説明

Fターム[3G301HA19]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 機関型式 (19,471) | 吸排気バルブタイミング可変機関 (1,782)

Fターム[3G301HA19]に分類される特許

81 - 100 / 1,782


【課題】有効圧縮比を低下させる制御の応答遅れにかかわらず、プリイグニッションを迅速かつ効果的に抑制する。
【解決手段】本発明の火花点火式エンジンの制御方法には、検出手段(34)の検出値に基づきプリイグニッションが検出された場合に、可変機構(15)を用いて有効圧縮比を所定量低下させるステップと、上記有効圧縮比の低下が完了するまでの過渡期に、インジェクタ18からの噴射燃料に基づく筒内の空燃比を一時的にリッチにするステップとが含まれる。 (もっと読む)


【課題】上死点の燃焼室容積を変化させて機械圧縮比を可変とする可変圧縮比機構を備える内燃機関であって、燃焼室内の空燃比を理論空燃比よりリーンにして運転する場合にも、所望の燃焼空燃比を実現可能とする。
【解決手段】前回サイクルの燃焼室内新気量Q(k-1)と前回サイクルの排気行程における機械圧縮比E(k-1)と前回サイクルの燃焼空燃比AF(k-1)とに基づいて前回サイクルの燃焼後に排気上死点の燃焼室に残留する残留新気量QR(k)を算出し(ステップ104)、今回サイクルの吸気弁開弁から吸気弁閉弁までに燃焼室へ新たに供給される供給新気量QS(k)に残留新気量を加えて今回サイクルの燃焼室内新気量Q(k)とし(ステップ105)、今回サイクルの燃焼室内新気量に対して今回サイクルの燃焼空燃比AF(k)を実現するための必要燃料量F(k)を決定する(ステップ109)。 (もっと読む)


【課題】燃焼室内における混合気の乱れ強度を推定し、乱れ強度の過剰な増大による内燃機関の失火を抑制することができる内燃機関の制御装置を提供する。
【解決手段】駆動制御システム1は、エンジン100の点火プラグ29の放電時間に基づいて、燃焼室内の乱れ強度を推定する乱れ強度推定手段と、乱れ強度推定手段の推定結果に基づいて、エンジン100の燃焼状態が安定領域にあるか否かを判定する判定手段と、判定手段の判定結果に基づいて、燃焼室内の乱れ強度を低下させる乱れ強度低下手段と、を備える。 (もっと読む)


【課題】この発明は、吸気ポートに付着したオイル起因のプレイグニションの発生を防止することのできる過給機付き内燃機関の制御装置を提供することを目的とする。
【解決手段】吸気バルブの閉弁タイミングを変更可能な可変動弁機構と、吸気下死点近傍における吸気管圧を取得する手段を備える。フューエルカットを伴う減速中において、前記吸気管圧が設定負圧よりも低い状態が設定サイクル数以上継続した場合に判定条件が成立すると判定する。前記判定条件が成立する場合に、前記可変動弁機構により、少なくとも吸気行程の下死点から圧縮行程の上死点までの間は前記吸気バルブを閉弁させる。また、前記判定条件が成立する場合に、排気行程において排気バルブを開弁させる。 (もっと読む)


【課題】エンジンの出力能率を維持しつつ吸気流量制御弁の凍結を抑制することができるエンジンのブローバイガス制御装置を提供する。
【解決手段】スロットル弁20の上流側とクランク室4とを連通した上流側通路22と、スロットル弁20の下流側とクランク室4とをPCVバルブ31を介して連通した下流側通路21と、を備えたエンジンEのブローバイガス制御装置1において、スロットル弁20をアクセル開度に対応した開度に制御する通常開度制御とスロットル弁20をアクセル開度に対応した開度よりも低開度側へ制御する低開度制御とを実行可能な吸気流量制御手段51と、オイルパン4内部に蓄積された蓄積水分が蓄積許容値に達したか否かを判定する水分量判定手段52と、蓄積水分量の積算値が蓄積許容値に達したと判定され且つスロットル弁開度が全開近傍の高負荷状態のとき、吸気流量制御手段51に低開度制御を実行させる。 (もっと読む)


【課題】異常なインジェクタを早期に特定する。
【解決手段】エンジンには、シリンダ内に直接燃料を噴射する筒内インジェクタと、吸気ポートに燃料を噴射するポートインジェクタとが、夫々、複数のシリンダ毎に設けられる。筒内インジェクタとポートインジェクタとの両方から燃料が噴射される状態においてシリンダ間での空燃比の不均衡が検出されると、筒内インジェクタとポートインジェクタとのうちのいずれか一方のみから燃料を噴射する。 (もっと読む)


【課題】スワール流の発生と吸気ポートの燃料付着抑制とを高い次元で両立することができる内燃機関の制御装置を提供する。
【解決手段】下流インジェクタ30の燃料噴射を停止しつつ、上流インジェクタ32に同期噴射による燃料噴射を行わせる。燃料噴射は、吸気ポート18bの吸気弁12は休止させられた状態で実行される。このようにすることで、リフト量に差異を設けたスワール流発生時には、上流インジェクタ32によって燃料供給が行われることになる。吸気ポート18bの吸気弁12が完全に休止させられることで(ゼロリフトとなることで)、燃焼室内のスワールを強力なものとすることができる。弁休止した吸気ポート18bに付着、滞留する燃料の量を低減することもできる。 (もっと読む)


【課題】高圧燃料ポンプの駆動抵抗が過大になって駆動損失が増大したり、上記加圧プランジャーの摺動部に焼き付きが生じたりすること等を効果的に防止できるようにする。
【解決手段】ガソリンまたはアルコール燃料を30MPa以上の燃圧で燃焼室内に供給可能な高圧燃料ポンプ63を備えた火花点火式エンジン高圧燃料ポンプにおいて、上記高圧燃料ポンプ63の加圧室72内に充填された燃料を加圧する加圧プランジャー75と、この加圧プランジャー75を衝動可能に支持する支持部78と、この支持部78と加圧プランジャー75との間に形成された隙間90を通って少量の燃料が上記加圧室72内からリークするのを許容しつつ、上記隙間90をシールするシール部材91とを備えた火花点火式エンジンの高圧燃料ポンプ構造およびエンジンの制御装置。 (もっと読む)


【課題】熱効率をより高めることができるガソリンエンジンを提供する。
【解決手段】気筒2の幾何学的圧縮比を14以上に設定するとともに、燃焼室6の天井面60を、その径方向中央を頂部として径方向外側に向かうに従ってピストン5の冠面側に傾斜する円錐面形状とし、ピストン5の冠面を、その中央部分に形成されて前記燃焼室6の天井面60から離間する方向に凹みこの凹み方向に湾曲する内周面40bを有するキャビティ40と、キャビティ40の開口縁40aから径方向外側に向かうに従って燃焼室6の天井面60から離間する方向に傾斜して燃焼室6の天井面60と平行に延びる基準面41とし、インジェクタ21を各噴口21aを通じて噴射された燃料が燃焼室6の天井面60の頂部からピストン5の冠面に近づくほど径方向外側に拡がるように、その先端部を燃焼室6の天井面60の頂部近傍に位置する状態で燃焼室6内に臨ませる。 (もっと読む)


【課題】エミッション性の悪化や異常燃焼の発生を伴わず、しかも熱効率に優れた燃焼を幅広い負荷域に亘って行う。
【解決手段】エンジン低速域における所定の負荷域(A2)では、インジェクタ21から複数回に分けて噴射された燃料に基づき燃焼室6の異なる場所に形成された混合気X1,X2をそれぞれ自着火により燃焼させる多段CIモードを実行する。一方、この多段CIモードの実行領域よりも高負荷側の領域(A4)では、30MPa以上の噴射圧力でインジェクタ21から燃料を噴射させる燃料噴射P4,P5と、点火プラグ20による火花点火とを、圧縮行程後期から膨張行程初期までの期間内に実行することにより、燃料噴射P4,P5に基づく混合気を、圧縮上死点を所定期間以上過ぎてから火炎伝播により急速に燃焼させる急速リタードSIモードを実行する。 (もっと読む)


【課題】異常燃焼を回避しつつ幾何学的圧縮比を高くして圧縮自着火燃焼を実現することができるとともに、触媒の活性を促進することができるガソリンエンジンを提供する。
【解決手段】排気ポート10に接続される独立排気通路52の下流端を下流側の方がより流路面積が小さくなる形状としてエゼクタ効果によって隣接する他の独立排気通路52に接続された排気ポート10内に負圧が生成されるようにするとともに、低負荷かつ低速域において、混合気が自着火により燃焼する自着火燃焼モードを実行するとともに、高負荷かつ低速域において、吸気弁11の開弁期間と排気弁12の開弁期間とを所定のオーバーラップ期間重複させ、かつ、排気順序が連続する気筒間において一方の気筒2の前記オーバーラップ期間を他方の気筒2の排気弁12が開弁している時期に重複させる。 (もっと読む)


【課題】 負荷が急変する過渡時の負荷変化や、燃料カット時の負荷変化が生じても、空燃比を的確に制御する。
【解決手段】 負荷変化が検出された場合(ステップS33)、負荷が急変する過渡時の負荷変化であれば、負荷が急変している際に吸気行程で、燃料噴射期間の中心位置が吸気バルブの閉動作以前に位置するように燃料を噴射し(ステップS32)、燃料カット時の負荷変化であれば、燃料カットが行われる前及び燃料カットからの復帰時に吸気行程で、燃料噴射期間の中心位置が吸気バルブの閉動作以前に位置するように燃料を噴射し、新たに付着する燃料量を考慮せずに、燃料供給量を容易に算出する。 (もっと読む)


【課題】空燃比気筒間インバランス発生時において、エミッション量低減制御が実行されることに起因する失火の発生等を抑制すること。
【解決手段】気筒別空燃比の間の差(空燃比気筒間インバランス)の大きさを表わす「インバランス指標値」が、触媒の上流に配置された空燃比センサの出力値に基づいて取得される。インバランス指標値により表わされる空燃比気筒間インバランスの大きさが、第1の程度以上且つ第1の程度より大きい第2の程度未満のとき、エミッション量低減制御の実行が「制限」され、第2の程度以上のとき、エミッション量低減制御の実行が「禁止」される。エミッション量低減制御としては、パージ制御、EGR制御、AI増量制御、冷間VVT制御、触媒暖機遅角制御、SCV制御等が挙げられる。 (もっと読む)


【課題】可変圧縮比機構を備える内燃機関において、点火時期の設定時期より吸気弁の閉弁時期が遅い場合においても、ノッキングの発生を抑制可能とする。
【解決手段】可変バルブタイミング機構により制御される吸気弁の閉弁時期が点火時期の設定時期より前であるときには、吸気弁の閉弁時期以降に推定される圧縮端圧力(ステップ104)に対してノッキングを発生させない点火時期を設定時期において設定し(ステップ105)、吸気弁の閉弁時期が点火時期の前記設定時期以降であるときには、吸気弁の閉弁時期以降に推定される圧縮端圧力(ステップ108)に対して設定時期において設定された点火時期ではノッキングが発生すると予測される場合に、可変圧縮比機構により機械圧縮比を低下させる(ステップ110)。 (もっと読む)


【課題】燃料系の誤差と空気系の誤差のそれぞれに応じて、適切に補正を実施し、空燃比ばらつきとトルクばらつきの双方を補正する。
【解決手段】排気管集合部10Aの空燃比に基づいたフィードバック制御を実施中に、目標空燃比と実空燃比の差が所定値以下のとき、角加速度のばらつきがもっとも大きい気筒cyl_1の空燃比を例えば、燃料増量によってリッチ側に補正する。その後、あらためて、気筒毎の角加速度を検出し、気筒間の角加速度ばらつきが解消されていないときは、前記ばらつきがもっとも大きかった気筒の空気制御量に誤差があると判断し、当該気筒の空気量、燃料量、点火時期などを補正する。 (もっと読む)


【課題】性能パラメータの相互干渉による制御性悪化の回避を図るとともに、エンジン性能を好適に制御する。
【解決手段】性能パラメータ算出部31は、複数の性能パラメータの目標値をエンジン運転状態に基づいて設定する。また、目標燃費操作部40は、各性能パラメータの実値が目標値に制御されている状態で、燃費の目標値をエミッション排出量の変化量に基づいて性能良化側に操作する。目標燃費操作部40は、複数の性能パラメータと複数の燃焼パラメータとの相関を定義した相関データを用い、燃焼パラメータの動作可能範囲に基づいて各性能パラメータの変化量を算出する性能パラメータ変化量算出部43と、エミッション排出量の変化量が所定の許容範囲にある場合に、燃費の変化量を燃費操作量として設定する燃費操作量設定部44とを有する。燃焼パラメータ算出部32は、各性能パラメータの目標値に基づいて複数の燃焼パラメータの目標値を算出する。 (もっと読む)


【課題】吸気バルブのリフト量が変更される多気筒内燃機関であっても、リッチ側気筒間ばらつきが生じているときの排気浄化性能を向上させることのできる燃料噴射制御装置を提供する。
【解決手段】
エンジン10は、吸気バルブ30のリフト量を変更するリフト量可変機構42を備えている。電子制御装置50は、各気筒間での空燃比のばらつきである気筒間ばらつきを検出するとともにその気筒間ばらつきがリッチ側に偏倚しているときには燃料噴射量を増量補正する。この燃料噴射量の増量補正量を、吸気バルブ30のリフト量が小さいときほど増大させる。 (もっと読む)


【課題】エンジンの制御装置に関し、実熱効率の目標熱効率への収束性を向上させ、エンジンの安定性を向上させる。
【解決手段】エンジン10の目標熱効率を設定する目標演算手段1と、エンジン10の運転状態に基づき実熱効率を演算する実演算手段2とを設ける。
また、目標熱効率及び実熱効率のずれに応じた熱効率の補正量を演算する補正手段3と、目標熱効率及び補正量に基づいてエンジン10の運転状態を制御する制御手段4とを備える。 (もっと読む)


【課題】エンジンの触媒早期暖機制御時の混合気の着火性や燃焼性を向上させながらスモークやPMの排出量を低減できるようにする。
【解決手段】排出ガス浄化用の触媒25を早期に暖機するために点火時期を遅角する触媒早期暖機制御の実行中に吸気行程で燃料噴射弁21により筒内に燃料を噴射する吸気行程噴射と圧縮行程で燃料噴射弁21により筒内に燃料を噴射する圧縮行程噴射を実行するシステムにおいて、触媒早期暖機制御の実行中に排気バルブ31と吸気バルブ30が両方とも閉弁した状態になるNVO期間(負のバルブオーバーラップ期間)を設けるように吸気側及び排気側の可変バルブタイミング装置32,33を制御し、NVO期間中に燃料噴射弁21により筒内に燃料を噴射するNVO噴射を実行し、NVO噴射量(NVO噴射の燃料噴射量)に応じて圧縮行程噴射量(圧縮行程噴射の燃料噴射量)を減量補正する。 (もっと読む)


【課題】NVO期間(負のバルブオーバーラップ期間)中に筒内に噴射された燃料の改質量を適正に制御して、燃料の改質量の過不足に起因する不具合の発生を防止する。
【解決手段】所定の実行条件が成立したときに、排気バルブ31と吸気バルブ30が両方とも閉弁した状態になるNVO期間を設けるように可変バルブタイミング装置32,33を制御し、このNVO期間中に筒内に燃料を噴射するNVO噴射を実行して、燃料を着火性の高い状態に改質する。その際、アルコール濃度センサ36で検出した燃料のアルコール濃度や重質度センサ37で検出した燃料の重質度に応じてNVO噴射の燃料噴射量を補正する。これにより、燃料の給油等によってエンジン11に供給する燃料の性状(アルコール濃度や重質度)が変化しても、燃料性状に応じてNVO噴射の燃料噴射量を補正して、NVO期間中に筒内に噴射された燃料の改質量を過不足なく適正範囲に制御する。 (もっと読む)


81 - 100 / 1,782