説明

EMC試験用電波放射装置

【課題】電子機器の妨害排除能力を測定するためのEMC試験用電波放射装置において、送信信号を増幅する増幅器を、反射波から保護する。
【解決手段】放射アンテナ10と、放射アンテナ10から試験用電波を放射させるための送信信号を発生する発振器20と、発振器20からの送信信号を増幅して放射アンテナ10に出力する増幅器22と、を備えたEMC試験用電波放射装置において、放射アンテナ10を構成するホーンアンテナの同軸導波管変換器16に、導波管型の方向性結合器40を設け、保護回路30が、方向性結合器40から反射波の検出信号を取り込み、その検出信号を検波した検波電圧が基準電圧に達すると、レベル調整器24を駆動して、発振器20から増幅器22に入力される送信信号を減衰させるように構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、妨害波による電子機器の耐性を測定する妨害排除能力試験を行うのに用いられるEMC試験用電波放射装置に関する。
【背景技術】
【0002】
従来より、電子機器の電磁環境適合性(EMC:Electro Magnetic Compatibility)を評価するEMC試験の一つとして、妨害波による電子機器の耐性を測定する妨害排除能力試験(所謂イミュニティ試験)が知られている。
【0003】
このイミュニティ試験は、試験対象となる電子機器(以下、試験対象機器ともいう)に妨害波を照射した際に、試験対象機器が正常に動作するか否かを判定するための試験であり、試験対象機器に妨害波として照射する試験用電波の周波数や強度は、国際電気標準会議(IEC)等の国際規格若しくは各種団体の規格で規定されている。
【0004】
このため、こうしたイミュニティ試験を行う際には、通常、所望の指向特性が得られるホーンアンテナと、ホーンアンテナから試験用電波を放射させるための送信信号を発生する発振器と、この発振器からの送信信号を所定レベルまで増幅してホーンアンテナに出力する増幅器とを備えたEMC試験用電波放射装置が用いられ、試験用電波の周波数や照射強度は、その装置を構成する発振器の発振周波数や増幅器の出力を調整することにより、試験条件に対応した適正値に設定される。
【0005】
ところで、イミュニティ試験では、試験対象機器に対して高レベルの妨害波を照射する必要があるため、EMC試験用電波放射装置には、増幅器として、高出力アンプが組み込まれているが、この増幅器の出力を増加させるとコストアップを招くことになる。
【0006】
このため、イミュニティ試験の実行時には、通常、EMC試験用電波放射装置の増幅器を最大出力付近で動作させることで、増幅器(延いてはEMC試験用電波放射装置)のコストを抑えつつ、試験条件に対応した所望強度の試験用電波を放射させている。
【0007】
ところが、イミュニティ試験の実行時には、ホーンアンテナから放射した試験用電波が、試験対象機器を含む周囲の物体に当たって反射し、その反射波がホーンアンテナにて受信されて、その受信信号が増幅器まで戻ってくることがある。
【0008】
そして、このとき、増幅器を最大出力付近で動作させていると、増幅器の出力段のトランジスタ(出力トランジスタ)には、最大出力となる送信信号に受信信号を加えた大電流が流れ、出力トランジスタが壊れてしまう。
【0009】
そこで、従来では、この問題を解決するために、増幅器からホーンアンテナに至る送信信号の伝送線路上にアイソレータを設けて、ホーンアンテナから増幅器に向けて流れる受信信号を減衰させることが考えられている(例えば、特許文献1等参照)。
【0010】
また、同様の目的で、増幅器からホーンアンテナに至る送信信号の伝送線路上に分岐器を設けて、ホーンアンテナから増幅器に向けて流れる受信信号を分岐させ、その分岐信号から反射波の信号レベルを検知して、その信号レベルが所定の上限レベルよりも高い場合に、増幅器からの出力を抑制することも考えられている(例えば、特許文献2等参照)。
【特許文献1】特開2006−191179号(段落[0037]、[0038])
【特許文献2】特開2006−329877号(段落[0037]〜[0040])
【発明の開示】
【発明が解決しようとする課題】
【0011】
しかしながら、上記のような対策では、増幅器を反射波から保護することはできるものの、その対策のために、増幅器からホーンアンテナに至る送信信号の伝送線路上に、アイソレータや分岐器を設けているので、送信信号は、これら各部を通過する際に、その通過損失分だけ減衰されてしまう。
【0012】
そして、このように送信信号が減衰されると、ホーンアンテナからの放射電力、延いては試験対象機器に対する試験用電波の照射電力、も減衰することになるので、その減衰量を補うように、増幅器の出力を増大させる必要がある。
【0013】
しかし、増幅器は、通常、最大出力付近で使用されているので、その出力を更に増大させるには、増幅器自体を、より高出力が可能なものに変更しなければならず、上記従来の対策では、EMC試験用電波放射装置のコストアップを招くという問題があった。
【0014】
本発明は、こうした問題に鑑みなされたものであり、電子機器の妨害排除能力を測定するためのEMC試験用電波放射装置において、送信信号を増幅する増幅器を、その増幅器の出力を増大させることなく、反射波から保護できるようにすることを目的とする。
【課題を解決するための手段】
【0015】
かかる目的を達成するためになされた請求項1に記載の発明は、
測定対象となる電子機器に向けて試験用電波を放射する放射アンテナと、
該放射アンテナから前記試験用電波を放射させるための送信信号を発生する信号発生器と、
該信号発生器からの送信信号を所定レベルまで増幅して前記放射アンテナに出力する増幅器と、
を備え、前記電子機器の妨害排除能力を測定するのに用いられるEMC試験用電波放射装置であって、
前記放射アンテナは、
円錐若しくは角錐のホーンと、
ホーンの後端側に延設された導波管と、
該導波管の後端に回転軸を介して導波管の中心軸周りに回転可能に固定され、試験用電波を出射するための送信用プローブと、
該送信用プローブに送信信号を給電するための同軸導波管変換器と、
前記送信用プローブの後端を支持した回転軸を回転させて、当該放射アンテナから放射される試験用電波の偏波角度を調整するための回動手段と、
を備えたホーンアンテナにて構成され、
更に、
前記ホーンアンテナの同軸導波管変換器を構成する導波管内に配置され、前記放射アンテナからの放射電波が前記電子機器を含む周囲の物体に当たって反射してきた反射波を検出する導波管型の方向性結合器と、
該方向性結合器からの検出信号に基づき、前記反射波が予め設定された閾値レベルに達しているか否かを判断し、前記反射波が閾値レベルに達していれば、前記増幅器からの送信信号の出力を抑制して、前記増幅器を前記反射波から保護する保護手段と、
を備えたことを特徴とする。
【発明の効果】
【0016】
請求項1に記載のEMC試験用電波放射装置においては、上述した従来装置と同様、信号発生器が送信信号を発生し、増幅器がその送信信号を所定レベルまで増幅して、放射アンテナに出力することにより、放射アンテナから試験用電波を放射させる。
【0017】
また、放射アンテナは、ホーンと、導波管と、送信用プローブと、同軸導波管変換器とを備えたホーンアンテナにて構成されており、しかも、このホーンアンテナには、送信用プローブの後端を支持した回転軸を回転させる回動手段が設けられているため、イミュニティ試験を行う際には、この回動手段を介して、放射アンテナから放射される試験用電波の偏波角度を任意に設定することができる。
【0018】
また更に、本発明では、放射アンテナから放射された試験用電波が、試験対象機器を含む周囲の物体に当たって反射し、その反射波が放射アンテナにて受信されても、増幅器が故障することのないようにするために、同軸導波管変換器の導波管内には、その反射波を直接受信することのできる導波管型の方向性結合器が設けられている。
【0019】
そして、保護手段が、この方向性結合器からの検出信号に基づき、反射波が予め設定された閾値レベルに達しているか否かを判断し、反射波が閾値レベルに達していれば、増幅器からの送信信号の出力を抑制する。
【0020】
このため、本発明のEMC試験用電波放射装置によれば、増幅器から放射アンテナに至る送信信号の伝送線路上にアイソレータや分岐器等の保護用機器を設けることなく、増幅器を反射波から保護することができる。
【0021】
よって、本発明によれば、従来のように、送信信号の伝送線路上に設けた保護用機器で生じる送信信号の減衰量を補うために、増幅器の出力を増大させる必要がなく、増幅器の保護対策を効率よく行うことができる。
【0022】
つまり、導波管型の方向性結合器は、反射波と進行波とを検出する2つのプローブから構成されることから、進行波である送信信号を無損失で通過させることはできない。しかし、各プローブの先端部分は、進行波及び反射波の伝送方向に沿って折り曲げられ、同軸型のプローブや、伝送線路上に設けられる保護用機器(アイソレータや分岐器)に比べて、反射波と進行波をそれぞれ低損失(−50dB程度)で取り出すことができる。
【0023】
このため、導波管型の方向性結合器で生じる送信信号(進行波)の損失は、従来装置に比べて無視できる程度のものとなり、本発明によれば、増幅器の出力を増大させることなく、増幅器の保護対策を行うことができるようになるのである。
【発明を実施するための最良の形態】
【0024】
以下に本発明の実施形態を図面と共に説明する。
図1は、本発明が適用されたEMC試験用電波放射装置全体の構成を表す構成図である。
【0025】
図1に示すように、本実施形態のEMC試験用電波放射装置は、電波暗室2内に配置された電子機器(試験対象機器)4に対し試験用電波を照射することで、試験対象機器4の妨害波に対する耐性を測定するイミュニティ試験を行うためのものであり、試験対象機器4に向けて試験用電波を放射する放射アンテナ10を備える。
【0026】
放射アンテナ10は、ホーンアンテナから構成されており、試験対象機器4と共に電波暗室2内に設置されている。
すなわち、放射アンテナ10は、図2に示すように、円錐若しくは角錐のホーン12と、このホーン12の後端側に延設された導波管14と、この導波管14の後端に回転軸18aを介して導波管14の中心軸回りに回転可能に固定され、試験用電波を出射するための送信用プローブP1と、この送信用プローブP1に送信信号を給電するための同軸導波管変換器16と、から構成されている。
【0027】
ここで、送信用プローブP1は、直線偏波の電波を放射できるように、導波管14の中心軸に沿って矩形波状に曲折されている。このため、この送信用プローブP1を、回転軸18aを介して、導波管14の中心軸周りに回転させれば、放射アンテナ10から放射される試験用電波の偏波角度を調整することができる。
【0028】
また、同軸導波管変換器16は、後述の増幅器22(図1参照)から送信信号を受けて送信用プローブP1に給電するための給電用プローブP0と、この給電用プローブP0から送信用プローブP1への給電経路を形成してこれら各部を結合させる導波管16aとから構成されている。
【0029】
そして、この導波管16aには、送信用プローブP1の後端を支持した回転軸18aが後方に向けて貫通されており、その導波管16aの後方には、この回転軸18aに連結されてこれを回転させる回動手段(本実施形態ではモータ18)が組み付けられている。
【0030】
また、このモータ18は、所望の回転角度で停止させることができるように、ステップモータ若しくはサーボモータにて構成されており、モータ18の出力軸(延いては回転軸18a)には、回転角度検出用のスリットを設けた回転板18bが固定され、更に、その回転板18bの周囲には、そのスリットを検出してモータ18の回転角度(延いては放射アンテナ10から放射される試験用電波の偏波角度)を表す回転角度信号を発生する回転センサ18cが配置されている。
【0031】
また、導波管16aにおいて、給電用プローブP0と送信用プローブP1との間には、導波管型の方向性結合器40が設けられている。
この方向性結合器40は、送信用プローブP1から放射した試験用電波が試験対象機器4やその周囲の物体に当たって反射し、その反射波が、送信用プローブP1で受信されて、給電用プローブP0に伝達されるときに、その反射波の一部を、同軸導波管変換器16の導波管16a内で検出するためのものであり、図3に示すように構成されている。
【0032】
すなわち、方向性結合器40は、図3に示すように、導波管16a内で送信用プローブP1から給電用プローブP0に向けて伝送される反射波と、導波管16a内で給電用プローブP0から送信用プローブP1に向けて伝送される送信信号(進行波)を、それぞれ検出するための一対のプローブ(第1プローブ41及び第2プローブ42)からなり、各プローブ41、42の先端部分(プローブ部41a、42a)を反射波及び進行波の伝送方向に沿って互いに内側に屈曲させることにより、導波管16aの壁面に穿設した結合窓を介して侵入してくる反射波及び進行波を検出するように構成されている。
【0033】
一方、図1に示すように、電波暗室2の外には、試験用電波となる送信信号を発生する発振器20と、この発振器20から出力される送信信号を所定レベルまで増幅して、放射アンテナ10の給電用プローブP0に出力する増幅器22と、発振器20から増幅器22に至る送信信号の伝送線路上に設けられたレベル調整器24と、方向性結合器40の第1プローブ41から反射波の検出信号を取り込み、レベル調整器24を制御する保護回路30と、回転センサ18cからの回転角度信号に基づき試験用電波の偏波角度を検出し、この偏波角度が外部から指令された偏波角度となるようモータ18を駆動する偏波切換器26と、が設けられている。なお、方向性結合器40において進行波を検出する第1プローブ42は、終端抵抗にて終端されている。
【0034】
ここで、レベル調整器24は、増幅器22に入力される送信信号の信号レベルを調整するためのものであり、例えば、可変減衰器から構成されている。
また、保護回路30は、本発明の保護手段に相当するものであり、方向性結合器40からの反射波の検出信号を振幅検波する振幅検波器32と、その検波電圧と予め設定された基準電圧とを比較することで、検出信号(換言すれば反射波)が所定の閾値レベルに達しているか否かを判断する電圧比較器34とから構成されている。
【0035】
そして、電圧比較器34は、検波電圧が基準電圧よりも低い場合(つまり、反射波が所定の閾値レベルに達していない場合)には、レベル調整器24によるレベル調整量(減衰量)を最小にして、発振器20から出力された送信信号を減衰させることなくそのまま増幅器22へ入力させ、検波電圧が基準電圧以上になった場合(つまり、反射波が所定の閾値レベルに達した場合)には、レベル調整器24によるレベル調整量(減衰量)を保護用の設定値にして、発振器20から増幅器22に入力される送信信号を減衰させる。
【0036】
なお、電圧比較器34は、検波電圧が一旦基準電圧以上になると、その後、使用者により保護回路30が再起動されるまで、比較結果(換言すればレベル調整器24への出力)を保持し、発振器20から増幅器22への送信信号の入力を制限する。
【0037】
このため、本実施形態のEMC試験用電波放射装置によれば、方向性結合器40にて検出された反射波が上記基準電圧で決まる閾値レベルに達した際には、増幅器22からの送信信号の出力(電力)が抑制されることになり、増幅器22の出力段(出力トランジスタ)に流れる電流が許容電流を越えて、出力トランジスタが劣化若しくは破壊するのを防止できる。
【0038】
また、本実施形態では、増幅器22を保護するために、増幅器22から放射アンテナ10に至る送信信号の伝送線路上にアイソレータや分岐器等の保護用機器を設ける必要がないので、この保護用機器で生じる送信信号(電力)の損失を補うために、増幅器22の出力を増大させる必要がない。よって、増幅器22の反射波からの保護対策を、従来に比べて低コストで行うことができる。
【0039】
以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の技術範囲内にて、種々の態様をとることができる。
例えば、上記実施形態では、保護回路30は、方向性結合器40の第1プローブ41から出力される反射波の検出信号を取り込み、その検出信号を振幅検波して、基準電圧と比較することで、増幅器22を保護するものとして説明したが、保護回路30は、方向性結合器40の第1、第2プローブ41、42から出力される反射波及び進行波の検出信号を取り込み、これら各検出信号に基づき増幅器22を保護するようにしてもよい。
【0040】
そして、この場合、保護回路30は、方向性結合器40の各プローブ41、42から出力される検出信号をそれぞれ振幅検波して、反射波の進行波に対する電力比率(反射電力比)を算出し、その算出された反射電力比が増幅器22の破損限界値を超えたか否かを判断して、反射電力比が破損限界値を越えたときに、増幅器22に入力される送信信号を減衰させるように構成すればよい。
【0041】
また、上記実施形態と同様に、増幅器22を反射波から保護するには、電圧比較器34からの出力により、増幅器22又は発振器20の動作を停止させるようにしてもよい。
また、上記実施形態では、発振器20、増幅器22、レベル調整器24、偏波切換器26、及び、保護回路30は、全て電波暗室2の外に配置されるものとして説明したが、これら各部は、放射アンテナ10と共に、電波暗室2内に設けるようにしてもよい。
【0042】
なお、この場合、電波暗室2内に設ける放射アンテナ10以外のものは、電波暗室2内で反射波の経路を形成してしまうことのないよう、放射アンテナ10に一体的に組み付けることが望ましい。
【図面の簡単な説明】
【0043】
【図1】実施形態のEMC試験用電波放射装置全体の構成を表す構成図である。
【図2】放射アンテナの内部構造を表す断面図である。
【図3】同軸導波管変換器への方向性結合器の取り付け部分を表す断面図である。
【符号の説明】
【0044】
2…電波暗室、4…試験対象機器(電子機器)、10…放射アンテナ、12…ホーン、14…導波管、16…同軸導波管変換器、16a…導波管、18…モータ、18a…回転軸、18b…回転板、18c…回転センサ、20…発振器、22…増幅器、24…レベル調整器、26…偏波切換器、30…保護回路、32…振幅検波器、34…電圧比較器、P0…給電用プローブ、P1…送信用プローブ、40…方向性結合器、41…第1プローブ、42…第2プローブ、41a,42a…プローブ部。

【特許請求の範囲】
【請求項1】
測定対象となる電子機器に向けて試験用電波を放射する放射アンテナと、
該放射アンテナから前記試験用電波を放射させるための送信信号を発生する信号発生器と、
該信号発生器からの送信信号を所定レベルまで増幅して前記放射アンテナに出力する増幅器と、
を備え、前記電子機器の妨害排除能力を測定するのに用いられるEMC試験用電波放射装置であって、
前記放射アンテナは、
円錐若しくは角錐のホーンと、
ホーンの後端側に延設された導波管と、
該導波管の後端に回転軸を介して導波管の中心軸周りに回転可能に固定され、試験用電波を出射するための送信用プローブと、
該送信用プローブに送信信号を給電するための同軸導波管変換器と、
前記送信用プローブの後端を支持した回転軸を回転させて、当該放射アンテナから放射される試験用電波の偏波角度を調整するための回動手段と、
を備えたホーンアンテナにて構成され、
更に、
前記ホーンアンテナの同軸導波管変換器を構成する導波管内に配置され、前記放射アンテナからの放射電波が前記電子機器を含む周囲の物体に当たって反射してきた反射波を検出する導波管型の方向性結合器と、
該方向性結合器からの検出信号に基づき、前記反射波が予め設定された閾値レベルに達しているか否かを判断し、前記反射波が閾値レベルに達していれば、前記増幅器からの送信信号の出力を抑制して、前記増幅器を前記反射波から保護する保護手段と、
を備えたことを特徴とするEMC試験用電波放射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate