説明

Fターム[3G384AA10]の内容

内燃機関の複合的制御 (199,785) | 機関の形式又は用途 (14,281) | スワール、タンブル機関 (228)

Fターム[3G384AA10]に分類される特許

1 - 20 / 228


【課題】内燃機関のシリンダの壁面に沿って形成される高温気体の断熱層の状態によって生じる排気ガスや燃費の悪化を抑えることができる内燃機関の制御装置を提供することを目的としている。
【解決手段】ECU27に、高温気体制御機能28、断熱層最適厚み算出機能29、スワール制御機能30、吸気制御機能31、が搭載され、ECU27からEGRバルブ24の開度Eの調整指令と、第1スワール流動制御バルブ25および第2スワール流動制御バルブ26の開度SCV1,SCV2の調整指令と、吸気バルブ11のリフト量IVLの調整指令を出すことにより断熱層の厚みを最適化する。これにより、排気ガス、燃費およびドライバビリティを向上させることができる。 (もっと読む)


【課題】火花点火燃焼運転領域と圧縮自着火燃焼運転領域との間の希薄燃焼運転領域における過早着火や失火を防止して、広い運転域にわたって安定した燃焼を得ることができ、燃料の着火性や燃焼性を確保して未燃焼ガスの排出量を低減でき、スモークの発生を防止できる内燃機関を提供すること。
【解決手段】低圧センターインジェクタ12および高圧サイドインジェクタ13を備え、これらのインジェクタにそれぞれに高圧燃料ポンプ14を接続し、低圧センターインジェクタ12と高圧燃料ポンプ14との間にレギュレータ15を配置して低圧センターインジェクタ12からは低圧に規制された燃料が噴射されるようにし、圧縮自着火式燃焼と火花点火燃焼とを切り換える過渡領域となる中負荷または中回転運転領域における燃料の圧縮行程で、主として低圧センターインジェクタ12から燃料噴射をさせて火花点火を行う。 (もっと読む)


【課題】この発明は、複雑な構成を要さず低コストで安定した成層燃焼を実現することのできる内燃機関の制御装置を提供することを目的とする。
【解決手段】1つの燃焼室に対して2つの吸気ポートが並設され、両方の吸気ポートから導入される空気により筒内にタンブル流が形成される内燃機関の制御装置であって、中央点火プラグと、前記2つの吸気ポートにそれぞれ設けられ、吸気ポート内に燃料を噴射可能なポート噴射弁とを備える。前記2つの吸気ポートから筒内に空気を吸入し、かつ、前記ポート噴射弁のうち一方のポート噴射弁から燃料を噴射させ、前記2つの吸気ポートのうち一方の吸気ポートからは空気と噴射燃料との混合気を、他方の吸気ポートからは空気を筒内に吸入する成層燃焼モードにおいて、所定点火時期に前記中央点火プラグ周辺の混合気を成層燃焼可能な燃料密度とするように、前記一方のポート噴射弁の燃料噴射時期を制御する。 (もっと読む)


【課題】スワール流の発生と吸気ポートの燃料付着抑制とを高い次元で両立することができる内燃機関の制御装置を提供する。
【解決手段】下流インジェクタ30の燃料噴射を停止しつつ、上流インジェクタ32に同期噴射による燃料噴射を行わせる。燃料噴射は、吸気ポート18bの吸気弁12は休止させられた状態で実行される。このようにすることで、リフト量に差異を設けたスワール流発生時には、上流インジェクタ32によって燃料供給が行われることになる。吸気ポート18bの吸気弁12が完全に休止させられることで(ゼロリフトとなることで)、燃焼室内のスワールを強力なものとすることができる。弁休止した吸気ポート18bに付着、滞留する燃料の量を低減することもできる。 (もっと読む)


【課題】複数回の燃料噴射によって燃焼室内での燃焼が行われる圧縮自着火式の内燃機関における燃焼状態の評価の容易化を図る。
【解決手段】パイロット噴射での燃焼開始からメイン噴射での燃焼終了までの期間における燃料の単位体積当たりの発生熱量の最大値であるトータル燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量であるトータル燃焼実熱発生効率とを比較する。パイロット噴射での燃焼及びメイン噴射での燃焼のそれぞれにおいて、その燃焼期間における燃料の単位体積当たりの発生熱量の最大値である燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量である燃焼実熱発生効率とを比較する。これら比較により、パイロット噴射量の補正及びメイン噴射量の補正を行う。 (もっと読む)


【課題】エンジンを適度に冷却すると共に、エンジンの燃費を向上する。
【解決手段】ECU7は、エンジン4における燃焼室壁面の温度Tcを推定する温度推定部701と、推定された燃焼室壁面の温度Tcが、閾値温度Tcth以上であるか否かを判定する温度判定部702と、燃焼室壁面の温度Tcを閾値温度Tcth未満とするスワール比Rsである目標スワール比Rs0を求める目標気流算出部704と、スワールコントロールバルブ46を介して、エンジン4における燃焼室522内のスワール比Rsを、目標気流算出部704によって求められた目標スワール比Rs0とする気流制御実行部705とを備える。 (もっと読む)


【課題】エンジンの筒内の混合気の成層化の度合をエンジン運転状態に応じた適正な度合に精度良く制御できるようにする。
【解決手段】エンジン運転状態に基づいて目標成層度合を設定し、この目標成層度合に基づいて各気筒の2つのスワール制御弁35の開度と2つの燃料噴射弁21の噴射条件を個別に設定する。具体的には、目標成層度合が大きいほど一方の吸気ポート31内の吸気流速が速くなるようにスワール制御弁35の開度を設定する。また、目標成層度合が大きいほど吸気ポート31内の吸気流速が速い側の燃料噴射弁21の噴射量を少なくして吸気流速が遅い側の燃料噴射弁21の噴射量を多くする。更に、吸気ポート31内の吸気流速が速い側の燃料噴射弁21の噴射時期を排気行程から吸気行程前期までの期間内に設定して吸気流速が遅い側の燃料噴射弁21の噴射時期を吸気行程後期に設定する。 (もっと読む)


【課題】標準モードと低燃費モードを備えたエンジンにおいて、低燃費モードでのPMを抑制する。
【解決手段】コモンレール1を備えたエンジンEと、該エンジンEの制御を行うECU100、及び作業機21を搭載したトラクタにおいて、排気ガスを浄化する後処理装置37を機体の適宜位置に設け、ECU100内にエンジン回転数とトルクとの関係を示す性能曲線を少なくとも標準モードラインL1と低燃費モードラインL2とから構成し、該標準モードラインL1と低燃費モードラインL2との切り換えは燃費モード変更手段36で行う構成とし、低燃費モードラインL2に切り換えるとメイン噴射Iの噴射タイミングを進角ADさせるとともにアフター噴射AIの噴射量を増量させるように構成したことを特徴とするトラクタの構成とする。 (もっと読む)


【課題】筒内の排気側壁面に噴射燃料が付着するのを抑制し、HCの排出量を低減する。
【解決手段】吸気ポート18の上側壁面18Aには、燃料噴射弁24とTCV32とを設け、TCV32は、燃料噴射弁24と吸気バルブ28との間に配置する。ECU50は、冷間始動が行われる場合に、燃料噴射量に基いて制御を切換える。即ち、燃料噴射量が所定の判定値以下である場合には、TCV32を閉弁側に駆動してから、燃料の吸気同期噴射を実行する。一方、燃料噴射量が前記判定値よりも多い場合には、燃料の吸気非同期噴射を実行してから、TCV32を閉弁側に駆動する。これにより、冷間始動時には、個々の状況に応じて筒内の排気側壁面14Bに付着する燃料の量を低減し、HCの排出量を抑制することができる。 (もっと読む)


【課題】エンジン1の高負荷域における低速側の特定運転領域において、効果的にノッキングを抑制しつつ、高圧縮比エンジンによる高トルク化を達成する。
【解決手段】制御手段(エンジン制御器100)は、エンジン1の運転状態が特定運転領域にあるときには、有効圧縮比を10以上に設定し、特定運転領域における相対的に低速の第1回転域にあるときには、点火時期の遅角量を、高速側の第2回転域にあるときの点火時期の遅角量よりも大きく設定し、燃料の噴射態様を、少なくとも2回噴射する分割噴射にする。制御手段はまた、第1回転域では、分割噴射の最終段の噴射時期を圧縮行程前半に設定する一方、第2回転域では、分割噴射の最終段の噴射時期を吸気行程後期に設定しかつ、最終段の前に噴射される噴射段の少なくとも一つの噴射時期を、吸気行程中期に設定する。 (もっと読む)


【課題】この発明は、排気熱を利用して一部の吸気ポートを加熱する場合において、加熱した吸気ポートから他の吸気ポートへの熱伝導を抑制することを目的とする。
【解決手段】エンジン10の各気筒は、それぞれ2つの吸気ポート20A〜20Hを備える。燃料気化促進制御では、互いに隣接する2つの気筒(#1気筒と#2気筒、#3気筒と#4気筒)において、相手方の気筒に最も近い吸気ポートである吸気ポート20B,20C,20F,20Gを加熱吸気ポートとして選択する。そして、加熱吸気ポート20B,20C,20F,20Gでは、排気ガスの吹き返し量を他の吸気ポートよりも増加させ、排気熱により吸気ポートを加熱する。これにより、複数の加熱吸気ポートを出来るだけ狭い範囲に集約して効率よく加熱することができ、他の吸気ポートへの熱伝導を抑制することができる。 (もっと読む)


【課題】この発明は、内燃機関に関し、幅広い負荷領域において混合気とEGRガスとを独立して成層化することを目的とする。
【解決手段】第1吸気ポート26の内部を第1内側通路26aと第1外側通路26bとに区画する第1隔壁68aと、第2吸気ポート28の内部を第2内側通路28aと第2外側通路28bとに区画する第2隔壁68bとを備える。第1内側通路26a内に燃料を噴射する第1燃料噴射弁30aと、第2内側通路28a内に燃料を噴射する第2燃料噴射弁30bとを備える。第1外側通路26bに接続される第1EGR通路42aと、第2外側通路28bに接続される第2EGR通路42bとを備える。第1内側通路26aを開閉する第1内側開閉弁60aと、第1外側通路26bを開閉する第1外側開閉弁60bと、第2内側通路28aを開閉する第2内側開閉弁62aと、第2外側通路28bを開閉する第2外側開閉弁62bとを備える。 (もっと読む)


【課題】流動強化弁の開度は流動のみならず流量に対しても影響をおよぼすために、流動強化弁開度が過渡的に変化する場合には、流動強化弁開度と点火時期との定常運転時に得られる関係にもとづいて点火補正制御を行うと、点火時期を最適点より遅角側あるいは進角側に設定してしまう不具合を生じる。
【解決手段】流動強化弁を備えた内燃機関の制御装置において、エアフローセンサにて検出された吸入空気量と回転速度と流動強化弁の動作状態にもとづいてシリンダ筒内に流入する吸入空気量を演算し、回転速度と前記筒内に流入する吸入空気量と流動強化弁の動作状態にもとづいて筒内の乱れ強度指標を演算し、回転速度と前記筒内に流入する吸入空気量と前記乱れ強度指標にもとづいて点火時期を演算する。 (もっと読む)


【課題】筒内に燃料を直接噴射する直噴インジェクタを該筒内に備えることなく、吸気通路への燃料噴射の状況を制御することで、筒内に燃料を直接噴射した場合の性能を維持し、高い性能を得ることができる内燃機関を提供する。
【解決手段】排気ガスの一部を吸気系に還流させる排気ガス還流手段(EGR装置)を備え、筒内への吸気中に、吸気通路に燃料を噴射することで筒内の乱れを強化し、燃焼安定性を向上する。特に、EGRを大量に導入する運転領域(主に低負荷、低負荷運転領域)で吸気行程噴射の割合を増やすと共に燃料圧力を高め、筒内の乱れを強化し、火炎伝播を促進して燃焼安定性を向上させる。 (もっと読む)


【課題】 筒内に燃料を直接噴射する直噴インジェクタを備えることなく、吸気通路への燃料噴射の状況を制御することで、排気浄化触媒を早期に活性化する。
【解決手段】 排気浄化触媒55の温度が所定温度に満たない時(冷態始動時等の冷態時)に、吸気行程中を含む時期に燃料を噴射し、混合気の燃料リッチ部分を点火プラグ3の周囲に集めて着火を安定させ、点火時期を遅角して排気温度を上昇させ、燃料リッチ部分のCOと燃料リーン部分のOを排気ガスに共存させ、筒内の膨張行程後半における酸化反応や、排気管内での酸化反応、及び、排気浄化触媒55の酸化反応を促進して排気浄化触媒55の温度を昇温させる。 (もっと読む)


【課題】 筒内噴射型の燃料噴射弁と、燃料跳ね上げ用のキャビティがその頂面に形成されたピストンとを備えた内燃機関において、ファーストアイドル時における燃焼安定性や排気浄化触媒の昇温性の向上を実現する。
【解決手段】 シリンダヘッド2の燃焼室壁2aには、両吸気ポート6a,6bの外縁に沿うかたちで、シュラウド41,42が形成されている。シュラウド41,42は、燃焼室壁2aの中心Pを基準にして、吸気ポート6a,6bの開口部の外周に沿って反時計周り側に形成されている。そのため、低リフト時において、吸気ポート6a,6bから燃焼室5に流入した吸入空気は、シュラウド41,42に遮られることにより、時計回りのスワール流を生成し、燃料噴霧を点火プラグ15の近傍に滞留させる。 (もっと読む)


【課題】燃焼室20の混合気を燃焼室20での圧縮によって着火させる自着火燃焼制御時に失火が生じると、次回の燃焼サイクルにおいて燃焼を再開させることが困難となること。
【解決手段】イオン電流検出部62によって検出されるイオン出力値の最大値に基づき、完全失火が生じたと判断された場合、その直後の圧縮行程において、筒内噴射弁52から燃料噴射させ、点火プラグ36に放電火花を生じさせる処理を行う。一方、上記イオン出力値の最大値に基づき、部分失火が生じたと判断された場合、上記処理に加えて、吸気バルブ42が開弁するまで筒内噴射弁52及びポート噴射弁28の双方の燃料噴射を禁止させる処理を行う。 (もっと読む)



【課題】低負荷時から高負荷時までスモークを低減することを課題とする。
【解決手段】燃料噴射制御装置が備えるECUは、燃料噴射弁が装備される内燃機関の負荷情報を取得する。そして、この負荷情報に基づいて、スワールによって流されるパイロット噴射の噴霧ガスを避けるタイミングでメイン噴射を行う低負荷時制御と、スワールによって流されるパイロット噴射の噴霧ガスに干渉するタイミングでメイン噴射を行う高負荷時制御とを切り替える。低負荷時制御では、着火前にパイロット噴射の噴霧ガスを拡散させてスモークの低減を図る。高負荷時制御では、OHラジカルを含むパイロット噴射の噴霧ガスにメイン噴射を干渉させてスモークの低減を図る。 (もっと読む)


【課題】この発明は、プレイグニッションが発生した場合に、その発生要因に応じて適切な制御を実施することを目的とする。
【解決手段】ECU40は、プレイグニッション検出装置36を備える。そして、プレイグニッションを検出した場合には、エンジン回転数に応じてプレイグニッションの発生要因が異なることを利用して、エンジン回転数に基いて個々の発生要因に応じた制御を実行する。即ち、低回転領域では、プレイグニッションの発生要因であるオイルの自着火を低減するための制御を実行する。中回転領域では、点火プラグ24の電極部での熱面着火を低減するための制御を実行する。また、高回転領域では、点火プラグ24のポケット内での熱面着火を低減するための制御を実行する。これらの制御により、各種の運転状態において、プレイグニッションを効果的に抑制することができる。 (もっと読む)


1 - 20 / 228