍率の組み合わせに基づいて、前記レボルバを制御して前記対物レンズを切り換えると共に、前記ズーム変倍手段を制御して前記ズーム倍率を変倍させ、かつ、前記第2の補正中心座標に基づいて、前記試料移動ステージを移動させる制御を行う。制御手段は、本実施形態で言えば、例えば、制御装置25及び駆動回路28により実行される図10A及び図10BのS43、S45の処理に相当する。
【0029】
このように構成することにより、観察倍率の変更時における煩わしい試料移動ステージの移動操作を行う必要がなく、かつ観察倍率を迅速にかつ適正に選択することができる。
前記第1の誤差情報格納手段は、前記試料移動ステージ上における所定位置が前記第1の対物レンズを介することで移動した距離を前記第1の座標誤差として格納し、前記試料移動ステージ上における所定の2点間の距離と前記第1の対物レンズを介することで伸縮した該2点間の距離との比率を前記第1の倍率誤差として格納している。
【0030】
このように構成することにより、キャリブレーション時に取得した低倍対物レンズによる座標誤差及び倍率誤差を保存しておくことができる。
また、前記第1の誤差情報格納手段には、前記第1の観察像の中心から同心円状に複数の領域に区分けし、該区分けした各領域に前記第1の座標誤差と前記第1の倍率誤差が算出されて格納されている。
【0031】
このように構成することにより、前記第1の座標誤差と前記第1の倍率誤差とをそれぞれ、その領域に対する座標誤差の代表値と倍率誤差の代表値とすることができる。
前記第2の誤差情報格納手段は、前記第1の対物レンズ及び前記第1のズーム倍率で撮像した第1の観察像に対する前記第2の対物レンズ及び前記各ズーム倍率の組み合わせで撮像した前記第2の観察像の座標誤差を前記第2の座標誤差として格納し、該第2の対物レンズ及び前記各ズーム倍率の組み合わせによって得られる各倍率について表示倍率に対する実倍率の比率を前記第2の倍率誤差として格納している。
【0032】
また、前記第2の誤差情報格納手段は、前記第1の観察像内の前記第1の補正中心座標に対応する前記第2の観察像内の座標と、該第2の観察像の観察視野の中心座標との差分を前記第2の座標誤差として格納し、前記第2の対物レンズでのズーム倍率毎の総合表示倍率と総合実倍率との比率を前記第2の倍率誤差として格納している。
【0033】
前記顕微鏡装置は、さらに、前記試料移動ステージ上に観察光軸に対して挿脱可能であって方眼模様が付された基準チャートを備えていてもよい。
このように構成することにより、顕微鏡変倍装置の電源投入時に容易に毎回キャリブレーションを行うことができる。
【0034】
以下に、本発明の実施の形態について詳述する。
図1は、本実施形態における顕微鏡システムの全体構成を示す。顕微鏡システムは、主として顕微鏡本体1とパーソナルコンピュータ(以下、PCと称する。)19から構成される。
【0035】
顕微鏡本体1は、照明装置2、試料移動ステージ3、焦準装置4、対物レンズ5(低倍対物レンズ5a,高倍対物レンズ5b)、レボルバ6、ズーム変倍機構9、TVカメラ10、高輝度水銀ランプ11、蛍光観察装置12、鏡筒18、及び制御装置25、TVカメラ制御装置26を備える。
【0036】
照明装置2は、試料移動ステージ3に載置された観察試料7に照明光を照射する装置である。照明装置2は、図示しない、コンデンサレンズと、FS(Field Stop)機構を内蔵する。コンデンサレンズは、クリティカル照明用またはテレセント照明用を選択することができる。FS機構は、TVカメラ10内のCCD(Charge Coupled Device)で撮像する範囲外の照明光を遮って、無駄な光を観察試料7に当てないようにするものである。
【0037】
試料移動ステージ3は、照明装置2からの照明光(観察光軸8)に直交する平面内で互いに直交するX−Y方向に移動することができる。焦準装置4は、試料移動ステージ3を観察光軸8方向に移動させてピント調整を行う。レボルバ6は、対物レンズ5の交換が可能で、観察に使用する対物レンズを観察光軸8に挿入するものである。
【0038】
ズーム変倍機構9は、観察光軸8に挿入された対物レンズ5を用いて撮像された拡大像に対して、連続的に拡大または縮小させる機構である。ズーム変倍機構9は、観察像の開口数(NA)を制限して、焦点深度を深くする図示しないAS(Aperture Stop)機構を内蔵する。
【0039】
鏡筒18内では、観察光を接眼レンズ側とTVカメラ10側に分岐させる。接眼レンズ18aは、肉眼で観察像をするためのものである。TVカメラ10は、観察試料7からの観察像を電気信号に変換する。TVカメラ制御装置26は、TVカメラ10の動作を制御する装置である。
【0040】
高輝度水銀ランプ11は、蛍光観察時に用いる照明光源である。蛍光観察装置12は、蛍光キューブ16,16aの切替えを可能とするターレット機構17を保持する。蛍光キューブ16は、励起フィルタ13と、吸収フィルタ14と、ダイクロイックミラー15とを1つにまとめて保持する。
【0041】
励起フィルタ13は、高輝度水銀ランプ11から照射される照射光のうち特定の波長の励起光だけを透過させる。吸収フィルタ14は、励起光が観察試料7に照射されることにより発した蛍光の波長を透過させるものである。ダイクロイックミラー15は、励起光と蛍光を観察光軸8に揃えるものである。蛍光観察装置12は、さらに、前記FS機構と同様の機能を有する図示しない落射FS機構を内蔵する。
【0042】
顕微鏡本体1を構成する各種機構部及び駆動部はそれぞれ電動駆動装置を有しており、制御装置25と接続されている。さらに、制御装置25は、PC19に接続されている。
PC19は、ユーザが実際に顕微鏡操作を行うGUI(グラフィカルユーザインターフェース)を制御するものである。PC19は、TVモニタ20とPCマウス21を備える。TVモニタ20には、前記GUI画像と、TVカメラ10で撮像した画像が表示される。PCマウス21により、GUIの操作と画像上での観察範囲の指定のためのクリック操作やドラッグ操作等を行うことができる。
【0043】
図2は、図1の制御装置25の構成の一例を示す。TVカメラ制御装置26は、TVカメラからの画像信号の入力と、TVカメラ10からの制御データの入力と、TVカメラ10を駆動させるための駆動信号の出力を制御する。
【0044】
制御装置25は、TVカメラ制御装置26及び各種の回路を制御している。TVカメラ制御装置26は、TVカメラ10のシャッタースピード、ISO感度、ホワイトバランス、露出度、画素シフト、画像処理などを制御している。TVカメラ10から出力された画像信号は、撮影画像またはライブ画像として得ることができる。
【0045】
入力回路27には、顕微鏡本体1から、照明光ON/OFFデータ、クリティカル照明/テレセント照明選択データ、FS開閉量データ、ステージXY位置データ、焦準位置データ、レボルバ位置データ、観察光軸上の対物種類データ、ズーム変倍の倍率データ、AS開閉量データ、水銀ランプON/OFFデータ、落射FS開閉量データ、観察光軸上の蛍光キューブ種類データ等が入力される。また、入力回路27には、PC19から、PCポインタ座標データ、PC19でのユーザ操作データ等が入力される。入力回路27は、制御装置25からの要求に応じて、その入力されたデータを渡す。
【0046】
駆動回路28は、照明装置2及び高輝度水銀ランプ11をON/OFFしたり、コンデンサレンズを切り換えたり、FS機構、試料移動ステージ3、焦準装置4、レボルバ6、ズーム変倍機構9、AS機構、落射FS機構、及び蛍光キューブターレット等の機構を駆動させるための制御信号(例えば、モータの回転数、ON/OFF信号)を、制御装置からの要求に応じて出力する。
【0047】
記憶回路29は、後述で詳細に述べるキャリブレーションより得られた、特定の低倍観察像における視野の領域ごとの座標補正値及び倍率補正値をデータテーブルまたは補完式で記憶している。さらに、記憶回路29は、対物レンズ5ごと、及びズーム変倍機構9の複数の倍率範囲ごとに、表示倍率と実倍率との差を、テーブルまたは補完式で記憶している。
【0048】
さらに、記憶回路29は、試料移動ステージ3が持つステージ駆動モータの回転角度誤差などで発生する移動量誤差を補正するためのステージの絶対位置に関する補正データを、テーブルまたは補完式で記憶している。記憶回路29は、これらのテーブルデータを制御装置25からの要求に応じて出力する。
【0049】
演算回路30は、制御装置25からの要求に応じて所定の演算処理を実行する。例えば、記憶回路29に補正データが補完式で記憶されている場合には、制御装置25はその補完式を演算回路30に受け渡し、演算回路30は、その補完式からデータを生成し、そのデータを制御装置25に出力する。
【0050】
画像出力回路31は、制御装置25の要求に応じて、TVカメラ10で撮像されてTVカメラ制御装置26で画像処理された撮像画像及びライブ画像の画像信号を受け取る。画像出力回路31は、その画像信号をTVモニタ20に出力する。
【0051】
図3は、本実施形態の全体の概要フローを示す。まず、顕微鏡本体1のキャリブレーションを行う(ステップ1。以下、ステップを「S」と称する)。そうすると、制御装置25は、低倍対物レンズのディストーションによる観察視野内の座標のズレ分布と倍率のズレ分布、ズームレンズのズーム心のハシリとズーム倍率誤差、及び高倍対物レンズの中心座標のズレと倍率誤差に基づく、座標値と倍率値の誤差に関する補正テーブルを作成する。
【0052】
すなわち、制御装置25は、低倍対物レンズ5aを用いて撮像されたマクロ観察像の「視野全域の座標値」の誤差、「視野の各部位の倍率値」の誤差を取得して、記憶回路29内のマクロ観察像補正テーブルに保存する。また、制御装置25は、高倍対物レンズ5bを観察光軸8に挿入した状態でのズーム各倍率の「中心付近の倍率値」の誤差、「視野中心座標値」の誤差を取得し、記憶回路29内のミクロライブ像補正テーブルに保存する。
【0053】
次に、ユーザは、マクロ観察像及びミクロライブ画像により、顕微鏡観察を行う(S2)。すなわち、ユーザが、TVモニタ20に表示されたマクロ観察像101上で、PCマウス21のドラッグ操作により任意の領域をROI103で矩形に囲むと、低倍対物レンズ5aから高倍対物レンズ5bに切り替わり、そのROI103で囲った範囲に対応したズーム倍率に変倍して、そのROI103範囲の中心位置に試料移動ステージ3が移動し、そのROI103範囲のミクロライブ画像102が表示される。
【0054】
より詳しく説明する。ユーザによりROI103が設定されると、ROI103で矩形に囲まれた範囲の中心座標が認識されて、後述するマクロ観察像補正テーブルに基づいて真の中心座標(指定中心座標)が算出される。
【0055】
また、ROI103で矩形に囲まれた範囲から倍率値が認識されて、後述するマクロ観察像補正テーブルに基づいてそのROI範囲の座標に対応する真の倍率値(指定倍率値)が算出される。
【0056】
それから、対物レンズが高倍対物レンズ5bに切り替えられると、指定倍率値に最も近い倍率になるように、ミクロライブ像補正テーブルに基づいてズーム倍率が決定される。そこで、制御装置25は、指定中心座標が観察視野の中心位置に位置するように試料移動ステージ3を制御し、その決定したズーム倍率に変倍する。
【0057】
このようにして、ユーザがマクロ観察像で指定したROI範囲をミクロライブ像で表示させることができる。これにより、ユーザにとって観察倍率の変更時における煩わしい作業が不要となり、観察倍率を迅速かつ適正に選択できるようになる。以下では、上記S1とS2を詳述する。
【0058】
<S1:キャリブレーションによる補正テーブルの作成>
キャリブレーションは、基準チャートを用いて行う。試料移動ステージ3に、観察試料7の代わりに方眼模様を有する基準チャート40を載置して、対物レンズ5(低倍対物レンズ5a、高倍対物レンズ5b)を切り換えると、TVモニタ20に図4A及び図4Bに示す基準チャートの画像が撮像される。
【0059】
図4Aは、低倍対物レンズ5a及び最低倍のズーム倍率の条件で撮像された基準チャートの表示例を示す。TVモニタ20の表示領域41には、基準チャート40が表示されている。基準チャート40は、符号42で示す升目模様(方眼)を有する。符号43で示す交差している2本線は、所定の治具ソフトによって表示される表示領域41の対角線である。符号44は、基本チャート40の中心を示す。なお、本実施形態では、マクロ観察像101は、低倍対物レンズ5a及び最低倍のズーム倍率の条件において撮像されるものとする。
【0060】
図4Bは、高倍対物レンズ5b及び最低倍のズーム倍率の条件で撮像された基準チャートの表示例を示す。ミクロライブ像102は、各高倍対物レンズについてズーム倍率毎に撮像されるものである。本実施形態では、説明の便宜上、用いる高倍対物レンズを1つに固定し、ズーム倍率を変更するようにする。
【0061】
図4A及び図4Bに示すように、TVモニタ20に表示される基準チャート40の升目はディストーションなどの影響で、糸巻き状に広がっている。なお、広がり方はディストーションの正負により樽型と呼ばれる縮まり方を示すこともある。
【0062】
図5は、対物レンズとズーム変倍機構のズーム倍率の組み合わせで変化するディストーションの形状を示している。縦軸にディストーション量、横軸に像高さを示す。図5(a)は、低倍対物レンズ及びズーム倍率0.5×の設定条件でのディストーション形状を示す。図5(b)は、高倍対物レンズ及びズーム倍率0.5×の設定条件でのディストーション形状を示す。図5(c)は、高倍対物レンズ及びズーム倍率2×の設定条件でのディストーション形状を示す。図5(d)は、高倍対物レンズ及びズーム倍率6×の設定条件でのディストーション形状を示す。
【0063】
このように、対物レンズ毎、及びズーム倍率毎にディストーションが変化することが分かる。仮に、マクロ観察像101上で指定したROI103の指定中心座標に関して、ディストーションの影響でその座標値が1%の誤差を含み、5倍のマクロ観察像から100倍のミクロライブ像に移動したとする。そうすると、エラー補正をしない限り、ROI103で指定した中心座標はミクロライブ像の視野の全長に対して20%以上の中心座標がずれてしまうことになる。さらに、ROIで囲った指定倍率値もエラー補正が必要となる。
【0064】
このような指定中心座標と指定倍率のエラーを補正するために、図6A及び図6Bに示すフローによって顕微鏡装置1のキャリブレーションを行い、補正テーブルを作成する必要がある。
【0065】
図6A及び図6Bは、本実施形態におけるキャリブレーションのフローを示す。なお、試料移動ステージ3には予め基本チャート40が載置されている。また、基準チャート40の升目の座標は、試料移動ステージ3上の絶対値のXY座標値として予め記憶回路29に記憶されている。
【0066】
まず、ユーザが所定の操作を行うと、制御装置25は、顕微鏡本体1のレボルバ6及びズーム変倍機構9を制御し、レボルバ6及びズーム変倍機構9の原点出しを行う(S11、S12)。
【0067】
次に、制御装置25の制御によりレボルバ6が回転して、高倍対物レンズ5bが観察光軸8に挿入される(S13)。そして、制御装置25の制御により、ズーム変倍機構9は、最高倍のズームになるように、ズームレンズを移動させる(S14)。制御装置25は、TVカメラ10を駆動させて、高倍対物レンズ5b及び最高倍ズーム条件下で基本チャート40の画像を撮像する。
【0068】
次に、ユーザは、TVモニタ20を参照しながら、試料移動ステージ3を移動させて、基準チャート40の中心位置44を治具ソフトにより表示された対角線43の交点に一致させる。併せて、基準チャート40の升目の交点がほぼ視野の対角方向に並ぶように、ユーザは基準チャート40を試料移動ステージ3上で回転させて升目の交点の向きを揃える(S15)。この位置及び向きで基準チャート40を試料移動ステージ3上に固定する。
【0069】
次に、制御装置25の制御によりレボルバ6が回転して、低倍対物レンズ5aが観察光軸8に挿入される(S16)。そして、制御装置25の制御により、ズーム変倍機構9は、最低倍のズームになるように、ズームレンズを移動させる(S17)。制御装置25は、TVカメラ10を駆動させて、低倍対物レンズ5a及び最低倍ズーム条件下での基本チャート40の画像を撮像する。そうすると、TVモニタ20には、図4Aに示す画面が表示される。
【0070】
ユーザは、TVモニタ20を参照して、対角線43の交点と基準チャート40の中心位置44とが一致しているかを確認する(S18)。対角線43の交点と基準チャート40の中心位置44とが一致していない場合には(S18で「No」へ進む)、再びS13の処理より繰り返す。
【0071】
対角線43の交点と基準チャート40の中心位置44とが一致している場合、基準チャート40の升目の交点がほぼ視野の対角方向に並んでいるかを確認する(S19)。基準チャートの升目の交点が視野の対角方向に並んでいない場合には(S19で「No」へ進む)、再びS13の処理より繰り返す。
【0072】
基準チャートの升目の交点が視野の対角方向に並んでいる場合、TVモニタ20を参照しながら、PCマウス21を用いて基準チャート40の対角方向に升目の交点を中心から一定方向(例えば、右上方向)に複数点(例えば7点程度)ポイントしていく(S20)。例えば、図4Aの場合では、中心側から交点P1,P2,P3とポイントしていく。
【0073】
交点P1,P2,P3は、TVモニタに表示された基準チャート40上で実際にクリックしたポイントであり、これらはディストーションの影響を受けているので、真の交点位置P1a、P2a,P3aとはずれている。真の升目の交点位置とは、予め記憶回路29に記憶されている基準チャート40の絶対座標のことである。
【0074】
基準チャート40の絶対座標とTVモニタ20でポイントした見かけ上の座標との差分(P1とP1aとの差分、P2とP2aとの差分、P3とP3aとの差分)、すなわち、ずれ量が座標誤差として、座標の補正量となる。また、真の升目の対角線の長さは基準チャート40の絶対座標に基づいて算出することができるので、真の升目の対角線の長さに対するポイント間(P1−P2間、P2−P3間)の間隔は倍率誤差として、倍率の補正量となる。
【0075】
なお、ディストーションは一般的に視野中心から像高方向に一律の分布を持っている。したがって、上記でポイントしたn点を視野中心に対して同心円状にn個の帯状の補正領域とする。この一例を図7を用いて説明する。
【0076】
図7は、本実施形態における低倍対物レンズ及び最低倍ズーム条件下で3点をポイントした場合の補正領域の区分け例を示す。同図の例では、上記で、P1,P2,P3とポイントした3点を視野中心に対して同心円状に3つの帯状の補正領域A,B,Cに区分けしている。
【0077】
制御装置25は、上記領域の座標に対する座標誤差と倍率誤差とを記憶回路29内のマクロ観察像補正テーブルに記憶する(S21)。
図8は、本実施形態におけるマクロ観察像補正テーブルの一例を示す。ここでは、図7に対応したマクロ観察像補正テーブルを用いて説明する。マクロ観察像補正テーブル50は、「領域範囲」51、「座標誤差(X座標、Y座標)」52、「倍率誤差」53のデータ項目から構成される。「領域範囲」51には、図7の各領域を特定する座標が格納される。「座標誤差(X座標、Y座標)」52及び「倍率誤差」53にはそれぞれ、上記でポイントした各点での座標誤差及び倍率誤差が格納される。
【0078】
なお、本実施形態では、複数点についてサンプリングして、座標誤差及び倍率誤差を取得し、それらを各座標領域についての代表値として用いるようにするが、全ての升目の交点をポイントし、その全ての点について座標誤差及び倍率誤差を取得してマクロ観察像補正テーブルを作成してもよい。
【0079】
ここまでの工程でマクロ観察像に関する誤差情報を取得した。次に、ミクロライブ像に関する誤差情報を取得することにする。
まず、制御装置25の制御によってレボルバ6が回転して対物レンズが切り換えられ、高倍対物レンズ5bが観察光軸8に挿入される(S22)。そして、制御装置25の制御により、ズーム変倍機構9は、最低倍のズームになるように、ズームレンズを移動させる。制御装置25は、TVカメラ10を駆動させて、高倍対物レンズ5b及び最低倍ズームに設定した条件下での基本チャート40の画像を撮像する。そうすると、TVモニタ20には、図4Bに示す画面が表示される。
【0080】
図4Bは、高倍対物レンズ5bでズーム最低倍の状態にて、治具ソフトにより対角線43を表示させた状態を示している。この状態で、基準チャート40の中心点P0をポイントする(S23)。この基準チャート40の中心P0と対角線43の交点との差分を、高倍対物レンズ5b及びズーム最低時に対する高倍中心座標の座標誤差として、記録回路29内のミクロライブ像補正テーブル60に保存する。
【0081】
次に、基準チャート40の中心P0に近い升目の交点P11をポイントする(S24)。制御装置25は、ポイントP0とポイントP11との間の距離と、基準チャート40の升目の交点の距離から倍率値M1を算出し、ズーム変倍機構9が持つ倍率値M2に対する算出した倍率値M1の比率を高倍倍率の倍率誤差とし、後述のミクロライブ像補正テーブルに保存する。
【0082】
この操作をズーム最高倍まで例えば10点程度行い、各ズーム倍率について中心P0の座標の補正量と、ズーム倍率の補正量をミクロライブ像補正テーブルに保存する(S25、S26)。最高倍の各ズーム倍率について中心P0の座標の補正量と、ズーム倍率の補正量をミクロライブ像補正テーブルに保存すると、キャリブレーションが終了する。
【0083】
図9は、本実施形態におけるミクロライブ像補正テーブルの一例を示す。ミクロライブ像補正テーブル60は、「ズーム倍率」61、「高倍中心座標の座標誤差(X座標、Y座標)」62、「高倍倍率の倍率誤差」63のデータ項目から構成される。「ズーム倍率」61には、ズーム変倍機構9で設定可能なズーム倍率が格納される。
【0084】
「高倍中心座標の座標誤差(X座標、Y座標)」62には、図6BのS23で取得した「ズーム倍率」61に対応する座標誤差が格納される。「高倍倍率の倍率誤差」63には、図6BのS24で取得した「ズーム倍率」61に対応する倍率誤差が格納される。
【0085】
なお、本実施形態では、高倍対物レンズは1種類しか用いないのでミクロライブ像補正テーブル60は1つしかないが、複数種類の高倍対物レンズを用いる場合には、各高倍対物レンズに対応するミクロライブ像補正テーブルがある。
【0086】
なお、本実施形態では、補正データは上記の通りデータテーブルとして記憶回路29に保存したが、補正データの記憶形式は、データテーブルに限定されない。例えば、図5で示したように、ディストーションは、対物レンズ毎、及びズーム倍率毎に応じてn次関数で表すことができるので、マクロ観察像補正テーブル及びミクロライブ像補正テーブルの代わりに、対物レンズ毎、及びズーム倍率毎のディストーション曲線を示すn次関数を補完式として記憶回路29に保存してもよい。なお、キャリブレーションは製品の工場出荷時に行い、さらに、対物レンズを交換したり故障したりしたときに改めてキャリブレーションを行うことができる。
【0087】
<マクロ観察像及びミクロライブ画像による顕微鏡観察(S2)>
S2では、まず、ユーザが、ナビゲーションマップ画像で任意の箇所をROIで囲むと、そのROI範囲の中心座標を認識して補正を行い、指定中心座標として記憶する。さらに、ROI範囲から倍率値を認識して、そのROI範囲の座標に即した倍率補正を行い、指定倍率値として記憶する。次に、高倍対物レンズに切り替わり、指定倍率値に即した補正ズーム倍率に変倍する。また、その補正ズーム倍率は、キャリブレーションにて各ズーム毎に補正された倍率である。前記補正中心座標値もキャリブレーションにて各ズーム毎に補正された中心座標である。
【0088】
このようにすることで、S1のキャリブレーションにおいて生成されたマクロ観察像補正テーブル及びミクロライブ像補正テーブルに基づいて、マクロ観察像とミクロライブ像と間の座標誤差を及び倍率誤差を補正することができる。
【0089】
図10A及び図10Bは、本実施形態におけるマクロ観察像及びミクロライブ画像による顕微鏡観察をする際に、座標誤差及び倍率誤差を補正する顕微鏡システムの動作フローを示す。まず、顕微鏡本体1の電源が投入される(S31)。すると、制御装置25は、顕微鏡本体1の各電動駆動部を制御し、各駆動部の原点出しを実行する(S32)。そうすると、各駆動部は、原点位置で停止する。
【0090】
次に、ユーザが詳細観察を行いたい範囲を指定する際に利用するマクロ観察像101を取得する(S33)。ここでは、制御装置25の制御によりレボルバ6が駆動して、2つの対物レンズ5のうち低倍対物レンズ5aが観察光軸8上に挿入される。そして、ズーム変倍機構9は、最低倍のズームになるように、ズームレンズを移動させる。そうすると、マクロ観察像101を撮像するための撮像倍率を得ることができる。
【0091】
TVカメラ制御装置26はTVカメラ10を制御して、露出量やホワイトバランスなどを最適に設定し、マクロ観察像101を取得する。そのマクロ観察像101は、画像出力回路31を介してTVモニタ20に表示される(S34)。
【0092】
次に、ユーザは、図11A及び図11Bで説明したように、PCマウス21によるドラッグ操作を行って、TVモニタ20上のマクロ観察像101のうち詳細観察したい領域をROI103で矩形に囲む(S35)。
【0093】
ここで、通常、ユーザが囲ったROI103はCCDのアスペクト比と異なるため、そのままではそのROI103で指定された領域の画像に対応するミクロライブ像102に移行したときに、ミクロライブ像に表示されない部分が生じる。そこで、本実施形態では、ユーザがドラッグ操作によってROI103で矩形に囲った後にPCマウス21のボタンを放すと、制御装置25によりROI103の右下位置が調整されて、選択されたROI103がCCDのアスペクト比と同じ比率に変更される(S36)。
【0094】
なお、ROI103の大きさが高倍対物レンズ5bとズーム変倍機構9の変倍範囲の組み合わせで得られる倍率範囲を超えるほど大きい場合は、制御装置25はROI103の大きさをその組み合わせで得られる倍率範囲のうち最低倍率のROI103の大きさに変換する。逆に、ROI103の大きさが高倍対物レンズ5bとズーム変倍機構9の変倍範囲の組み合わせで得られる倍率範囲を超えるほど小さい場合は、制御装置25はROI103の大きさをその組み合わせで得られる倍率範囲のうち最高倍率のROIの大きさに変換する。(S37)。
【0095】
マクロ観察像101上に表示されたROI103の位置と大きさで良ければ、ユーザは所定の操作を行うことにより、ROI103の範囲の確定を行う(S38で「Yes」へ進む)。もし、ROI103の位置や大きさを変更するなら、ROI103を囲い直すことになる(S38で「No」へ進む)。
【0096】
ROI103の範囲の確定後、制御装置25は、マクロ観察像101上においてROI103の対角中心座標を算出し、その算出した対角中心座標を指定中心座標C1とする(S39)。
【0097】
制御装置25は、記憶回路29からマクロ観察像補正テーブル50を読み出し、指定中心座標C1をキーとして、マクロ観察像補正テーブル50から、指定中心座標C1を含む「領域範囲」51を有するレコードR1を抽出する。制御装置25は、その抽出したレコードR1から「座標誤差」52を取得する。それから、制御装置25は、演算回路30にて指定中心座標C1にその「座標誤差」52を加算し、その加算した値を中心座標補正値C2として得る(S40)。
【0098】
次に、制御装置25は、ROI103の長辺の長さとマクロ観察像101の長辺との比から指定倍率M3を算出する(S41)。
それから、制御装置25は、上記で抽出したレコードR1から「倍率誤差」53を取得する。制御装置25は、演算回路30にて指定倍率M3に「倍率誤差」53を乗算して、倍率補正値M4を得る(S42)。
【0099】
次に、制御装置25の制御によりレボルバ6が回転して、高倍対物レンズ5bが観察光軸8に挿入される(S43)。
それから、制御装置25は、記憶回路29からミクロライブ像補正テーブル60を読み出し、倍率補正値M4をキーとして、ミクロライブ像補正テーブル60に含まれるレコードのうち「高倍倍率の倍率誤差」63が倍率補正値M4に最も近い「高倍倍率の倍率誤差」63を有するレコードR2を抽出する。制御装置25は、その抽出したレコードR2から「ズーム倍率」61を取得し、ズーム変倍機構9を駆動させてそのズーム倍率に設定する(S44)。これにより、倍率補正値M2と同等の高倍倍率補正値を実現するために、高倍対物レンズ5bとズーム変倍機構9の組み合わせで決まるズーム倍率に設定することができる。
【0100】
次に、制御装置25は、上記で抽出したレコードR2から「高倍中心座標の座標誤差」62を取得する。そして、制御装置25は、演算回路30にて中心座標補正値C2に「高倍中心座標の座標誤差」62を加算して、中心座標補正値C3を得る。制御装置25は、試料移動ステージ3を駆動させて、中心座標補正値C3が視野の中心となるようにする(S45)。なお、記憶回路29には、試料移動ステージ3が持つステージ駆動モータの回転角度誤差などで発生する移動量誤差を補正するためのステージの絶対位置に関する補正データが格納されているので、試料移動ステージ3を駆動させる場合には、その移動量誤差も補正される。
【0101】
次に、TVカメラ制御装置26は、撮影条件を最適に設定してミクロライブ像102を取得する。画像出力回路31は、図11A及び図11Bに示すように、TVモニタ20にその取得されたミクロライブ像102を表示させる(S46)。
【0102】
TVモニタ20に表示されたミクロライブ像102の画像を保存する場合は、図示しない撮像フローへ移行する(S47で「Yes」へ進む)。なお、当該撮像フローは本実施形態とは直接関係しないので、その説明を省略する。
【0103】
また、上記で選択したROI103と異なる部位または異なる倍率でミクロライブ像102を得る場合は(S48で「No」へ進み、S49で「Yes」へ進む)、S35のマクロ観察像101上で観察したい領域をROI103で矩形に囲う処理から繰り返す(S50で「Yes」へ進む)。あるいは図示しない他のミクロライブ像を指定するフローへ移動する(S50で「No」へ進む)。
【0104】
全ての処理を終えたら(S48で「Yes」へ進む)、電源をOFFにして(S51)、観察を終了する。
本実施形態によれば、PCマウス21によりROIを使って観察したい領域を指定するだけで、それに応じて自動的に観察倍率が決定され、かつ試料移動ステージ3が移動し、ROIで指定した範囲とほぼ同じ倍率と中心位置を表示することができる。その結果、従来のように拡大倍率の選択ミスを起こすことがない。また、拡大倍率変更時における煩わしい試料移動ステージの移動操作も不要となる。また、マクロ観察像にてミクロ観察したい範囲をROI指定するため、試料の観察位置が明確である。また、レンズ設計やメカ調整でも除去できない公差を補正することができる。
【0105】
なお、上記の実施形態では、顕微鏡本体1には基準チャートを備えていなかったが、試料移動ステージ3上に観察光軸8に対して挿脱可能な基準チャートを保持しておいてもよい。これにより、顕微鏡変倍装置の電源投入時に容易に毎回キャリブレーションを行うことができる。なお、キャリブレーションの回数は変更が可能である。よって、上記の実施形態に加えて、補正値の自己修正や自動故障判断等の効果も得ることができる。
【0106】
本実施形態によれば、以下のことが実現できる。マクロ観察像上で観察したい領域をROIで囲むとそのROI範囲の中心座標を認識して補正を行い、指定中心座標として記憶する。また、ROI範囲から倍率値を認識して、そのROI範囲の座標に即した倍率補正を行い、指定倍率値として記憶する。そして、高倍対物レンズに切り替わり、指定倍率値に即した補正ズーム倍率に変倍する。なお、その補正ズーム倍率は、キャリブレーションにてズーム毎に補正された倍率である。前記補正中心座標値もキャリブレーションにてズーム毎に補正された中心座標である。
【0107】
以上で、ユーザがナビゲーションマップ画像で指定したROIを、ライブ画像で表示させることができる。これにより、ユーザにとって観察倍率の変更時における煩わしい作業が不要となり、観察倍率を迅速かつ適正に選択できるようになる。
【図面の簡単な説明】
【0108】
【図1】本実施形態における顕微鏡システムの全体構成を示す。
【図2】図1の制御装置25の構成の一例を示す。
【図3】本実施形態の全体の概要フローを示す。
【図4A】低倍対物レンズ5a及び最低倍のズーム倍率の条件で撮像された基準チャートの表示例を示す。
【図4B】高倍対物レンズ5b及び最低倍のズーム倍率の条件で撮像された基準チャートの表示例を示す。
【図5】高倍対物レンズ5b及び最低倍のズーム倍率の条件で撮像された基準チャートの表示例を示す。対物レンズとズーム変倍機構のズーム倍率の組み合わせで変化するディストーションの形状を示している。
【図6A】本実施形態におけるキャリブレーションのフロー(その1)を示す。
【図6B】本実施形態におけるキャリブレーションのフロー(その2)を示す。
【図7】本実施形態における低倍対物レンズ及び最低倍ズーム条件下で3点をポイントした場合の補正領域の区分け例を示す。
【図8】本実施形態におけるマクロ観察像補正テーブルの一例を示す。
【図9】本実施形態におけるミクロライブ像補正テーブルの一例を示す。
【図10A】本実施形態におけるマクロ観察像及びミクロライブ画像による顕微鏡観察をする際に、座標誤差及び倍率誤差を補正する顕微鏡システムの動作フロー(その1)を示す。
【図10B】本実施形態におけるマクロ観察像及びミクロライブ画像による顕微鏡観察をする際に、座標誤差及び倍率誤差を補正する顕微鏡システムの動作フロー(その2)を示す。
【図11A】従来におけるナビゲーションマップ画像上の任意の領域を拡大表示させた例(その1)を示す。
【図11B】従来におけるナビゲーションマップ画像上の任意の領域を拡大表示させた例(その2)を示す。
【符号の説明】
【0109】
1 顕微鏡本体
2 照明装置
3 試料移動ステージ
4 焦準装置
5 対物レンズ
5a 低倍対物レンズ
5b 高倍対物レンズ
6 レボルバ
9 ズーム変倍機構
10 TVカメラ
11 高輝度水銀ランプ
12 蛍光観察装置
13 励起フィルタ
14 吸収フィルタ
15 ダイクロイックミラー
16,16a 蛍光キューブ
17 ターレット機構
18 鏡筒
18a 接眼レンズ
19 PC
20 TVモニタ
21 PCマウス
25 制御装置
26 TVカメラ制御装置
27 入力回路
28 駆動回路
29 記憶回路
30 演算回路
31 画像出力回路


【特許請求の範囲】
【請求項1】
観察試料が載置され、観察光軸に対して垂直方向に移動可能な試料移動ステージと、
前記観察光軸に挿入される倍率の異なる複数の対物レンズを切り換えるレボルバと、
ズーム倍率を変倍させるズーム変倍手段と、
前記対物レンズを介して前記観察試料の光学像を撮像する撮像手段と、
ユーザからの指示操作に基づいて、前記対物レンズのうちの第1の対物レンズで第1のズーム倍率で撮像した第1の観察像の所定領域を指定領域として指定することができる領域指定手段と、
前記第1の対物レンズ及び前記第1のズーム倍率に基づいて得られる観察像の第1の座標誤差及び第1の倍率誤差が格納された第1の誤差情報格納手段と、
前記対物レンズのうちの第2の対物レンズと、変倍可能な範囲で変倍させた前記ズーム倍率との組み合わせに基づいて得られる第2の観察像の第2の座標誤差及び第2の倍率誤差がされた第2の誤差情報格納手段と、
前記指定領域の中心座標である指定中心座標を前記第1の座標誤差で補正して第1の補正中心座標とすると共に、前記第1の観察像に対する前記指定領域の大きさに基づいて該指定領域を拡大する倍率を算出し、該倍率を前記第1の倍率誤差で補正して第1の補正倍率とする第1の誤差補正手段と、
前記第2の対物レンズの倍率及び前記ズーム倍率の組み合わせに基づく倍率のうち前記第1の補正倍率に最も近い倍率となる組み合わせを特定し、前記第1の補正中心座標を前記第2の座標誤差で補正して第2の補正中心座標とする第2の誤差補正手段と、
前記特定した対物レンズの倍率及び前記ズーム倍率の組み合わせに基づいて、前記レボルバを制御して前記対物レンズを切り換えると共に、前記ズーム変倍手段を制御して前記ズーム倍率を変倍させ、かつ、前記第2の補正中心座標に基づいて、前記試料移動ステージを移動させる制御を行う制御手段と、
を備えることを特徴とする顕微鏡装置。
【請求項2】
前記第1の誤差情報格納手段は、前記試料移動ステージ上における所定位置が前記第1の対物レンズを介することで移動した距離を前記第1の座標誤差として格納し、前記試料移動ステージ上における所定の2点間の距離と前記第1の対物レンズを介することで伸縮した該2点間の距離との比率を前記第1の倍率誤差として格納している
ことを特徴とする請求項1に記載の顕微鏡装置。
【請求項3】
前記第1の誤差情報格納手段は、
前記第1の観察像の中心から同心円状に複数の領域に区分けし、該区分けした領域毎に前記第1の座標誤差と前記第1の倍率誤差が算出されて格納されている
ことを特徴とする請求項1に記載の顕微鏡装置。
【請求項4】
前記第2の誤差情報格納手段は、前記第1の対物レンズ及び前記第1のズーム倍率で撮像した第1の観察像に対する前記第2の対物レンズ及び前記各ズーム倍率の組み合わせで撮像した前記第2の観察像の座標誤差を前記第2の座標誤差として格納し、該第2の対物レンズ及び前記各ズーム倍率の組み合わせによって得られる各倍率について表示倍率に対する実倍率の比率を前記第2の倍率誤差として格納している
ことを特徴とする請求項1に記載の顕微鏡装置。
【請求項5】
前記第2の誤差情報格納手段は、前記第1の観察像内の前記第1の補正中心座標に対応する前記第2の観察像内の座標と、該第2の観察像の観察視野の中心座標との差分を前記第2の座標誤差として格納し、前記第2の対物レンズでのズーム倍率毎の総合表示倍率と総合実倍率との比率を前記第2の倍率誤差として格納している
ことを特徴とする請求項4に記載の顕微鏡装置。
【請求項6】
前記顕微鏡装置は、さらに、
前記試料移動ステージ上に前記観察光軸に対して挿脱可能であって方眼模様が付された基準チャート
を備えることを特徴とする請求項1に記載の顕微鏡装置。
【請求項7】
観察試料が載置され、観察光軸に対して垂直方向に移動可能な試料移動ステージと、
前記観察光軸に挿入される倍率の異なる複数の対物レンズを切り換えるレボルバと、
ズーム倍率を変倍させるズーム変倍機構と、
前記対物レンズを介して前記観察試料の光学像を撮像する撮像装置と、
ユーザからの指示操作に基づいて、前記対物レンズのうちの第1の対物レンズで第1のズーム倍率で撮像した第1の観察像の前記所定領域を指定領域として指定することができる領域指定機能と、
前記第1の対物レンズ及び前記第1のズーム倍率に基づいて得られる観察像の第1の座標誤差及び第1の倍率誤差が格納された第1の誤差情報格納装置と、
前記対物レンズのうちの第2の対物レンズと、変倍可能な範囲で変倍させた前記ズーム倍率との組み合わせに基づいて得られる第2の観察像の第2の座標誤差及び第2の倍率誤差がされた第2の誤差情報格納装置と、
を備える顕微鏡装置の動作を制御する処理をコンピュータに実行させる顕微鏡制御プログラムであって、
前記指定領域の中心座標である指定中心座標を前記第1の座標誤差で補正して第1の補正中心座標とすると共に、前記第1の観察像に対する前記指定領域の大きさに基づいて該指定領域を拡大する倍率を算出し、該倍率を前記第1の倍率誤差で補正して第1の補正倍率とする第1の誤差補正処理と、
前記第2の対物レンズの倍率及び前記ズーム倍率の組み合わせに基づく倍率のうち前記第1の補正倍率に最も近い倍率となる組み合わせを特定し、前記第1の補正中心座標を前記第2の座標誤差で補正して第2の補正中心座標とする第2の誤差補正処理と、
前記特定した対物レンズの倍率及び前記ズーム倍率の組み合わせに基づいて、前記レボルバを制御して前記対物レンズを切り換えると共に、前記ズーム変倍機構を制御して前記ズーム倍率を変倍させ、かつ、前記第2の補正中心座標に基づいて、前記試料移動ステージを移動させる制御を行う駆動制御処理と、
をコンピュータに実行させることを特徴とする顕微鏡制御プログラム。
【請求項8】
観察試料が載置され、観察光軸に対して垂直方向に移動可能な試料移動ステージと、
前記観察光軸に挿入される倍率の異なる複数の対物レンズを切り換えるレボルバと、
ズーム倍率を変倍させるズーム変倍機構と、
前記対物レンズを介して前記観察試料の光学像を撮像する撮像装置と、
ユーザからの指示操作に基づいて、前記対物レンズのうちの第1の対物レンズで第1のズーム倍率で撮像した第1の観察像の前記所定領域を指定領域として指定することができる領域指定機能と、
前記第1の対物レンズ及び前記第1のズーム倍率に基づいて得られる観察像の第1の座標誤差及び第1の倍率誤差が格納された第1の誤差情報格納装置と、
前記対物レンズのうちの第2の対物レンズと、変倍可能な範囲で変倍させた前記ズーム倍率との組み合わせに基づいて得られる第2の観察像の第2の座標誤差及び第2の倍率誤差がされた第2の誤差情報格納装置と、
を備える顕微鏡装置の動作を制御する顕微鏡制御方法であって、
前記指定領域の中心座標である指定中心座標を前記第1の座標誤差で補正して第1の補正中心座標とすると共に、前記第1の観察像に対する前記指定領域の大きさに基づいて該指定領域を拡大する倍率を算出し、該倍率を前記第1の倍率誤差で補正して第1の補正倍率とし、
前記第2の対物レンズの倍率及び前記ズーム倍率の組み合わせに基づく倍率のうち前記第1の補正倍率に最も近い倍率となる組み合わせを特定し、前記第1の補正中心座標を前記第2の座標誤差で補正して第2の補正中心座標とし、
前記特定した対物レンズの倍率及び前記ズーム倍率の組み合わせに基づいて、前記レボルバを制御して前記対物レンズを切り換えると共に、前記ズーム変倍機構を制御して前記ズーム倍率を変倍させ、かつ、前記第2の補正中心座標に基づいて、前記試料移動ステージを移動させる制御を行う、
ことを特徴とする顕微鏡制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate


【公開番号】特開2008−299027(P2008−299027A)
【公開日】平成20年12月11日(2008.12.11)
【国際特許分類】
【出願番号】特願2007−144329(P2007−144329)
【出願日】平成19年5月31日(2007.5.31)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】