説明

Fターム[2H050AB44]の内容

光ファイバの素線、心線 (3,268) | 素線の材料 (786) | コア、クラッド (783) | プラスチック (385) | メタクリル樹脂(PMMA) (125) | フルオロアルキル基置換 (37)

Fターム[2H050AB44]に分類される特許

1 - 20 / 37


【課題】気泡がなく伝送特性に優れた光伝送体を生産性よく製造する。
【解決手段】第2部材16の第1層用原料21aを第1部材12の中空部に入れて、第1層用原料21a中の重合性化合物を重合させる。重合時には、第1部材12の長手方向に垂直に交差する断面中心を回転中心として第1部材12を回転させる。第1層用原料21aには、重合開始剤が含まれる。重合の反応温度をTE1(℃)、重合開始剤の10時間半減期温度をTE2(℃)とするときに、以下の条件を満足するような重合開始剤を選択するとともに反応温度を決定する。
TE2−20≦TE1≦TE2+25・・・(1) (もっと読む)


【課題】有機溶媒を用いずに液状組成物を形成して光導波路などに有用な硬化物を得ることができ、しかも耐熱性の高い硬化物であっても、その硬化物の透明性を向上させ得る硬化性組成物を提供する。
【解決手段】(I)非フッ素系多官能化合物、(II)含フッ素α−クロロアクリレート化合物、(III)含フッ素アクリレート化合物および(IV)硬化開始剤を含む硬化性組成物、およびその硬化物からなる光学材料。 (もっと読む)


【課題】光学性能の優れたプラスチック光ファイバ(POF)を製造する。
【解決手段】重合容器29に、次第に先細になる中空部(図示せず)を形成する。重合容器29の中空部に、その内側面とほほ同じ傾斜の外側面を有する中子32を挿入する。重合容器29と中子32との間に形成された隙間(図示せず)に第1混合溶液24(1)を注入する。注入された第1混合溶液24(1)を重合させて第1樹脂層22(1)を形成する。中子32を所定距離引き上げて、第1樹脂層22(1)との間に隙間50(2)を形成する。隙間50(2)に第2混合溶液24(2)を注入して重合させる。中子の引き上げと、混合溶液24(3〜N)の注入及び重合とを繰り返して複層構造のコアを形成する。コアにクラッドパイプを装着してプリフォームを形成する。このプリフォームを延伸することで、光学性能の優れたPOFが得られる。 (もっと読む)


【課題】屈曲による伝送損失量が大きな光伝送部材の製造方法を提供する。
【解決手段】コア部材成形工程11にて横断面が正方形のコア部材12を得る。クラッド部材成形工程13にて筒状のクラッド部材14を得る。このクラッド部材14の中空部分である嵌合孔14aは、コア部材12と嵌合可能な形状に成形されている。嵌合孔14aとコア部材12を、プリフォーム成形工程15にて嵌合しプリフォーム16を得る。加熱延伸工程17にてプリフォーム16を加熱延伸し、光伝送部材18を得る。加熱延伸では、光伝送部材18の横断面を、プリフォーム16の横断面と略相似形に成形する。クラッド部18bの横断面外形が円形であり、コア部18aの横断面外形が正方形である光伝送部材18は、コア部18a内を反射する光を側面から漏光することが可能になる。この光伝送部材18の屈曲により、伝送損失量は更に増大する。 (もっと読む)


【課題】多種多様な横断面形状のプラスチック光学部材を、容易に且つ精度良く、低コストで製造する。
【解決手段】PMMAを用いて溶融押出成形により形成したPMMA棒をコア部25aとし、PVDFからなる中空状のクラッドパイプをクラッド部26aとする。クラッドパイプの中にPMMA棒を挿入して、芯部15を形成する。PMMAを用いて溶融押出成形により横断面形状が正方形であり、かつ芯部15の横断面形状と略相似形の嵌合孔27を有する外殻部16を形成する。先ほど形成した芯部15と外殻部16とを嵌合させてプリフォーム12とする。このプリフォーム12を加熱しながら真空処理した後、光学部材10の横断面形状がプリフォーム12の横断面形状と略相似形となるように加熱延伸する。これにより、横断面形状が正方形の光学部材10を得る。 (もっと読む)


【課題】溶融押出法を用いて、所望の横断面の形状を持つ光伝送部材の製造方法を提供する。
【解決手段】押出装置を用いて、コア部形成用材料26、クラッド部形成用材料27、保護層形成用材料28の溶融体を共押出ダイス14へ押し出す。共押出ダイス14へ押し出されたコア部形成用材料26は、コア部形成部43にてロッド状のコア部46に形成される。クラッド部形成部49では、コア部46の外周にクラッド部が形成され、保護層形成部53では、クラッド部の外周に保護層が形成される。共押しダイス14は、コア部46の外周にクラッド部及び保護層が順次形成された光伝送部材前駆体18を押し出す。この光伝送部材前駆体18の横断面を形成する、コア部、クラッド部及び保護層の横断面形状は、拡散部45、クラッド部形成部49及び保護層形成部53の横断面形状に略相似に形成される。 (もっと読む)


【課題】耐熱性及び伝送特性に優れたPOFを得るためのPOF用コア材を提供すること。
【解決手段】α−(ヒドロキシアルキル)アクリル酸エステル単量体(A)と、該α−(ヒドロキシアルキル)アクリル酸エステル単量体(A)とビニル重合可能な単量体(B)とを含む単量体混合物を共重合した後、環化縮合反応させることにより形成された、一般式(1)
【化1】


(式中、R1およびR2、R3は独立して水素原子または炭素数1〜20の酸素原子を含んでいてもよい有機残基を示す。)で表されるラクトン環構造を有し、ガラス転移温度が115℃〜160℃の範囲にある共重合体(X)からなるプラスチック光ファイバー用コア材あって、共重合体(X)に含まれるパーテイクルカウンターで測定した0.5μm以上の異物数が20000個/g以下である。 (もっと読む)


【課題】高温環境下での伝送損失の増加量が小さく長期耐熱性に優れたPOFケーブルを提供する。
【解決手段】透明な重合体からなるコアと、少なくともテトラフルオロエチレン単位を含んだ示差走査熱量測定(DSC)で測定した結晶融解熱が59mJ/mg以下である含フッ素オレフィン系共重合体で形成された層を最外層とするクラッド層からなるプラスチック光ファイバを、ポリアミド系樹脂を主成分とする無彩色の被覆層で被覆したプラスチック光ファイバケーブルであって、前記プラスチック光ファイバと前記被覆層間に、金属または金属酸化物からなる遮断層が形成されていることを特徴とするプラスチック光ファイバケーブル。 (もっと読む)


【課題】 大口径ながら生産性や取り扱い性に優れる光学材料を製造する。
【解決手段】中空管の中に重合性組成物を注入後、重合させて層を形成させる工程を繰り返し行い、径の外側から中心に向かって屈折率の高低分布を有する第1〜第n層30〜33を順に形成する。中空管を取り除いたn層構造を第1部材11とする。また、溶融押出成形により重合性組成物からなる円筒状の第2部材12と第3部材13とを作製する。第2部材12の中に第1部材11を挿入した部材を、さらに第3部材13の中に挿入して光学材料10の前駆体14とする。この前駆体14を加熱溶融しながら延伸して第3部材13の外径を調整することにより所望の径の光学材料10とする。強靭性に優れ、大口径でありながら生産性および取り扱い性に優れる光学材料10を得ることができる。 (もっと読む)


【課題】 高温環境下で使用しても共役長の変化が起こりにくい耐熱性を有し、解像度に優れるレンズアレイおよびそれに用いるロッドレンズを提供する。
【解決手段】 円柱形状を有し、中心から外周部に向かって屈折率が連続的に減少してなるプラスチック製ロッドレンズであって、昇温速度4℃/分で温度上昇させたときの熱収縮開始温度が80℃以上であるプラスチック製ロッドレンズ。
紡糸工程、延伸工程および緩和工程を経て製造された第1のプラスチック製ロッドレンズを、昇温速度4℃/分で温度上昇させたときの熱収縮開始温度以上100℃以下で1時間以上熱処理を行う第2のプラスチック製ロッドレンズの製造方法。 (もっと読む)


【課題】 透明性に優れ、特定の屈折率高低分布を有する光学材料を作製する。
【解決手段】中空管30の中に、第1の重合成化合物を注入し、重合させて第1層13を形成する。続いて、第1層13の内側に第2の重合性組成物を注入し、重合させて第2層14を形成する。このように重合性組成物を注入し重合させて層を形成する工程を繰り返し行い、n層構造の光学材料10を形成する。中空管30への各重合性組成物の注入量は、内側の層に向かうにしたがい変化させる。隣接する層は、同じ複数種の重合性組成物を用いて、中心側の層において屈折率を高くする重合性組成物が多くなるように配合し、隣接する層同士の屈折率が異なるようにするとともに、屈折率の差が5×10-5以上5×10-3未満となるように調整する。透明性に優れ、帯域特性および集光特性に優れる光学材料10を得ることができる。 (もっと読む)


【課題】機械特性と難燃性とに優れ、環境に悪影響を与えないプラスチック光ケーブル。
【解決手段】プラスチック光ケーブル11は、素線12、第1被覆材13、第2被覆材18、第1被覆材13と第2被覆材18との間の抗張力繊維17を備える。第2被覆材18の60〜90重量%は金属水酸化物である。第1被覆材13の外径L1(mm)、第2被覆材18の内径L2(mm)及び外径L3(mm)、抗張力繊維の各断面積の総和SA(mm2 )は、1.6≦(L3−L2)≦4.0、(L2−L1)/2≦3.0、L3≦5.0、0.15π{(L2)2 −(L1)2 }/4≦SA≦0.5π{(L2)2 −(L1)2 }/4の全条件を満たす。プラスチック光ケーブル11は、繰り返し曲げ、過酷条件の燃焼試験で良好性質を発現し、環境にやさしい。さらにプラスチック光ケーブル11は、第2被覆材18による側圧が過度に大きくなく、素線12の伝送損失を維持する。 (もっと読む)


【課題】
光学部材、特にプラスチック光ファイバの材料として有用な組成物を提供する。
【解決手段】少なくとも1種の下記一般式(1)で表される化合物および少なくとも1種のラジカル重合性モノマーを含む、光学部材形成用組成物。
一般式(1)
【化1】


(一般式(1)中、Xは塩素原子または臭素原子を表す。Yはアルコキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基またはシアノ基を表す。) (もっと読む)


【課題】プラスチック光ファイバの通信状態を目視で確認できるようにする。
【解決手段】プラスチック光ファイバの端面から、伝達する光信号としての視認光を入射する。クラッド22は、視認光を散乱して周面からプラスチック光ファイバの外部に射出する散乱構造を備える。この散乱構造とは、クラッド22中の位置によって密度が異なる構造である。この構造は、ポリマーの結晶構造を部分的に変えたこと等により形成する。これにより、コア21は視認光の大半を伝達し、視認光の一部はクラッド22内を散乱して、プラスチック光ファイバ11の外周面から外部へ射出される。したがって、第2波長の光を目視で確認することができ、通信中か否か、あるいはプラスチック光ファイバ11が途中で断線しているか否か及び断線個所を判断することができる。 (もっと読む)


【課題】低損失で、かつ経時安定性、熱安定性を有する屈折率分布型プラスチック光ファイバを提供する。
【解決手段】本発明は、下記式(1)で示されるラクトン化合物の単位(A)を含むマトリックス重合体と、該重合体よりも屈折率が高い非重合性化合物とから構成されたプラスチック光ファイバであって、非重合性化合物がファイバ中心部から外周部方向に連続的に減少する濃度勾配で存在することを特徴とする屈折率分布型プラスチック光ファイバ。
【化1】
(もっと読む)


【課題】 熱処理中に、POFに加わる応力を減少させることができるPOF熱処理用ボビンおよびこのようなボビンを使用したPOFの製造方法を提供すること。
【解決手段】 本発明のプラスチック光ファイバ熱処理用ボビン1は、プラスチック光ファイバ熱処理用ボビンであって、円筒状の胴部2を備え、胴部外周面に、見かけ密度0.01〜0.2g/cm3のポリオレフィン樹脂を含む発泡シート6が配置されていることを特徴とする。 (もっと読む)


【課題】 遮水性および有害動物類忌避性に優れた多心構造のPOFケーブルを作製する。
【解決手段】コア31とクラッド32からなるプラスチック光ファイバ素線(POF)14の外周に被覆層33を形成してPOFコード16とする。POFコード16にフッ素樹脂製テープからなる遮水テープを被覆する。2本のPOFコード16の間に抗張力線35を配してから、POFコード16および抗張力線35を覆うように被覆層36を形成してPOFケーブル19を構成する。被覆層36には、有害動物類忌避剤を混入する。遮水性および有害動物類忌避性に優れ、かつ端末加工の際に、抗張力線35の処理が容易なPOFケーブル19が得られる。 (もっと読む)


【課題】 樹脂の劣化を抑制して光学特性に優れたPOFを作製する。
【解決手段】原料を保管している複数の押出装置50〜53と合流ブロック58〜60と拡散管61〜63とダイス64とを有する溶融押出装置41を用いて、コアとクラッドからなる複層構造のPOF11を作製する。各押出装置は、各部形成流路54〜57と接続されており、これらは、各合流ブロック内にて、同心円状に合流するように配されている。各押出装置から溶融樹脂を押し出してから、合流させて複層樹脂を形成する。この複層樹脂を各拡散管に搬送して、ドーパントを拡散させる。合流と拡散作業とを繰り返し連続して行うことで、所望の複層構造を有する複層樹脂を作製する。この複層樹脂をダイス64より押出してファイバ原糸13とした後、加熱延して径を調整することで、効率的に低伝送損失に優れるPOF11を作製することができる。 (もっと読む)


【課題】 高NA有し、かつプリフォーム法での問題のない、GI型POFの製造方法および、該製造方法により製造されうるGI型POFを提供する。
【解決手段】 コア部と、該コア部の外層に隣接して設けられたクラッド部を有し、前記クラッド部は、少なくとも含フッ素非晶性ポリマーを含む、屈折率分布型プラスチック光ファイバを採用した。 (もっと読む)


【課題】材質に依存することなく、プラスチック光ファイバ素線(POF)のクラッドの屈折率を低下させる。
【解決手段】多数の細孔33を有する外管12を形成する。この外管12にコア用ポリマーを入れて回転重合によりコア材30を構成し、外管12とコア材30とからなるプリフォーム21を作製する。プリフォーム21を加熱延伸してPOFを得る。加熱延伸により外管12の多数の細孔33が分散されて、POFのクラッドに多数の微細孔が形成される。微細孔の大きさは、1μm以上1000μm以下とし、その量は、1vol%以上70vol%以下とする。この微細孔によってクラッドの屈折率が低下する。アウターコア材31と同質のものをクラッドとして使用しても、アウターコアよりも低屈折率のクラッドが得られ、クラッドの素材の選択幅が広がる。親和性に優れ、高NA化、高伝送速度のPOFが得られる。 (もっと読む)


1 - 20 / 37