説明

Fターム[2H141MD13]の内容

機械的光制御・光スイッチ (28,541) | 光学要素の移動様式 (5,868) | 回転、傾斜 (3,675) | 二軸回転、傾斜 (329)

Fターム[2H141MD13]に分類される特許

321 - 329 / 329


本発明の一実施例に従って、半導体デバイス(200)は、半導体デバイスの基板(226)の上側表面上に配置される誘電性材料の第1の層(208)、及び誘電性材料の上側表面上に配置される金属の第1の非導電性層(206)を含む。誘電性材料の第1の層と金属の第1の非導電性層は、金属の第1の非導電性層が受ける電磁放射に対する光学トラップとして機能する。特定の実施例において、半導体デバイスは更に、金属の第1の非導電性層の上側表面上に配置される誘電性材料の第2の層、及び誘電性材料の第2の層の上側表面上に配置される金属の第2の非導電性層を含み得る。
(もっと読む)


本発明は、担体素子3と薄膜4とを有する2自由度でボディ2を傾斜させるための微小電気機械装置1´であって、ボディ2は、薄膜4を介して担体素子3に接続され、ボディ2び担体素子3の各々は、少なくとも1つの電極5,6を有する。ボディ2は、電圧源から電極5,6への電圧V,Vの印加によるボディ2の少なくとも1つの電極5と担体素子3の少なくとも1つの電極6との間の静電気力7によって傾斜される。
(もっと読む)


本発明に係る焦点距離可変レンズは、或る自由度回転を有する、及び/または或る自由度並進を有する複数のマイクロミラーと、駆動手段とから構成されている。焦点距離可変レンズの操作方法としては、上記駆動手段が、マイクロミラーの位置を静電的及び/または電磁的に制御する。マイクロミラーを支持する構造体と、上記駆動手段とを、上記マイクロミラー群の下方に配置することによって、焦点距離可変レンズの光学効率を高めることができる。焦点距離可変レンズは、マイクロミラーを個々に制御することにより、収差を補正することができる。焦点距離可変レンズは、任意の形状、及び/または任意のサイズに構成することが可能である。マイクロミラー群を、平面状に、もしくは所定の曲率を有する曲面状に配置することができる。マイクロミラーの位置を左右する電極は、金属のような高い導電率の材料から構成することができる。マイクロミラーの表面材料には、多層誘電体または酸化防止剤によってコーティングされたアルミニウム、銀、金のような高い反射率を有した材料が用いられる。
(もっと読む)


【課題】ガス又は蒸気を含む侵入を検出するため視野(FOV)を含む空間の体積モニターする空間安全装置を提供する。
【解決手段】FOVから集められた赤外線(IR)エネルギー光線を反射するためのミラーアレイ状のミラー要素を有する微小電気機械システム(MEMS)及びMEMSアレイで反射されたIRエネルギーを検出しかつIRエネルギーを出力信号に変換するIRエネルギー検出器を備えるように構成する。プロセッサーは、制御された信号を変化させることによって又は一から他の合焦要素へ切り替えることによってMEMSミラーアレイの要素の角度を調整する。方法は、IR検出器の活性要素にIR信号を反射するようにMEMSミラーアレイを位置決めすること、及びFOVのiTH部分からIRエネルギーを集めることによって空間の体積における検出をすることを含む。
(もっと読む)


個々に制御されるマイクロミラーアレイレンズ(DCMAL)は、複数の個々に制御されるマイクロミラー(DCM)と駆動部分とから構成される。上記駆動部分は、静電気的に、上記DCMの位置を制御する。上記DCMALの光学効率は、DCMを支持する機械的構造と上記駆動部分とを上記DCMの下に配置して、有効反射領域を増加させることにより、改善される。公知のマイクロエレクトロニクス技術は、電極パッドおよびワイヤによる有効反射領域の損失を取り除くことができる。上記レンズは、DCMを独立に制御することにより、収差を補正することができる。各DCMの独立制御は、公知のマイクロエレクトロニクス技術によって達成できる。DCMアレイは、任意の形状および/またはサイズのレンズを形成することができる、または、任意の形状および/またはサイズのレンズを備えたレンズアレイを形成することができる。
(もっと読む)


マイクロミラーアレイレンズは、2つの自由回転と1つの自由平行移動とを行う、複数のマイクロミラー13と、駆動部分とから構成されている。上記マイクロミラーのアレイは、対象の1つのポイントから散光している全ての光が、同じ周期的な位相を有するように、また、画面の1つのポイントに収束するようにすることができる。上記駆動部分は、静電気的におよび/または電磁気的に、上記マイクロミラーの位置を制御する。上記マイクロミラーアレイレンズの光学効率は、上記マイクロミラーを支持する機械的構造と上記駆動部分とを上記マイクロミラーの下に配置することにより、改善される。半導体マイクロエレクトロニクス技術は、電極パッドおよびワイヤによる有効反射領域の損失を取り除くことができる。上記レンズは、各マイクロミラーを独立に制御することにより、収差を補正することができる。各マイクロミラーの独立した制御は、公知の半導体マイクロエレクトロニクス技術によって達成することができる。上記マイクロミラーアレイは、所望の任意の形状および/またはサイズのレンズを形成することができる。
(もっと読む)


本発明は、マイクロミラーアレイレンズのアレイに関するものである。マイクロミラーアレイレンズは、複数のマイクロミラーと駆動部分とから構成されている。各マイクロミラーアレイレンズは、高速での焦点距離変更が可能な可変焦点距離レンズである。上記レンズは、所望の任意のサイズおよび/または型を有するとともに、所望の任意の光軸を有し、さらに、各マイクロミラーを独立に制御することにより収差を補正することができる。各マイクロミラーの独立した制御は、公知のマイクロエレクトロニクス技術によって可能である。上記駆動部分は、静電気的におよび/または電磁気的に、上記マイクロミラーの位置を制御する。上記マイクロミラーアレイレンズの光学効率は、上記マイクロミラーを支持する機械的構造と上記駆動部分とを上記マイクロミラーの下に配置することにより、改善される。公知のマイクロエレクトロニクス技術は、電極パッドおよびワイヤによる有効反射領域の損失を取り除くことができる。
(もっと読む)


光クロスコネクトスイッチ。このスイッチにおいては、各々が通信ビームを搬送する入力光ファイバ群中のいずれかの光ファイバを、出力光ファイバ群中のいずれかの光ファイバへとクロスコネクトすることが出来る。入力光ファイバ群中の各ファイバが搬送する通信ビームには、アライメントビームが付加され、これと同軸にアライメントされることにより、各ファイバ用に通信―アライメントビームが画定されている。各通信―アライメントビームは閉じ込められた光経路中を送られて入力アレイ構造体中にある特定の出射孔へと向けられる。全ての通信―アライメントビームの出射孔は入力アレイを画定するパターンに配置されており、これにより通信―アライメントビームの各々は、入力アレイ構造体におけるその出射孔の位置によって識別することが出来る。通信―アライメントビームの各々は、第一のレンズマイクロレンズアレイ中の1つのマイクロレンズにより、クロスコネクションビームへと形成される。各クロスコネクションビームは、第一のミラーアレイ中の第一のミラー及び第二のミラーアレイ中の第二のミラーという2枚のミラーにより、第二のレンズアレイ中の1つのレンズへと向けられる。第二のレンズアレイ中のこのレンズは、通信ビームを出力アレイ構造体中の、望ましくは光ファイバである、閉じ込められた光経路の特定の入射孔へとフォーカスする。出力アレイ構造体中の閉じ込められた光経路の各々は、出力光ファイバ群中の1本の光ファイバに光学的に接続している。第二のレンズアレイの付近に配置された第一のデテクタアレイは、各アライメントビームの位置をモニタし、ミラーアレイの少なくとも一方におけるミラー制御用に位置情報をプロセッサへと供給する。
(もっと読む)


MEMSデバイス内の妨害を相殺するためのシステム及び方法。システム200は、基板205と、複数の個々に移動可能なMEMS素子203−1〜203−Nを含むことができるMEMSデバイス203、並びに制御アセンブリ207を含む。光学システム200は、MEMSデバイスのアレイを使用する何れかの光学装置の一部において利用することができ、及び/又は該光学装置の一部を形成することができる。制御アセンブリ207は、MEMS203における妨害を相殺する、より詳細にはスイッチング又は動作ミラーによって引き起こされるMEMSデバイス203の非スイッチング又は静止ミラーでの妨害を相殺するフィードフォワード制御信号を使用する。 (もっと読む)


321 - 329 / 329