説明

GNSS受信装置及び測位方法

【課題】マルチパスの影響を低減し、測位精度を向上させること。
【解決手段】GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置は、測位信号に含まれるコードを用いて、GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算部と、GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定部と、経路差変化率推定部により推定された経路差の変化率に対応するフィルタの時定数を求め、該時定数を設定する時定数設定部と、時定数設定部により設定された時定数で、擬似距離演算部により求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去部とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、GNSS用周回衛星からの信号を受信して位置や速度を測定するGNSS受信装置及び測位方法に関する。
【背景技術】
【0002】
衛星航法(GNSS: Global Navigation Satellite System)とは、航空機から3つの航法衛星(GNSS用周回衛星)(以下、GNSS衛星と呼ぶ)を捕捉することで各GNSS衛星からの距離を得るとともに、4つ目の航法衛星からの信号で時刻合わせを行い、航空機の3次元での飛行位置を得ることができる航法システムである。衛星航法には、全地球的測位システム(GPS: Global Positioning System)、ガリレオ(GALILEO)などが含まれる。
【0003】
例えば、GNSS受信装置は移動体に搭載され、該移動体の位置及び速度を測定する。例えば、GNSS受信装置は、複数のGNSS衛星からの電波を受信することによって、複数のGNSS衛星から当該GNSS受信装置までの距離(擬似距離)をそれぞれ測定し、該測定値に基づいて当該GNSS受信装置が搭載された移動体の測位を行う。GNSS衛星により発射された信号は、GNSS衛星とGNSS受信装置との間の距離を電波が伝搬する時間だけ遅れてGNSS受信装置に到達する。従って、複数のGNSS衛星について電波伝搬に要する時間を求めれば、測位演算によってGNSS受信装置の位置を求めることができる。例えば、複数のGNSS衛星により発射された電波は、GNSS受信装置の測拒部において、各GNSS衛星からGNSS受信装置までの距離が求められる。そして、測位演算部において、測拒部において求められた距離に基づいて、GNSS受信装置の位置が求められる。
【特許文献1】特開平5−19036号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
例えば、GPS受信装置では、GPS衛星からの受信信号と、該受信信号のレプリカ信号との相関が求められ、該相関ピークの位置から擬似距離が求められる。該擬似距離は、マルチパスやノイズの影響を受けている。ノイズとしては、GPS受信装置を構成する電子回路の熱雑音に起因するノイズが含まれる。ノイズを低減するために、ノイズを含む擬似距離に搬送波位相を利用したフィルタリングを施すキャリアスムージングと呼ばれる処理が行われる。
【0005】
図1(a)には、GPS受信装置の一例が示される。GPS受信装置10は、衛星捕捉/追尾処理部2と、ノイズ除去部6とを有する。衛星捕捉/追尾処理部2は、コリレータ4を有する。衛星捕捉/追尾処理部2は、GPS衛星を捕捉し、追尾する。コリレータ4は、GPS衛星からの受信信号とC/Aコードのレプリカ信号との相関を取り、相関値を求める。例えば、図1(b)に示されるように、コリレータ4は、E/P/Lの3点の相関値を求め、Pが最大となるようにレプリカ信号の位相を調節することにより、相関ピークを検出する。該相関ピークの位相遅延量が、GPS衛星と当該GPS受信装置との間の擬似距離を示す。但し、コリレータ4により求められたC/Aコードによる擬似距離は、熱雑音により大きな誤差ばらつきを含む。このため、ノイズ除去部6により、擬似距離を搬送波の位相変化量でフィルタリングするキャリアスムージング処理により、熱雑音によるノイズを除去する。例えば、図1(c)に示されるように、コリレータ4から出力された擬似距離Aは、キャリアスムージング処理され、高精度な擬似距離Bとして、ノイズ除去部6から出力する。
【0006】
また、GPS衛星からの電波がマルチパスの影響を受けた場合には、GPS受信装置は、GPS衛星から直接受信される直接波と、建造物などから反射されてくる反射波とを同時に受信する。例えば、図2(a)に示されるように、移動体に搭載されたGPS受信装置は、直接波と反射波とを受信する。直接波と反射波とを同時に受信した場合、該受信波は直接波と反射波との合成波形となり、該相関波形は合成波とC/Aコードのレプリカ信号との相関を求めることにより得られる。直接波と反射波とが同位相で受信された場合には、図2(b)に示されるように、コード位相が遅れる方向に誤差が発生する。すなわち、直接波のピーク位置を擬似距離として認識するのが好ましいが、合成波のピーク位置を擬似距離として認識する。従って、直接波のピーク位置と合成波のピーク位置との間の位相差分、コード位相が遅れる方向に誤差が発生する。コード位相が遅れる方向に誤差が発生することにより、擬似距離が長く見える。
【0007】
反射波が直接波に対して逆位相で受信された場合には、図2(c)に示されるように、コード位相が進む方向に誤差が発生する。すなわち、直接波のピーク位置を擬似距離として認識するのが好ましいが、合成波のピーク位置を擬似距離として認識する。従って、直接波のピーク位置と合成波のピーク位置との間の位相差分、コード位相が進む方向に誤差が発生する。コード位相が進む方向に誤差が発生することにより、擬似距離が短く見える。
【0008】
また、GPS受信装置が搭載された移動体若しくはGPS衛星が壁に対して移動する場合には、時間の経過とともに直接波と反射波との間の経路差が変化し、直接波と反射波との間の経路差が変化することにより、反射波の位相も変化する。従って、反射波の位相が変化することにより、擬似距離に含まれる誤差も、真値を中心に変動を繰り返す。
【0009】
反射波の位相の一周期は、20cmに相当する。従って、経路差が20cm短く若しくは長くなる毎に、相関波形は図2(b)と図2(c)との間を繰り返し、擬似距離も真値に対して長、短、長という周期を繰り返す。
【0010】
例えば、壁に鉛直方向に時速40kmで移動体が移動した場合、該時速40kmは約秒速11mとなるので、11m/0.2m×2=110より、毎秒110回擬似距離が変動する。
【0011】
GPS受信装置の出力段では、上述したフィルタによりノイズが除去される。図2(d)に示されるように、移動体の移動速度が充分に速い場合にはマルチパスによる擬似距離の変動がフィルタによってある程度平均化される。しかし、移動速度が遅い若しくは停止している場合における周期の長い擬似距離の変動はほとんど平均化されない。主に熱雑音によるノイズを除去するために短い時定数のフィルタが用いられるためである。
【0012】
従って、GPS受信装置の搭載された移動体の速度が遅い場合若しくは停止している場合には、マルチパスによる誤差が大きくなる。
【0013】
例えば、GPS衛星からの電波を受信して自己の現在位置を測定するGPS測位手段と、方位センサからの方位データと速度センサからの速度データとから自己の現在位置を測定する自立型測位手段と、前記GPS測位手段からのデータまたは前記自立型測位手段からのデータを選択的に出力するデータ処理手段とを有する装置が開示されている。この装置では、PDOP(position dilution of precision)値が所定値以下であり、GPS測位手段からの速度データが所定値以上で、かつGPS測位手段からの速度データと自立型測位手段からの速度データとの差が所定値内であるような場合のみGPS測位手段からのデータが選択される(例えば、特許文献1参照)。
【0014】
本発明は、上述の点に鑑みてなされたものであり、マルチパスの影響を低減し、測位精度を向上させることができるGNSS受信装置及び測位方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
上記課題を解決するため、本GNSS受信装置は、
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置において、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算部と、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定部と、
該経路差変化率推定部により推定された経路差の変化率に対応するフィルタの時定数を求め、該時定数を設定する時定数設定部と、
該時定数設定部により設定された時定数で、前記擬似距離演算部により求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去部と
を有する。
【0016】
本GNSS受信装置は、
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置において、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算部と、
複数の異なる時定数で、前記擬似距離演算部により求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去部と、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定部と、
該経路差変化率推定部により推定された経路差の変化率に基づいて、前記ノイズ除去部により複数の異なる時定数でフィルタリングされた擬似距離の中から、いずれか1つを選択する選択部と
を有する。
【0017】
また、他の例では、
前記経路差変化率推定部は、当該GNSS受信装置の移動速度から、前記経路差の変化率を推定する。
【0018】
また、他の例では、
前記経路差変化率推定部は、当該GNSS受信装置と前記反射波の経路に位置する反射体との距離を求めることにより、前記経路差の変化率を推定する。
【0019】
また、他の例では、
地図情報が記憶された地図DB
を有し、
前記経路差変化率推定部は、反射体の候補が複数存在する場合に、前記擬似距離演算部により求められた擬似距離により、GNSS衛星の位置及び当該GNSS受信装置の位置を求め、
該GNSS衛星の位置及び当該GNSS受信装置の位置と前記地図DBに記憶された地図情報に基づいて、当該GNSS受信装置に対する影響の最も大きい反射波の経路を選択し、
該反射波の経路に基づいて、前記経路差の変化率を推定する。
【0020】
本測位方法は、
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置における測位方法であって、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算ステップと、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定ステップと、
該経路差変化率推定ステップにより推定された経路差の変化率に対応するフィルタの時定数を求め、該時定数を設定する時定数設定ステップと、
該時定数設定ステップにより設定された時定数で、前記擬似距離演算ステップにより求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去ステップと
該ノイズ除去ステップによりフィルタリングされた擬似距離を用いて測位を行う測位演算ステップと
を有する。
【0021】
本測位方法は、
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置における測位方法であって、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算ステップと、
複数の異なる時定数で、前記擬似距離演算ステップにより求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去ステップと、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定ステップと、
該経路差変化率推定ステップにより推定された経路差の変化率に基づいて、前記ノイズ除去ステップにより複数の異なる時定数でフィルタリングされた擬似距離の中から、いずれか1つを選択する選択ステップと、
該選択ステップにより選択された擬似距離を用いて測位を行う測位演算ステップと
を有する。
【発明の効果】
【0022】
開示のGNSS受信装置及び測位方法によれば、マルチパスの影響を低減し、測位精度を向上させることができる。
【発明を実施するための最良の形態】
【0023】
次に、本発明を実施するための最良の形態を、以下の実施例に基づき図面を参照しつつ説明する。
【0024】
なお、実施例を説明するための全図において、同一機能を有するものは同一符号を用い、繰り返しの説明は省略する。
【0025】
(第1の実施例)
本実施例に係るGNSS(Global Navigation Satellite System 全世界航法衛星システム)は、地球周りを周回するGNSS衛星と、地球上に位置し地球上を移動しうるGNSS受信装置100を備える。本実施例では、GNSSの一例としてGPSについて説明する。
【0026】
GNSS衛星は、航法メッセージ(衛星信号)を地球に向けて常時放送する。航法メッセージには、対応するGNSS衛星に関する衛星軌道情報(エフェメリスやアルマナク)、時計の補正値、電離層の補正係数が含まれる。航法メッセージは、C/Aコードにより拡散されL1波(周波数:1575.42MHz)に乗せられて、地球に向けて常時放送されている。尚、L1波は、C/Aコードで変調されたSin波とPコード(Precision Code)で変調されたCos波との合成波であり、直交変調されている。C/Aコード及びPコードは、擬似雑音(Pseudo Noise)符号であり、−1と1とが不規則に周期的に並ぶ符号列である。
【0027】
尚、現在、約30個のGNSS衛星が高度約20,000kmの上空で地球を一周しており、55度ずつ傾いた6つの地球周回軌道面があり、各々の軌道面に4個以上のGNSS衛星が均等に配置されている。従って、天空が開けている場所であれば、地球上のどの場所にいても、常時、少なくとも5個以上のGNSS衛星が観測可能である。
【0028】
本GNSS受信装置100は、例えば、移動体に搭載される。移動体には、車両、自動二輪車、列車、船舶、航空機、ロボットなど、人の移動に伴い移動する携帯端末などの情報端末などが含まれる。
【0029】
本GNSS受信装置100は、当該GNSS受信装置100の移動速度から、GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する。当該GNSS受信装置100の移動速度は、該GNSS受信装置100の搭載された移動体の移動速度であってもよい。該GNSS受信装置100は、経路差の変化率に応じて、擬似距離に対してキャリアスムージング処理を行う場合における時定数をダイナミックに変更する。例えば、移動体の移動速度が速いときには短い(小さい)時定数を選択し、移動体の移動速度が遅いときには長い(大きい)時定数を選択する。経路差の変化率に応じて時定数を選択することにより、低速時のマルチパスの影響を低減できる。また、経路差の変化率に応じて時定数を選択することにより、GNSS受信装置100の移動に追従して擬似距離の精度を向上させることができる。
【0030】
本GNSS受信装置100は、図3に示すように、衛星捕捉/追尾処理部102と、ノイズ除去部106と、経路差変化推定部108とを有する。衛星捕捉/追尾処理部102は、コリレータ104を有する。
【0031】
GNSS受信装置100は、GNSS衛星から発信されている衛星信号を、アンテナを介して受信する。衛星捕捉/追尾処理部102は、GNSS衛星を捕捉し、該補足したGNSS衛星を追尾する。
【0032】
コリレータ104は、C/Aコードのレプリカ信号(レプリカC/Aコードとも呼ばれる)を生成し、該レプリカC/Aコードを用いて、C/Aコードと同期することにより、航法メッセージを取り出す。例えば、コリレータ104は、DDL(Delay-Locked Loop)を用いて、受信したC/Aコードに対するレプリカC/Aコードの相関値がピークとなるコード位相を追尾することにより、航法メッセージを取り出す。コリレータ104は、E/P/Lの3点の相関値を求め、Pが最大となるようにレプリカ信号の位相を調節することにより、相関値のピークを検出する。また、コリレータ104は、GNSS衛星と当該GNSS受信装置100との間の擬似距離を求める。相関値のピークの位相遅延量が、GNSS衛星と当該GNSS受信装置100との間の擬似距離を示す。擬似距離は、GNSS衛星と当該GNSS受信装置100との間の真の距離とは異なり、時計誤差(クロックバイアス)や、電離層遅延誤差などの電波伝搬速度変化による誤差を含む。また、コリレータ104は、GNSS衛星からの衛星信号における搬送波位相を求める。コリレータ104は、ノイズ除去部106に、擬似距離及び搬送波位相を入力する。
【0033】
経路差変化推定部108には、当該GNSS受信装置100の移動速度が入力される。当該GNSS受信装置100の搭載された移動体の移動速度(自車速度)であってもよい。該移動速度は、当該GNSS受信装置100が搭載された移動体の車速パルスに基づいて認識されたものであってもよいし、加速度センサにより検出された加速度に基づいて算出されたものであってもよいし、測位位置の時間変化に基づいて算出されたものであってもよい。経路差変化推定部108は、入力された移動速度から当該GNSS受信装置100により受信されたGNSS衛星からの直接波と反射波との間の経路差の変化率を推定する。経路差が所定の周期で変動することにより、擬似距離もある所定の周期で真値を中心に変動する。一方、移動速度により擬似距離の所定時間における変動回数を求めることができる。擬似距離が変動している場合には、経路差も変動していると想定されるため、経路差の一周期に相当する長さを該変動回数で除算することにより、移動速度から経路差の変化率(変動率)を推定することができる。経路差変化推定部108は、推定した経路差の変化率をノイズ除去部106に入力する。
【0034】
ノイズ除去部106は、コリレータ104により入力された擬似距離を搬送波位相の変化量により平滑化する。ノイズ除去部106は、該平滑化を行う場合、経路差変化推定部108により入力された経路差変化率に応じて、平滑化時定数を設定する。例えば、経路差変化率がある閾値以上である場合には小さい値の時定数を設定し、経路差変化率がある閾値未満である場合には大きい値の時定数を設定する。該時定数は、マルチパスによる擬似距離の変動がある程度平均化されるように決定される。経路差変化率に応じて段階的に時定数を用意するようにしてもよい。大きい値の時定数を設定することにより、GNSS受信装置100が低速で移動している場合においても、マルチパスの影響を低減できる。ノイズ除去部106は、平滑化された擬似距離を出力する。GNSS受信装置100は、ノイズ除去部106により出力された平滑化された擬似距離を用いて測位演算を行う。
【0035】
次に、本実施例に係るGNSS受信装置100における測位方法について、図4を参照して説明する。
【0036】
GNSS受信装置100は、GNSS衛星からの測位信号に基づいて、擬似距離を求める(ステップS402)。例えば、コリレータ104は、受信したC/Aコードに対するレプリカC/Aコードの相関値がピークとなるコード位相を追尾することにより、E/P/Lの3点の相関値を求め、Pが最大となるようにレプリカ信号の位相を調節することにより、相関値のピークを検出する。そして、コリレータ104は、相関値のピークの位相と受信時刻から擬似距離を算出し、出力する。
【0037】
GNSS受信装置100は、GNSS衛星からの直接波と反射波との間の経路差の変化率を求める(ステップS404)。例えば、経路差変化推定部108は、当該GNSS受信装置100の移動速度から当該GNSS受信装置100により受信されたGNSS衛星からの直接波と反射波との間の経路差の変化率を推定する。
【0038】
GNSS受信装置100は、キャリアスムージングにおける時定数を決定する(ステップS406)。ノイズ除去部106は、経路差変化推定部108により入力された経路差変化率に基づいて、平滑化時定数を設定する。
【0039】
GNSS受信装置100は、擬似距離に搬送波位相を利用して平滑化する(ステップS408)。この場合、設定した時定数で平滑化する。
【0040】
GNSS受信装置100は、ステップS410により平滑化された擬似距離を用いて測位演算を行う(ステップS410)。
【0041】
本実施例によれば、当該GNSS受信装置100の移動速度が速いときには小さい値の時定数を、移動速度が遅いときには大きい値の時定数を選択することができる。キャリアスムージングにおける時定数を選択できることにより、特に低速で移動する場合のマルチパスの影響を排除でき、さらに当該GNSS受信装置の移動に追従して、擬似距離を算出できる。また、擬似距離を算出する際の精度を向上させることができる。
【0042】
本実施例において、図5に示すように、経路差変化推定部108の代わりに速度−時定数変換部109を有するようにしてもよい。該速度−時定数変換部109には、当該GNSS受信装置100の移動速度と、ノイズ除去106により行われるキャリアスムージングにおける時定数とが対応付けられ記憶される。図6には、速度と時定数との対応の一例が示される。例えば、時定数は、移動速度(自車速度)が0(零)付近である場合にはaであり、移動速度が増加するに従って該aから0.1/移動速度(m/s)で減少する。例えば、aの値として10秒から80秒の値を適用するようにしてもよい。速度−時定数変換部109は、入力された移動速度から、該移動速度に対応する時定数を求める。そして、速度−時定数変換部109は、該時定数をノイズ除去部106に設定する。ノイズ除去部106は、速度−時定数変換部109により設定された時定数でキャリアスムージングを行う。当該GNSS受信装置100の移動速度と、ノイズ除去106により行われるキャリアスムージングにおける時定数とを予め対応付けて記憶することにより、経路差変化率を求めるための処理負荷を低減できる。また、経路差変化率を求める必要がないため、処理時間を短縮できる。
【0043】
(第2の実施例)
本実施例に係るGNSS受信装置について、図7を参照して説明する。
【0044】
本GNSS受信装置100は、複数の時定数の異なるフィルタを用いて、擬似距離を予め収束させる。そして、GNSS受信装置100は、経路差変化率に応じて、予め収束させた擬似距離のうち、いずれか1つを用いて測位演算を行う。大きな時定数のフィルタによりキャリアスムージングを行う場合には、擬似距離が収束するまでに時間がかかる。擬似距離のキャリアスムージングを予め行うことにより、時定数を決定してからキャリアスムージングを行う場合よりも、処理時間を短縮できる。
【0045】
本実施例に係るGNSS受信装置100は、図3を参照して説明したGNSS受信装置において、ノイズ除去部106は、複数のLPF(Low Pass Filter)を有する。該LPFは、キャリアスムージングフィルタ(CSF:Carrier Smoothing Filter)であってもよい。また、本GNSS受信装置100は、切り替え部110を有する。本実施例では、一例として2種類のLPF(第1LPF1062、第2LPF1064)を有する場合について説明する。3種類以上のLPFを有するようにしてもよい。第1LPF1062は小さい値の平滑化時定数を有し、第2LPF1064は大きい値の平滑化時定数を有する。
【0046】
第1LPF1062は、コリレータ104により入力された擬似距離を搬送波位相の変化量により平滑化する。第1LPF1062は、該平滑化を行う場合、当該第1LPF1062の平滑化時定数(以下、第1の時定数と呼ぶ)で平滑化処理を行う。第1LPF1062は、平滑化処理された擬似距離(以下、第1の擬似距離)を切り替え部110に入力する。
【0047】
第2LPF1064についても第1LPF1062と同様に、コリレータ104により入力された擬似距離を搬送波位相の変化量により平滑化する。第2LPF1064は、該平滑化を行う場合、当該第2LPF1064の平滑化時定数(以下、第2の時定数と呼ぶ)で平滑化処理を行う。第2LPF1064は、平滑化処理された擬似距離(以下、第2の擬似距離)を切り替え部110に入力する。
【0048】
切り替え部110は、経路差変化推定部108により入力された経路差変化率に基づいて、第1の擬似距離及び第2の擬似距離のうちいずれか1つの擬似距離を測位演算に使用するかを決定する。そして、切り替え部110は、決定した擬似距離を出力するように切り替える。
【0049】
次に、本実施例に係るGNSS受信装置100における測位方法について、図8を参照して説明する。
【0050】
GNSS受信装置100は、GNSS衛星からの測位信号に基づいて、擬似距離を求める(ステップS802)。例えば、コリレータ104は、受信したC/Aコードに対するレプリカC/Aコードの相関値がピークとなるコード位相を追尾することにより、E/P/Lの3点の相関値を求め、Pが最大となるようにレプリカ信号の位相を調節することにより、相関値のピークを検出する。そして、コリレータ104は、相関値のピークの位相と受信時刻から擬似距離を算出し、出力する。
【0051】
GNSS受信装置100は、GNSS衛星からの直接波と反射波との間の経路差の変化率を求める(ステップS804)。例えば、経路差変化推定部108は、当該GNSS受信装置100の移動速度から当該GNSS受信装置100により受信されたGNSS衛星からの直接波と反射波との間の経路差の変化率を推定する。
【0052】
GNSS受信装置100は、第1の時定数でキャリアスムージングを行う(ステップS806)。第1LPF1062は、コリレータ104により入力された擬似距離を搬送波位相により、第1の時定数でキャリアスムージングを行い、第1の擬似距離を求める。
【0053】
GNSS受信装置100は、第2の時定数でキャリアスムージングを行う(ステップS808)。第2LPF1064は、コリレータ104により入力された擬似距離を搬送波位相により、第2の時定数でキャリアスムージングを行い、第2の擬似距離を求める。
【0054】
ステップS806とステップS808は、同時に行われてもよい。
【0055】
GNSS受信装置100は、経路差変化率に基づいて、第1の擬似距離及び第2の擬似距離のうち、いずれか1つを選択する(ステップS810)。切り替え部110は、経路差変化推定部108により入力された経路差変化率に基づいて、第1の擬似距離及び第2の擬似距離のうち、いずれか1つの擬似距離を出力するように切り替える。例えば、経路差の変化率がある閾値以上である場合には第1の擬似距離を出力するように切り替え、経路差の変化率がある閾値未満である場合には第2の擬似距離を出力するように切り替える。
【0056】
GNSS受信装置100は、ステップS810により選択された擬似距離を用いて測位演算を行う(ステップS812)。
【0057】
本実施例によれば、大きい値の時定数のフィルタを用いてキャリアスムージングを行う場合においても、時定数を決定する処理と並行してキャリアスムージングが行われるため、時定数を決定してからキャリアスムージングを行う場合と比較して、待ち時間を短縮できる。特に、計測開始後充分な時間が経過した後は、フィルタの再収束を待つことなく最適な擬似距離を出力できる。
【0058】
本実施例において、図9に示すように、経路差変化推定部108の代わりに速度比較部111を有するようにしてもよい。該速度比較部111は、当該GNSS受信装置100の移動速度と閾値とを比較する。速度比較部111は、比較結果を切り替え部110に入力する。切り替え部110は、入力された比較結果に基づいて、第1LPF1062及び第2LPF1064の出力信号のうち、いずれか1つを出力するように切り替える。また、例えば、速度比較部111は、移動速度が閾値以上である場合のみ比較結果を切り替え部110に入力するようにしてもよい。この場合、切り替え部110は、比較結果が入力された場合に、当該GNSS受信装置100の移動速度が速いと判断し、第1LPF1062からの出力信号を出力するように切り替える。当該GNSS受信装置100の移動速度と閾値との比較結果に応じて、第1LPF1062及び第2LPF1064のうち、いずれか1つの出力信号に切り替えることにより、経路差変化率を求めるための処理負荷を低減できる。また、経路差変化率を求める必要がないため、処理時間を短縮できる。
【0059】
(第3の実施例)
本実施例に係るGNSS受信装置について、図10を参照して説明する。
【0060】
本GNSS受信装置100は、上述した実施例において、経路差変化率を推定する場合に、当該GNSS受信装置100の移動速度から推定せずに、当該GNSS受信装置100とGNSS衛星からの電波が反射すると想定される反射体との距離を求め、該距離から推定する。当該GNSS受信装置100と反射体との距離を求めることにより、当該GNSS受信装置100が、反射体と並行に移動した場合においても、経路差変化率を推定できる。例えば、図11(a)に示されるように、当該GNSS受信装置が搭載された車両の進行方向と並行に壁が存在し、該壁によりマルチパスが発生した場合には、該車両と壁との間の距離が変化しないため、GNSS衛星の移動を考慮しない場合には、経路差の変化率は、該車両の移動速度に関わらず零に近い値となる。従って、当該GNSS受信装置が搭載された車両の進行方向と並行に壁が存在し、該壁によりマルチパスが発生した場合には、経路差の変化率を予測できない。
【0061】
本GNSS受信装置100は、図7を参照して説明したGNSS受信装置において、経路差変化推定部108の代わりに経路差検出部113を有する。
【0062】
経路差検出部113には、レーダからの検知信号、カメラからの画像信号などが入力される。経路差検出部113は、入力信号に基づいて経路差を推定する。例えば、経路差検出部113は、図11(b)に示されるように、レーダからの検知信号から障害物までの距離Rを求め、該障害物までの距離Rに基づいて、経路差を推定するようにしてもよい。この場合、検出する反射体は、該反射体により電波が反射されることによりマルチパスの影響を受けると想定される範囲(距離)に位置する物体のみでよい。一般的な受信相関器では、検出エリアは半径150m程度であるため、該半径150m程度の範囲に位置する物体のみを検出するようにしてもよい。
【0063】
また、例えば、経路差検出部113は、カメラからの画像信号に基づいて画像処理を行うことにより経路差を推定するようにしてもよい。そして、経路差検出部113は、該推定された経路差に基づいて、経路差変化率を求める。検出された反射体がマルチパスを発生させるのに充分な大きさを有している場合、該反射体と当該GNSS受信装置との間の距離の変化率を算出し、該距離の変化率によってフィルタを切り替える。
【0064】
図10には、一例として、図7を参照して説明したGNSS受信装置の経路差変化推定部108の代わりに経路差検出部113を有するようにし、該経路差検出部113にレーダからの検知信号、カメラからの画像信号が入力される場合が示されているが、図3を参照して説明したGNSS受信装置の経路差変化推定部108の代わりに経路差検出部113を有するようにし、該経路差検出部113にレーダからの検知信号、カメラからの画像信号が入力されるようにしてもよい。
【0065】
当該GNSS受信装置の移動速度から経路差変化率を推定する場合、当該GNSS受信装置がGNSS衛星からの電波が反射すると想定される反射体と並行に移動する場合には、経路差の変化率を推定することはできなかった。経路差変化率をレーダからの検知信号、カメラからの画像信号に基づいて推定された距離に基づいて推定することにより、当該GNSS受信装置が、反射体と並行に移動する場合においても経路差の変化率を推定できる。
【0066】
(第4の実施例)
本実施例に係るGNSS受信装置について、図12を参照して説明する。
【0067】
本GNSS受信装置100は、第3の実施例において、反射波の経路と想定される経路が複数存在した場合、以下の処理を行う。GNSS衛星からの電波を利用して、該GNSS衛星の位置と、当該GNSS受信装置の位置及び移動方向とを大まかに推定する。そして、GNSS受信装置は、該GNSS衛星の位置及び当該GNSS受信装置の位置に基づいて、地図DBを参照し、該地図上に登録されている建造物との位置関係から、反射波の経路として最も可能性の高い経路を選択する。そして、GNSS受信装置は、該GNSS受信装置の移動方向と最も可能性の高い経路から、経路差の変化率を推定する。
【0068】
図13に示すように、検出エリア内に、反射体の候補が複数存在する場合には経路差の候補も複数存在する。図13には、反射体の候補として2つの反射体が示される。この場合、どの経路で経路差の変化率を求めるべきか分からなくなる。本実施例によれば、GNSS衛星の位置と、当該GNSS受信装置の位置及び移動方向とを求める。そして、該両位置と、地図DBに記憶された建造物の位置に基づいて、3次元的な関係を算出し、最適な反射波の経路を求める。該反射波の経路と当該GNSS受信装置移動方向とから経路差の変化率を推定する。
【0069】
GNSS衛星の位置と、当該GNSS受信装置の位置と、地図DBに記憶された建造物の位置とに基づいて、最適な反射波の経路を求めることにより、最も可能性の高い反射経路を選択でき、該GNSS受信装置の移動方向から経路差の変化率を推定できる。
【0070】
説明の便宜上、発明の理解を促すため具体的な数値例を用いて説明されるが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてよい。
【0071】
以上、本発明は特定の実施例を参照しながら説明されてきたが、各実施例は単なる例示に過ぎず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。説明の便宜上、本発明の実施例に係る装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウエアで、ソフトウエアで又はそれらの組み合わせで実現されてもよい。本発明は上記実施例に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が包含される。
【図面の簡単な説明】
【0072】
【図1】GNSS受信装置の説明図であり、(a)はGNSS受信装置を示す機能ブロック図、(b)は擬似距離を示す図、(c)はキャリアスムージング処理を示す図である。
【図2】マルチパスの影響を示す説明図であり、(a)は経路差を示す図、(b)(c)は擬似距離を示す図、(d)はキャリアスムージング処理を示す図である。
【図3】一実施例に係るGNSS受信装置を示す機能ブロック図である。
【図4】一実施例に係るGNSS受信装置の動作を示すフロー図である。
【図5】一実施例に係るGNSS受信装置を示す機能ブロック図である。
【図6】速度と時定数との関係の一例を説明図である。
【図7】一実施例に係るGNSS受信装置を示す機能ブロック図である。
【図8】一実施例に係るGNSS受信装置の動作を示すフロー図である。
【図9】一実施例に係るGNSS受信装置を示す機能ブロック図である。
【図10】一実施例に係るGNSS受信装置を示す機能ブロックである。
【図11】一実施例に係るGNSS受信装置の適用例を示す説明図であり、(a)は自車の進行方向と並行に壁が存在する場合を示す図、(b)は検出エリアを示す図である。
【図12】一実施例に係るGNSS受信装置を示す機能ブロック図である。
【図13】一実施例に係るGNSS受信装置の適用例を示す説明図である。
【符号の説明】
【0073】
2 衛星捕捉/追尾処理部
4 コリレータ
6 ノイズ除去部
10 GNSS受信装置
100 GNSS受信装置
102 衛星捕捉/追尾処理部
104 コリレータ
106 ノイズ除去部
1062 第1LPF(Low Pass Filter)
1064 第2LPF(Low Pass Filter)
108 経路差変化推定部
109 速度−時定数変換部
110 切り替え部
111 速度比較部
112 地図DB
113 経路差検出部

【特許請求の範囲】
【請求項1】
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置において、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算部と、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定部と、
該経路差変化率推定部により推定された経路差の変化率に対応するフィルタの時定数を求め、該時定数を設定する時定数設定部と、
該時定数設定部により設定された時定数で、前記擬似距離演算部により求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去部と
を有することを特徴とするGNSS受信装置。
【請求項2】
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置において、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算部と、
複数の異なる時定数で、前記擬似距離演算部により求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去部と、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定部と、
該経路差変化率推定部により推定された経路差の変化率に基づいて、前記ノイズ除去部により複数の異なる時定数でフィルタリングされた擬似距離の中から、いずれか1つを選択する選択部と
を有することを特徴とするGNSS受信装置。
【請求項3】
請求項1又は2に記載のGNSS受信装置において、
前記経路差変化率推定部は、当該GNSS受信装置の移動速度から、前記経路差の変化率を推定することを特徴とするGNSS受信装置。
【請求項4】
請求項1又は2に記載のGNSS受信装置において、
前記経路差変化率推定部は、当該GNSS受信装置と前記反射波の経路に位置する反射体との距離を求めることにより、前記経路差の変化率を推定することを特徴とするGNSS受信装置。
【請求項5】
請求項4に記載のGNSS受信装置において、
地図情報が記憶された地図DB
を有し、
前記経路差変化率推定部は、反射体の候補が複数存在する場合に、前記擬似距離演算部により求められた擬似距離により、GNSS衛星及び当該GNSS受信装置の位置を求め、
該GNSS衛星及び当該GNSS受信装置の位置と前記地図DBに記憶された地図情報に基づいて、当該GNSS受信装置に対する影響の最も大きい反射波の経路を選択し、
該反射波の経路に基づいて、前記経路差の変化率を推定することを特徴とするGNSS受信装置。
【請求項6】
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置における測位方法であって、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算ステップと、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定ステップと、
該経路差変化率推定ステップにより推定された経路差の変化率に対応するフィルタの時定数を求め、該時定数を設定する時定数設定ステップと、
該時定数設定ステップにより設定された時定数で、前記擬似距離演算ステップにより求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去ステップと、
該ノイズ除去ステップによりフィルタリングされた擬似距離を用いて測位を行う測位演算ステップと
を有することを特徴とする測位方法。
【請求項7】
GNSS衛星から送信される測位信号に基づいて測位演算を行うGNSS受信装置における測位方法であって、
前記測位信号に含まれるコードを用いて、前記GNSS衛星と当該GNSS受信装置との間の擬似距離を求める擬似距離演算ステップと、
複数の異なる時定数で、前記擬似距離演算ステップにより求められた擬似距離を搬送波の位相変化量でフィルタリングするノイズ除去ステップと、
前記GNSS衛星からの直接波と反射波との間の経路差の変化率を推定する経路差変化率推定ステップと、
該経路差変化率推定ステップにより推定された経路差の変化率に基づいて、前記ノイズ除去ステップにより複数の異なる時定数でフィルタリングされた擬似距離の中から、いずれか1つを選択する選択ステップと、
該選択ステップにより選択された擬似距離を用いて測位を行う測位演算ステップと
を有することを特徴とする測位方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate