説明

Fターム[3D235FF38]の内容

Fターム[3D235FF38]に分類される特許

81 - 94 / 94


【課題】座席同士の間に配置された蓄電パックの温度調節性能に優れた自動車を提供する。
【解決手段】自動車は、車体の幅方向に並ぶ運転席11および助手席と、運転席11と助手席との間に配置されているコンソールボックス21と、運転席11と助手席との間に配置されている電池パック1とを備える。運転席11および助手席の後側に冷気を送るための冷風ダクト51を備える。電池パック1は、コンソールボックス21の内部に配置されている。冷風ダクト51は、開口部51aを有し、コンソールボックス21の内部に冷気の一部を放出するように形成されている。 (もっと読む)


【課題】車内等への空調風量および発熱体の冷却風量を適切に確保できる車載発熱体の冷却装置を提供する。
【解決手段】車載発熱体の冷却装置は、車両に搭載された車両用空調装置で生成された空調空気を、車両に搭載されて発熱する電池パック1を冷却するための冷却空気として導入する運転モードを有しており、空調空気を冷却空気として電池パック1に供給する冷却用ブロワ26と、車両用空調装置で生成される空調空気を車内に向けて送風する空調用送風機の出力に基づいて、冷却用ブロワ26にその作動を制御する制御信号を送信するHV制御装置42と、を備えており、HV制御装置42は、当該運転モードにおいて空調用送風機の出力が増加すると、当該冷却空気の風量を絞るように冷却用ブロワ26を作動させる制御信号を送信する。 (もっと読む)


【課題】車室内空調用エアコンユニットの内部の空気を利用して、バッテリケーシング内部に収容されたバッテリを冷却する自動車のバッテリ冷却装置において、前記エアコンユニットから車室内に供給される空気の温度に関わらず、前記エアコンユニットの車室内空調時に、前記バッテリを冷却できる自動車のバッテリ冷却装置を提供する。
【解決手段】エアコンユニット内部には、外気導入口85を最上流として、下流側に向けて順に、エアフィルタ89、ブロア91、エバポレータ93、エアミックスドア95、ヒータコア97、モードドア99,101,103、及び車室内に開口した吹出口が配列された空気通路が設けられており、バッテリ冷却装置は、ブロア91の下流側且つヒータコア97よりも上流側における前記エアコンユニット内部の空気通路部とバッテリケーシング3内部とを連通するバッテリダクト77,79を有する。 (もっと読む)


【課題】車両の運転の状況に応じて、好適な冷却を行える燃料電池搭載車両の冷却システムの提供。
【解決手段】車両の冷却システム10では、車速風の上流側のエアコン用ラジエータ42と、下流側の燃料電池用ラジエータ62とが、車速風の流路において重なるように配置されている。この冷却システム10の制御コンピュータ80は、燃料電池スタック32の温度が所定値TH以上であるか否かを判断する。その結果、所定値TH以上であれば、ラジエータ搭載可変制御として、エアコン用ラジエータ42を構成する熱交換ユニット42aの設置位置、あるいは、熱交換ユニット42a及び熱交換ユニット42bの設置位置を車両上面方向に移動させて、エアコン用ラジエータ42により高温化することなく、また、風速を低下させることなく燃料電池用ラジエータ62に導かれる車速風を増加させる。 (もっと読む)


【課題】異なる車種間で部品の共有化が図られるブロアの車両搭載構造、を提供する。
【解決手段】ブロアの車両搭載構造は、車両室内に配置されたバッテリパック30および40に冷却風を供給する排気ブロア61と、車両の床部18に固定されるブラケット71とを備える。排気ブロア61は、ブラケット71を介在させて床部18に搭載されている。 (もっと読む)


【課題】車室内の空気を用いて蓄電機構を冷却する冷却装置において、蓄電機構の冷却能力を確保する。
【解決手段】冷却装置は、エアコン20によって空調された車室内の空気をバッテリ10に送風することによってバッテリ10を冷却する。エアコン20が内気循環モードで作動している場合、バッテリ10と熱交換が行なわれた空気は、車外に排出されるとともに、その一部が荷室114および換気口36を介して車室110内に戻される。バッテリECU50は、エアコン20が内気循環モードで作動しているときには、電池温度Tbが所定の温度閾値Tb_stdを上回ったことに応じて、換気口36から車室110内に排出されたバッテリ10と熱交換が行なわれた空気が、直接的に吸気口30から取込まれるのを抑制するように、換気口36のうちの吸気口30に近接する一部分を閉塞する。 (もっと読む)


【課題】異なる熱源部品に対応して効果的に冷却を行うことができる燃料電池車両の冷却構造を提供する。
【解決手段】車体フレームをサイドフレーム8、8と複数のクロスメンバ29,38,44と、これらを連結する部分に設けたジョイントダクトで中空に形成し、各ジョイントダクトはサイドフレーム8及びクロスメンバ29,38,44内に冷却風を発生させるファンを備えると共にサイドフレーム8及びクロスメンバ29,38,44へ冷却風を配風するバルブを有し、車体フレームのモータ4、燃料電池スタック5、バッテリ6配置部位と車体フレームとの間を伝熱可能に接続するモータ取り付けブラケット47、スタック取り付けブラケット49、バッテリ取り付けブラケット51を設け、各熱源部品の温度状況に応じてファンとバルブとを制御する制御装置54を設けたことを特徴とする。 (もっと読む)


【課題】低温環境下においても氷雪の堆積による暖房装置の熱交換効率の低下を抑制して十分な暖房機能を維持することができる燃料電池車両を提供する。
【解決手段】室外熱交換器32を有するヒートポンプ式の暖房装置30と、燃料電池21を冷却するための燃料電池用ラジエータ24を有する燃料電池システム20と、燃料電池用ラジエータ24の車両前方側に配置されたラジエータグリル14と、を備え、ラジエータグリル14を経由して供給された外気が室外熱交換器32及び燃料電池用ラジエータ24を順次通過するように構成されてなる燃料電池車両10である。ラジエータグリル14と室外熱交換器32との間の空間に、室外熱交換器32への氷雪の堆積を抑制する氷雪堆積抑制手段(メッシュ部材45)を配設する。 (もっと読む)


【課題】空調制御装置側に大型の冷却液循環ポンプを備える必要なく、空調制御システムにおける冷媒用のコンプレッサの過熱を抑制する。
【解決手段】燃料電池10に冷却液をメイン循環ポンプ12により循環させることによって燃料電池10の冷却を行う冷却装置と、車両の車室内の空調を制御する空調制御装置と、を含み、冷却装置と空調制御装置との間において熱交換が可能である空調制御システムであって、燃料電池10を間欠運転する際に、メイン循環ポンプ12を連続動作させる。 (もっと読む)


【課題】走行用モータ等の電源となるバッテリにエンジンの発熱が悪影響を及ぼすのを抑制することができるハイブリッド産業車両を提供する。
【解決手段】ハイブリッドフォークリフト10は、走行用の駆動手段として走行用モータ23を使用し、油圧ポンプの駆動手段としてエンジン25及びモータジェネレータ28を使用する。走行用モータ23及びモータジェネレータ28の電源であるバッテリ29は、エンジン25より前方でフロア47の下方に配置されている。ハイブリッドフォークリフト10は、フロア47の下方に、バッテリ29に冷却風を送風する送風手段53を備えている。 (もっと読む)


【課題】車両のトランクルームに形成された余分な空間を有効に活用するよう搭載された車両機器の搭載構造を提供する。
【解決手段】車両10のトランクルーム12に搭載される車両機器の搭載構造は、バッテリ装置18を含み、その上に空気調和装置20、DC/DCコンバータ22及び補機バッテリ24が一体に取り付けられた構造である。バッテリ装置18の下部には、トランクルーム12の床に接触しスライド可能なプレート26が設けられている。プレート26により、トランクリッド14から遠くにある一体化車両機器16の固定位置まで一体化車両機器16をスライドさせて搭載することができる。これにより、トランクルーム12の奥に形成された余分な空間を有効に活用できる。 (もっと読む)


【課題】十分な居住空間を確保することができるとともに、部品の配置等に制約が生じることがなく、重量バランスを採ることができるようにする。
【解決手段】外気と直接接触し、燃料電池搭載車両の外表面を構成し、空気を取り込むための外装体と、燃料を供給するための燃料タンク41と、前記外装体より内側において、外装体に沿って延在させて配設され、空気及び燃料を反応させて発電を行うメンブレン・エレクトロード・アッセンブリとを有する。燃料電池11によって燃料電池搭載車両のボディの少なくとも一部が構成されるので、燃料電池11を、スタック構造にする必要がなくなるとともに、空気を燃料電池11に供給したり、水を燃料電池11から排出したりするためのポンプを配設する必要がなくなる。 (もっと読む)


【課題】バッテリを適切に冷却すると共にバッテリを冷却する際の異音により運転者に違和感を与えるのを抑制する。
【解決手段】内気(乗員室内の空気)を吸気して直接バッテリに送風する室内吸気モードとエアコンにより冷却された空気を吸気してバッテリに送風するA/C吸気モードとを切り替えてバッテリを冷却する冷却システムにおいて、バッテリの冷却を促進すべき要求(A/C吸気モード要求)がなされたとき、室内温度Tinと車速V(走行に基づく騒音)とに基づいて室内吸気モード時のバッテリ冷却能力W1を推定すると共にエアコン吹き出し温度Tacと車速Vとエアコンに要求されている風量としてのA/C風量Qacとに基づいてA/C吸気モード時のバッテリ冷却能力W2を推定し(S140〜S170)、両者のうちで冷却能力が大きい方の冷却モードを選択する。 (もっと読む)


【課題】電気自動車用バッテリの温度を設定温度に維持しうる装置を提供する。
【解決手段】冷媒が循環する空調サイクル1と、冷却材が循環する冷却サイクル3との間に、中間熱交換器2を設ける。バッテリの温度は、冷却材の温度調節手段によって調節する。冷却材の温度調節手段は、バッテリ4の入口側と出口側にそれぞれ配置される温度センサ16,17と関連づけられたコントローラ15によって制御する。 (もっと読む)


81 - 94 / 94