説明

Fターム[3G092BB01]の内容

機関出力の制御及び特殊形式機関の制御 (141,499) | 燃料制御 (5,293) | 燃料噴射量、燃料供給量 (2,155)

Fターム[3G092BB01]の下位に属するFターム

Fターム[3G092BB01]に分類される特許

141 - 160 / 1,899


【課題】 エミッション量の低減効果を確保しつつ空燃比気筒間インバランスの検出精度を向上させること。
【解決手段】 気筒別空燃比の間の差(空燃比気筒間インバランス)の大きさを表わす「インバランス指標値」が、触媒の上流に配置された空燃比センサの出力値に基づいて取得される。インバランス指標値により表わされる空燃比気筒間インバランスの大きさが大きいとき、EGR制御によるEGRガス導入までのディレイ時間として、空燃比気筒間インバランスの大きさが大きくなるほど通常時におけるディレイ時間に比べて大きくなるディレイ時間が設定される。そして、設定されたディレイ時間内において、EGRガス導入に伴う影響が排除されたインバランス指標値が取得される。 (もっと読む)


【課題】始動時にバルブオーバーラップ期間を設ける構成において、水温と油温が異なる冷機始動時における燃焼室内のリーン化を抑制することを目的とする。
【解決手段】油圧式の可変動弁機構105と、油温検出手段220と、冷機始動中に油温に応じた速度で、バルブオーバーラップが付くように機関弁の開閉タイミングを変更する冷機時可変動弁制御手段201と、開閉タイミング変更時に壁流量の変化によるリッチ化を低減するために、開閉タイミングと冷却水温に応じて燃料噴射量を減量補正する燃料噴射制御手段201を備え、燃料噴射制御手段201は、冷機時の開閉タイミングの変更速度が速いことが想定される水温では、バルブオーバーラップが付く前に燃料噴射量の減量補正を行うと共に、冷機始動時において油温と冷却水温が異なる場合には、バルブオーバーラップ期間が生じる前の燃料噴射量の減量補正を禁止、または補正量を低減する。 (もっと読む)


【課題】筒内温度センサによる筒内温度の検出に基づくのではなく、別な手法で気筒間温度ばらつきの抑制が実現できる内燃機関システムを提供する。
【解決手段】複数の気筒20を有する機関本体を構成する壁体に設けられた冷却液循環用冷却流路31と、壁体の気筒に隣り合う気筒周辺壁体部内に配置されるとともに気筒周辺壁体部の壁体温度を検出する複数の壁体温度検出センサ81と、壁体温度検出センサからの温度検出信号に基づいて各気筒周辺壁体部の温度差を所定値内に維持するために、気筒周辺壁体部の壁体温度に影響を与える物理量を調整する壁体温度制御部とを備えている。 (もっと読む)


【課題】 各気筒ごとにポート噴射弁8を有するポート噴射式内燃機関の始動性を向上させる。
【解決手段】 任意の1つの気筒と、この1つの気筒が圧縮行程又は膨張行程以外となるときに圧縮行程又は膨張行程となる他の気筒とを含む、少なくとも2つの気筒(例えば#1気筒と#4気筒)に、筒内噴射弁10を設ける。始動初回サイクルにて、膨張行程又は圧縮行程の気筒の筒内噴射弁10より燃料噴射を行わせ、速やかな初爆を得る。筒内噴射弁10には、ポート噴射弁8の調圧範囲内で燃料が供給される。 (もっと読む)


【課題】過渡状態におけるエンジン特性を向上させる。
【解決手段】本エンジン制御方法では、排気循環器及び可変ノズルターボを有するエンジンに対する燃料噴射量の設定値A、エンジン回転数の設定値B、エンジンの吸気圧の測定値C及び新気量の測定値Dを取得し、設定値A及びBに対応する吸気圧の目標値E及び新気量の目標値Fと、設定値A及びBに対応する可変ノズルターボのノズル開度の目標値G及び排気循環器のバルブ開度の目標値Hとを取得し、測定値Cの単位時間あたりの変化量又は目標値Eの単位時間あたりの変化量に応じた、目標値Eの修正量Hを算出し、目標値E及びFと測定値C及びDと修正量Hとから、可変ノズルターボのノズル開度の制御量J及び排気循環器のバルブ開度の制御量Kを算出し、制御量J及びKと、目標値G及びHとから、可変ノズルターボのノズル開度の指令値及び排気循環器のバルブ開度の指令値を算出する。 (もっと読む)


【課題】過給域を含む大半の機関運転領域で燃料増量率を1(0%の増量)に設定すると、機関加速時における加速性が低下する。
【解決手段】エアフロメータにより検出される吸入空気量と機関回転速度に基づいて、現在の吸入空気量に見合った第1燃料増量率F1を算出し(S11)、出力混合比に相当する第2燃料増量率F2を算出し(S12)、内燃機関が加速運転状態であるか否かを判定し(S14)、加速運転状態でないと判定された場合には、第1燃料増量率F1を燃料増量率F0として設定する一方(S17)、加速運転状態であると判定された場合には、第1燃料増量率F1と第2燃料増量率F2の大きい方を燃料増量率F0として設定する(S15〜S17)。設定された燃料増量率F0に基づいて燃料噴射制御を行う。 (もっと読む)


【課題】流動強化弁の開度は流動のみならず流量に対しても影響をおよぼすために、流動強化弁開度が過渡的に変化する場合には、流動強化弁開度と点火時期との定常運転時に得られる関係にもとづいて点火補正制御を行うと、点火時期を最適点より遅角側あるいは進角側に設定してしまう不具合を生じる。
【解決手段】流動強化弁を備えた内燃機関の制御装置において、エアフローセンサにて検出された吸入空気量と回転速度と流動強化弁の動作状態にもとづいてシリンダ筒内に流入する吸入空気量を演算し、回転速度と前記筒内に流入する吸入空気量と流動強化弁の動作状態にもとづいて筒内の乱れ強度指標を演算し、回転速度と前記筒内に流入する吸入空気量と前記乱れ強度指標にもとづいて点火時期を演算する。 (もっと読む)


【課題】 圧縮着火燃焼モードと火花点火燃焼モードの間の燃焼モードの切換時に、吸気弁および排気弁のバルブタイミングが、燃焼が不安定になりやすい組み合わせになることを回避し、それにより、安定した燃焼状態を確保できる内燃機関の制御装置を提供する。
【解決手段】 本発明の内燃機関の制御装置では、吸気V/T切換機構13および排気V/T切換機構14により、吸気弁6および排気弁7のバルブタイミングをそれぞれ変更することによって、燃焼モードを圧縮着火燃焼モードと火花点火燃焼モードに切り換える。決定された燃焼モードが圧縮着火燃焼モードから火花点火燃焼モードに切り換わったときには、吸気弁6の火花点火燃焼モード用のバルブタイミング(高速V/T)への切換動作を、排気弁7の火花点火燃焼モード用のバルブタイミング(高速V/T)への切換動作に優先して実行する(図5のステップ2、図9のステップ35〜37)。 (もっと読む)


【課題】低温始動後に副燃料が副燃料配管内に残存することを防止する。
【解決手段】始動用の副燃料を内燃機関へ噴射供給する副燃料供給系20として、副燃料が貯留される副燃料タンク22と噴射孔24とを結ぶ副燃料配管21には、その上流側より、副燃料を加圧する副燃料ポンプ25と、副燃料配管21の遮断・連通状態を切換可能な切換弁26と、所定容積の空気室31を有するエアチャンバ30と、が設けられる。主燃料による始動が困難な所定の低温始動時には、切換弁26を連通状態として、副燃料ポンプ25により加圧された副燃料を噴射孔24より吸気通路11へ噴射供給する。この際、空気室31には空気が圧縮状態で閉じ込められる。始動後に切換弁26を遮断状態とすると、空気室31に一時的に閉じ込められている圧縮された空気が膨張することによって、切換弁26の下流側に残存する副燃料が速やかに吸気通路11へ排出される。 (もっと読む)


【課題】燃料噴射弁から噴射される燃料の濃度変化をより高い精度で空燃比制御に反映させる。
【解決手段】炭化水素燃料とアルコールとを混合した混合燃料を機関燃料として利用可能な内燃機関を制御する制御装置において、濃度センサの出力に応じて、混合燃料中の単一成分の濃度を、検出濃度として検出すると共に、濃度センサの濃度検出位置から燃料噴射弁まで間の燃料配管の容積に応じて、燃料噴射弁から噴射される直前の混合燃料中の単一成分の濃度の推定値を、推定濃度として算出する。検出濃度が、単調増加又は単調減少を開始したと認められる第1変化点から、内燃機関の排気ガスの濃度が単調増加又は単調減少を開始したと認められる第2変化点までの間の燃料の積算噴射量を、燃料消費量として算出する。燃料センサから燃料噴射弁までの容積と燃料消費量との差に応じて、燃料噴射弁から噴射される燃料噴射量を補正する。 (もっと読む)


【課題】デュアル噴射型の内燃機関において燃料タンクに燃料ベーパーを大量に発生させることなく高圧燃料系における過熱状態を抑制して内燃機関運転安定性を高める。
【解決手段】推定計算される内燃機関停止中の高圧燃料系の最高燃料温度Temxが基準燃料温度Tefsより高いと判定されると(S308でYES)、ステップS310〜S318にて目標燃料噴射比率Rtを変更することで筒内噴射インジェクタからの燃料噴射量を増加している。このことにより高圧燃料系からの排熱量を増加させて燃料温度を低下させることができる。この手法は、高温化した高圧燃料のリターンによるものではないので燃料タンク内に燃料ベーパーを大量に発生させることはない。このようにして内燃機関停止中の過熱状態が防止されることから課題が達成される。 (もっと読む)


【課題】 特許文献1または特許文献2に記載された可変圧縮比装置が圧縮比を切替える途中の期間に、前記可変圧縮比装置の一部分である圧縮リングでしかも副シリンダーの開口部付近に位置する圧縮リングの熱負荷を減少させる。
【解決手段】 一部の可変圧縮比装置が圧縮比を切替える途中の時期に、圧縮比を切替える前記一部の可変圧縮比装置を持つ第一主シリンダーの燃焼行程の燃焼が中止され、同じ時期に前記一部の可変圧縮比装置を除く他の可変圧縮比装置が圧縮比を切替えず、同じ時期に前記他の可変圧縮比装置を持つ主シリンダーの燃焼行程が行われる。すると、前記一部の可変圧縮比装置の圧縮リングの上下二つの面が燃焼ガスに触れず、圧縮リングの熱負荷の問題が解決する。更に電動モーターがエンジンの出力軸を駆動すると、圧縮比を切替える途中の出力の低下を補える。 (もっと読む)


【課題】エンジンの点火タイミングよりも前に混合気が自着火して燃焼する自着火燃焼が発生した場合に、その自着火燃焼を早期に検出して早期に抑制できるようにする。
【解決手段】自着火燃焼の発生時には正常燃焼時よりも筒内温度が高くなることに着目して、所定の筒内温度推定期間中にイオン電流検出回路22から出力されるイオン電流信号に基づいて筒内温度を推定し、その筒内温度推定値が所定の判定値を越えたか否かによって、初期段階の自着火燃焼(燃焼エネルギが比較的小さい自着火燃焼)が発生しているか否かを判定する。そして、初期段階の自着火燃焼が発生していると判定されたときに、その自着火燃焼を抑制するようにエンジン11を制御する自着火燃焼抑制制御を実行する。この自着火燃焼抑制制御では、例えば、吸気バルブ23の閉弁時期を遅角補正することで、混合気の実圧縮比を低下させて燃焼温度を低下させて筒内温度を低下させる。 (もっと読む)


【課題】電動パーキングブレーキシステム及びアイドルストップシステムを備えた車両において、アイドルストップの解除に伴いパーキングブレーキを自動解除する際に車両が後退するおそれを低減するパーキングブレーキ制御装置を提供する。
【解決手段】パーキングブレーキを電動モータで自動作動させる電動パーキングブレーキシステム、及びエンジンを自動停止させるアイドルストップシステムを備えた車両に適用され、アイドルストップの実施に伴い、パーキングブレーキを自動作動させるパーキングブレーキ制御手段(S13)と、アイドルストップを解除してエンジンを自動再始動させる要求が生じている時にパーキングブレーキを自動解除させるパーキングブレーキ解除手段(S70)と、を備える。そして、前記パーキングブレーキ解除手段は、車両の発進駆動力が所定値以上になっていることを条件(S60:YES)として、前記自動解除を許可する。 (もっと読む)


【課題】この発明は、燃焼室の中央部と外周部に対して噴射燃料を適切に配分し、筒内壁面への燃料付着を抑制することを目的とする。
【解決手段】エンジン10の各気筒は、ストレートポートからなる2つの吸気ポート20A,20Bと、燃料の噴霧形状が中心軸線L1,L2に対して非対称に設定された燃料噴射弁24A,24Bとを備える。燃料噴射時には、燃料噴射弁24A,24Bから噴射される燃料のうち、吸気バルブ28A,28Bのステム32A,32B間に噴射される中央領域噴射量が、ステム32A,32Bの外側に噴射される外側領域噴射量よりも多くなるように構成する。これにより、噴射燃料を筒内各部の空気量に応じて筒内中央部と筒内外周に適切に分配することができる。また、筒内外周に流入する噴射燃料を減少させ、筒内壁面への燃料付着量を抑制することができる。 (もっと読む)


【課題】エンジン10が低負荷状態で運転される場合にエンジン10の運転に要求される燃料量が少なくなることと、燃料噴射弁24の通電時間の許容下限値が存在することとに起因して、パージ制御によって燃料蒸発ガスのパージを十分に行うことができなくなること。
【解決手段】燃料噴射弁24から噴射される燃料及びパージ制御によってパージされる燃料蒸発ガスによってエンジン10の運転に要求される燃料を燃焼室43に供給すべく燃料噴射弁24及びパージバルブ42を通電操作する処理を行う。こうした処理が行われるエンジンシステムにおいて、燃料噴射弁24の通電時間が許容下限値を下回ると想定される場合に、燃料噴射弁24の燃料噴射圧の目標値を低下させる。そして、実際の燃料噴射圧を上記目標値に制御すべく燃料ポンプ30を通電操作する。 (もっと読む)


【課題】低硫黄燃料を利用してシリンダボアの腐食の原因となる高濃度硫酸の発生を抑制し、簡単な構造で且つ効率よくシリンダボアの腐食を防止することができるディーゼルエンジンのシリンダボア腐食防止システムを提供する。
【解決手段】硫黄濃度の異なる燃料が収容された複数の燃料タンク2a,2bと、インジェクタ8と、インジェクタ8と接続された主配管14と、燃料タンク2a,2bにそれぞれ接続された複数の副配管13a,13bと、副配管13a,13b内を流れる燃料の流量を調整するバルブ3と、シリンダボア11内に発生する液状物の露点温度データを燃料中の硫黄濃度ごとに格納した露点温度データベース4と、シリンダボア11表面の温度情報を出力する出力器6と、シリンダボア11内の圧力変化範囲を格納した圧力範囲データベース16と、液状物中の硫酸濃度を制御するために燃料中の硫黄濃度を調整するための制御装置5とを備えた。 (もっと読む)


【課題】本発明は、オイル希釈燃料推定装置に関し、ガソリンにアルコールを混合したアルコール混合燃料を使用する場合であっても、オイルを希釈する燃料の量を正確に把握可能なオイル希釈燃料推定装置を提供することを目的とする。
【解決手段】ECU70は、オイル希釈の基本希釈量ODBASEを算定する(ステップ110)。続いて、算定した基本希釈量ODBASEを、エンジン10の運転状態に応じて補正するための各種補正係数を求める。(ステップ110)。続いて、算定した基本希釈量ODBASEを、アルコール混合燃料による蒸発特性の変化に応じて補正するための各種補正係数を求める(ステップ120)。ステップ110,120で求めた補正係数をステップ110で算定した基本希釈量ODBASEに積算してオイル希釈量ODを推定する(ステップ130)。 (もっと読む)


【課題】トルク低下を伴う点火時期リタードによらずに、加速時の吸気弁閉時期の変化に伴うノッキングを回避する。
【解決手段】内燃機関の機械的圧縮比(公称圧縮比)を変化させる可変圧縮比機構と、吸気弁閉時期を変化させる可変動弁機構と、によって、有効圧縮比の可変制御が可能となっている。加速時には、目標機械的圧縮比が低下するとともに目標吸気弁閉時期が下死点よりも進み側から下死点よりも遅れ側へ変化するが、可変圧縮比機構や可変動弁機構の作動遅れにより遅れて変化する。実吸気弁閉時期が下死点付近の所定範囲にある間に、燃料増量補正を行い、ノッキングを回避する。 (もっと読む)


【課題】過渡状態であるか否かを正確に判断することができると共に、PMの排出量の増加を防止することができるエンジンを提供する。
【解決手段】燃料を噴射する燃料噴射装置としてのコモンレール燃料噴射装置3と、エンジン回転数Nを検知する回転数センサ71と、コモンレール燃料噴射装置3及び回転数センサ71が接続されるコントローラ7と、を備えるエンジン1において、コントローラ7により、エンジン回転数Nとコモンレール燃料噴射装置3の燃料噴射量Qとの関係を規定する制御マップ73に基づいてエンジン回転数Nに応じた燃料噴射量Qを算出し、燃料噴射量Qの変化に基づいて過渡状態であるか否かを判断するものである。 (もっと読む)


141 - 160 / 1,899