説明

Fターム[2G059GG08]の内容

光学的手段による材料の調査、分析 (110,381) | 光源 (9,251) | 光変調手段を備えるもの (1,683) | 断続光とするもの (871) | パルス光とするもの (688)

Fターム[2G059GG08]に分類される特許

681 - 688 / 688


透過および反射型の空間ヘテロダイン干渉法(SHIRT)測定のシステムおよび方法が記載される。方法は、第1の基準ビームおよび対象ビームを用いて、第1の空間的にヘテロダイン化されたホログラムをデジタル記録し、第2の基準ビームおよび対象ビームを用いて、第2の空間的にヘテロダイン化されたホログラムをデジタル記録する。また方法は、第1の解析されるイメージを規定するために、デジタル記録された第1の空間的にヘテロダイン化されたホログラムをフーリエ解析し、第2の解析されるイメージを規定するために、デジタル記録された第2の空間的にヘテロダイン化されたホログラムをフーリエ解析し、第1の結果を規定するために第1の解析されたイメージをデジタルフィルターし、第2の結果を規定するために第2の解析されたイメージをデジタルフィルターし、そして第1の結果に第1の逆フーリエ変換を施し、第2の結果に第2の逆フーリエ変換を施す。
(もっと読む)


本発明はセンサ1を使用する測定方法に関する測定値に対して、特に「ドリフト」誤差に関する温度依存誤差補償を行う方法および電子配置6に関する。電子回路6は1つ以上のガスおよび/またはガス混合物の存在の確立および/またはガスまたはガス混合物の濃度の演算に適合する。選択した測定サイクルT1の間に発生し確立した最高測定値Mmaxまたは最低測定値Mminはメモリー69’に格納する。選択した期間T1の間に発生し評価した最低アナログ値または最高デジタル測定値を前記メモリー69’に格納し、選択した測定サイクルまたは期間T1の最後に発生し評価した測定値Mmax、Mminと、格納したアナログまたはA/D変換器を介したデジタルの制御値65’を比較し、評価した最低または最高測定値と前記格納した制御値の差を、次の期間T2に発生する測定値の関係および/または対応する測定値の補償K1の基礎として使用することを提案する。 (もっと読む)


所望の光学特性を有する光ビームを発生し、アレー状に配された試料に照射できる光検査システムおよび方法である。1つの実施の形態において、光学検査システムは光源、回折素子、およびコリメート光学系(例えば、単レンズ、f−θレンズ、分割鏡、ファイバー・アレー)を含んでいる。光源から回折光学系に向けて光ビームが出射され、回折光学系は光ビームを受け、コリメート光学系に向け多数の光ビームを出射する。コリメート光学系は回折光学系から出射された光を受けて調整し、試料アレーに向け所望の光学特性を有する調整済み光ビームを出射する。光学検査システムの別の幾つかの実施の形態も記載されている。
(もっと読む)


慣例の酸素計を用いて、酸素計から離れた場所に位置し得る患者を監視するために使用する、シミュレータアダプタを提供する。本発明の第1実施例では、シミュレータアダプタは、酸素計のセンサに番わせたシミュレータの指を有している。シミュレータの指は、酸素計から出力される光を検知し、かつシミュレータアダプタにフィードバックを供給して、患者がその場にいて酸素計で測定されているかのように、アダプタが、酸素計に用いられるアダプタに送信される患者の信号を適合させることを可能にする。第2実施例では、シミュレータの指の代わりに、シミュレータアダプタは、出力として、慣例の酸素計の一部をなす慣例のコネクタと番うべく適合させたコネクタを有する。この第2実施例では、シミュレータアダプタに適切な回路が設けられ、このアダプタを酸素計に直接接続することができるため、酸素計用の如何なるシミュレータの指及びセンサも不要である。患者からの信号が電磁的に影響を受け得る環境では、このシミュレータアダプタは、光ファイバケーブルにより遠隔酸素計測ユニットと接続することができるため、患者から離れて測定した生理的パラメタを表す信号は、第1実施例のシミュレータの指又は第2実施例のアダプタコネクタに直接送信される。
(もっと読む)


【課題】血液検体の非侵襲性生体内測定の技術を提供する。
【解決手段】垂体視覚色素のような網膜視覚色素の再生率を測定することにより、繰返し可能かつ非侵襲的に血液グルコースの測定を実行する装置。視覚色素の再生率は、血液グルコース濃度に依存し、視覚色素再生率を測定することにより、血液グルコース濃度を正確に判断することができる。この装置は、選択した分布の選択した波長の光に、網膜をさらし、次に網膜のさらした領域の選択した部分、好ましくは、網膜小窩からの反射(色又は暗さとして)を分析する。 (もっと読む)


光源(102)がパラメトリック装置(106)をポンピングするために用いられるポンピング波(104)を発生する。パラメトリック装置(106)は縮退点またはその近傍に構成されて、広帯域出力(108)を発生する。広帯域出力(108)は化学剤(112)があるかもしれない遠隔地(110)に向けられる。広帯域出力(108)は遠隔地(110)を通して送波するかまたは遠隔地(110)から散乱させることができ、遠隔地(110)にある化学剤(112)は広帯域出力(108)の部分領域を吸収することができる。広帯域出力(108)を集光して、分散させて(114)、検出器アレイによって検出されるチャネルまたはサブバンドをつくることができる。検出器アレイはサブバンドの強度を多重化して、吸収スペクトルをつくることができる。吸収スペクトルは既知の化学剤のライブラリと比較することができ、遠隔地における化学剤の存在をリアルタイムまたはほぼリアルタイムに判定することができる。

(もっと読む)


本発明は、信号処理システムと、それによって情報の処理を行うための方法を提供する。この信号処理システムは、感知システムと共に使用するために設計され、この感知システムでは、符号化信号がテストサンプルに向けられ、結果として生じる信号が収集されて符号化信号と相関され、これにより、テストサンプルの送信信号への応答の検出を可能にし、このことは、測定されるテストサンプルの理解を可能にすることができる。信号処理システムは、テストサンプルに送信される信号のフォーマットおよびこの送信の結果として生じるテストサンプルから受信される信号の両方の検出と、その後のこれらの相関とを制御するための制御信号を、感知システムに供給する。送信および検出信号の両方を制御することにより、信号処理システムは、検出能力を向上させるためにこの情報を相関させることができ、これにより、テストサンプルを分析する改善された手段を提供する。 (もっと読む)


【課題】 液晶表示パネルのイオン密度を非破壊で測定できるようにする。液晶表示パネルのイオン密度分布を把握できるようにする。
【解決手段】 1Hz程度の低い周波数の矩形波を印加して、フリッカーを観測する(ステップS303)。観測されたフリッカーの振幅又はフリッカー面積を測定する(ステップS308)。予め求めてある検量線(フリッカーの振幅又は面積とイオン密度との相関関係を示す線図)から液晶パネル内のイオン密度を算出する(ステップS309)。 (もっと読む)


681 - 688 / 688