説明

Fターム[3G384EC05]の内容

内燃機関の複合的制御 (199,785) | 演算処理C(処理方式) (2,883) | データサンプリング (936)

Fターム[3G384EC05]の下位に属するFターム

Fターム[3G384EC05]に分類される特許

1 - 20 / 538


【課題】別の排気分析装置やノックス測定センサーがなくても、 正確にノックスの量を予測し、これを基にノックスを制御することによって、信頼性のあるノックス制御システム及び方法を提供する。
【解決手段】本発明は、ノックス制御方法において、仮想のセンサーを利用して前記ノックスの発生量を予測する段階、前記ノックス予測値を予め設定されたノックス目標値と比較する段階、及び、前記ノックス予測値が前記ノックス目標値を追従するようにノックス発生量を制御する段階、を含み、前記ノックス制御方法は、車両の運行中に続いて繰り返され、前記ノックス発生量を制御する段階は、ノックス予測値が前記目標値より小さい場合には燃費または出力向上モードで車両を制御し、前記ノックス予測値が前記目標値より大きい場合には排気モードで車両を制御することを特徴とする。 (もっと読む)


【課題】エンジンの噴射/点火を司るマイコン回路の異常を少オーバヘッドとなる方式で検出すること。
【解決手段】本発明によるエンジン制御装置1は、クランク信号のエッジ間隔に基づいて、逓倍の角度クロックを生成する角度クロック生成部と、角度クロックに基づいて動作し、欠歯検出タイミングでリセットする角度カウンタと、欠歯検出タイミングでの角度カウンタのカウンタ値であって、リセットされる前のカウンタ値が、所定範囲内にないとき、角度カウンタのカウンタ値の異常を検出する監視部とを含む。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、クランク角検出手段により検出されるクランク角とクランク角との間のクランク角においてもパラメータを精度良く取得することを目的とする。
【解決手段】本発明の内燃機関の制御装置は、第1のクランク角とその次に検出される第2のクランク角との間であって、クランク角検出手段のクランク角間隔に所定比率を乗じた角度だけ第1のクランク角より後にある中間クランク角でパラメータを取得しようとする場合に、前回のクランク角検出間隔時間に所定比率を乗じた時間だけ第1のクランク角検出タイミングより後にある第1のタイミングでパラメータを取得し、第1のクランク角と第2のクランク角との間の間隔時間に所定比率を乗じた時間だけ第1のクランク角の検出タイミングより後にある第2のタイミングと、第1のタイミングとのズレ時間に基づいて、第1のタイミングで取得されたパラメータに関する補正を行う。 (もっと読む)


【課題】回転軸の回転速度変動に影響されにくく且つ必要なメモリ容量を抑えつつ、回転信号の角度分解能より小さい一定角度毎のデータをメモリに記憶する。
【解決手段】装置1には、10°CA毎にタイミングエッジが生じるクランク信号と、センサ信号の一定時間毎のA/D変換データが入力される。この装置1では、記憶制御部9が、タイミングエッジの発生間隔であるパルス間隔毎に、そのパルス間隔で発生したデータをバッファ7の先頭アドレスから順に記憶すると共に、バッファ7に記憶したデータの数を第1カウンタ21で計数する。そして、タイミングエッジが発生する毎に、演算器33が、上記計数されたデータ数を逓倍数で割った除算値を算出し、DMAコントローラ13、ロードアドレス切替部15及び転送要求出力制御部17が、上記除算値を用いて、バッファ7内のデータの中から「10°/逓倍数」毎のデータを選択してRAM11に転送する。 (もっと読む)


【課題】筒内圧検出値を絶対圧に補正する絶対圧補正の精度を向上させることが可能な内燃機関の制御装置を提供する。
【解決手段】所定気筒のIVCから点火時期までの断熱期間中の任意の2点のクランク角θ,θの組み合わせを複数特定する特定手段と、特定された各クランク角θ,θにおける筒内圧検出値P,Pを、筒内圧センサを用いてそれぞれ検出する筒内圧検出手段と、クランク角θ,θにおける所定気筒の筒内容積をそれぞれV,Vとしたとき、絶対圧補正値(Pκ−Pκ)/(Vκ−Vκ)を、特定手段によって特定された複数のクランク角θ,θの組み合わせに対してそれぞれ演算する絶対圧補正値演算手段と、演算された複数の絶対圧補正値の平均値を取得する平均値取得手段と、当該平均値を用いて筒内圧検出値を補正する絶対圧補正手段と、を備える。 (もっと読む)


【課題】メモリの必要記憶容量を抑えつつ、回転信号の角度分解能よりも小さい一定角度毎のデータをメモリに記憶可能な信号処理装置の提供。
【解決手段】装置1には、クランク軸が10度回転する毎にタイミングエッジが生じるクランク信号と、センサ信号の一定時間Ts毎のA/D変換データが入力される。装置1では、タイミングエッジが発生する毎に、計測部15が、そのエッジの発生間隔であるパルス間隔の時間Tiを算出し、演算部17が、その算出された時間Tiと、目標データ保存数Naと、上記一定時間Tsとを用いて、「Ti/(Na×Ts)」の値を整数化処理した整数値(Nb)を求め、そのNbをレジスタ19に書き込む。また、一定時間Ts毎に更新されるデータがDMAコントローラ21に入力され、タイミング制御器25が、上記データがNbの回数だけ更新される毎に1回の割合で、DMAコントローラ21にメモリ6へのデータ転送を行わせる。 (もっと読む)


【課題】複数の気筒を有する内燃機関において、排気通路に設けた空燃比センサの出力値の取得間隔が変化した場合でも、空燃比センサの出力値に基づいて、気筒間の空燃比ばらつき異常の有無を適切に検出する。
【解決手段】本発明の一態様によれば、所定時間間隔で排気通路に設けられた空燃比センサ17の出力を取得するように作動する取得手段と、該取得手段によって取得された空燃比センサ17の出力値に基づいて、所定時間における空燃比の変化を表す値を、取得手段による空燃比センサの出力値の取得タイミングに応じて補正しつつ、算出する値算出手段と、気筒間空然比ばらつき異常の有無を判定するように、値算出手段により算出された値と判定用閾値とを比較する比較手段とを備えた、気筒間空燃比ばらつき異常検出装置22が提供される。 (もっと読む)


【課題】酸素センサの出力特性と酸素濃度との関係を精度良く較正可能な酸素センサ制御装置を提供する。
【解決手段】酸素センサ制御装置10のCPU2は、内燃機関100の燃料断一回あたり、Air掃気量(大気の総供給量)が所定量以上となった場合に、酸素センサ20の複数個の出力対応値(濃度対応値)Iprのうち、所定の第1範囲R1を逸脱した値を除外した残りの値をもとに平均化した平均出力値Ipavを算出しつつ、平均出力値Ipavのピーク値を求めてRAM4に記憶する。次いで、CPU2は、複数の燃料断毎に得られる平均出力値Ipavのピーク値を、F/Cが16回以上の場合に加重平均し、F/Cが16回未満の場合に相加平均して複数平均出力値Ipavfを算出する。複数平均出力値と予め設定した基準出力値に基づいて酸素センサ20の実出力値Ipを補正するための補正係数を求める。 (もっと読む)


【課題】センサ信号の処理において、デジタル変換されたデータからクランク角度に同期した正確なタイミングでセンサ信号のデータを得られるようにする。
【解決手段】CPS2のセンサ信号を、入力回路4を介してAD変換回路7でデジタル信号に変換し、デジタルフィルタ8でノイズを除去する。AD変換をする毎にRAMaのデータをRAMbに移動し、AD変換したデータをRAM9のRAMaに記憶する。センサ信号処理装置1により、サンプリング周期よりも短い時間間隔で信号処理を実行する。トリガ発生回路11により、NEセンサ3からクランク角度に同期し且つフィルタの遅延時間で補正したトリガ信号を生成する。トリガ信号が発生した時点の前後のAD変換データからトリガ信号のタイミングに同期したデータを線形補間して算出する。記憶させるデータ量を少なくして安価な構成とし、迅速且つ正確なデータを取得する。 (もっと読む)


【課題】この発明は、システム構成を簡略化しつつ、複数の制御装置間でクランク位置の算出値を確実かつ容易に同期させることを目的とする。
【解決手段】エンジン制御用マイコン10は、クランク角センサから入力されるNE信号に基いて現在のクランク位置を算出し、現在のクランク位置をエッジ時間Anに変換する。また、マイコン10は、NE信号の入力時刻とエッジ時間Anとの加算値に対応するエッジ出力時刻を算出し、エッジ出力時刻の到来時にCPS制御用マイコン20にエッジ信号を出力する。一方、マイコン20は、NE信号の入力時刻とエッジ信号の入力時刻との差分に基いてエッジ時間Anを算出し、エッジ時間Anから現在のクランク位置を算出する。これにより、専用のシリアル通信線や通信開始信号等を使用しなくても、マイコン10,20間で現在のクランク位置を同期させることができる。 (もっと読む)


【課題】この発明は、筒内圧センサの出力がレンジオーバーする場合であっても、最大筒内圧を推定することのできる内燃機関の筒内圧推定装置を提供することを目的とする。
【解決手段】筒内圧が最大レンジを超える直前の第1クランク角度と、その後、最大レンジを下回った直後の第2クランク角度とを取得する。第1クランク角度及びその直前のPVκ値をそれぞれ取得し、最大レンジを越える直前のPVκ値の第1変化率を算出する。第2クランク角度及びその直後のPVκ値をそれぞれ取得し、最大レンジを下回った直後のPVκ値の第2変化率を算出する。レンジオーバーが発生している第1クランク角度から第2クランク角度までのクランク角区間のPVκ値を第1変化率と第2変化率とに基づいて直線補間する。直線補間したPVκ値をVκで除算して、このクランク角区間における筒内圧を算出する。 (もっと読む)


【課題】安全弁の有無に関わらず、簡易な構成で、圧力センサの故障の有無を簡易に診断可能とする。
【解決手段】発電機を駆動するエンジンなどに用いられるコモンレール式燃料噴射制御装置において、燃料の高圧化前の温度Ts1と、燃料の高圧化後にリリースされた燃料の温度Ts2の差である実測温度差dTを求め、燃料の高圧化前の温度Ts1と燃料の高圧化後にリリースされた燃料の温度Ts2の差として予め定められた代表温度dtと、実測温度差dTとの差の絶対値が、所定閾値Tdthを超えた場合に圧力センサ11の故障と判定することが可能である。 (もっと読む)


【課題】従来よりも低コストで製造することができる内燃機関の再始動制御システムを提供する。
【解決手段】停止要求が発生したときには、ECU7は各気筒2の筒内圧力センサ3の測定値をクランク回転センサ5が検出したパルスと対応させて連続的に取得するとともに、そのパルス値を各気筒2毎に連続的に加算して積算値を求め、次いでカム回転センサ6の検出と連動させて積算値を処理することで各気筒2を判別し、次いで筒内圧力センサ3の測定値を基にして各気筒2の逆転を検出することで、エンジン完全停止時における気筒2の状態を判別して、再始動要求の発生後に最初に圧縮行程になる気筒2に対して噴射ノズル4から燃料を噴射する。 (もっと読む)


【課題】連続的に発生するノックを検出して点火リタードさせる一方、単発的に発生するノックを検出したときは点火リタードさせない。
【解決手段】所定時間内に記憶部14に格納されたノックセンサ9の検知データの、電圧レベル毎の発生数を検出して検知データの分布を作成する。ノック判定値以上の検知データがノックセンサ9から入力されたときに、検知データの分布を調べて、例えば、広い範囲に検知データが分布している場合、あるいは検知データの合計のノックレベル電圧が所定値以上の場合にリタード指令を発生させる。 (もっと読む)


【課題】連続的に発生するノックを検出して点火リタードさせる一方、単発的に発生するノックを検出したときは点火リタードさせない。
【解決手段】所定時間内に記憶部14に格納されたノックセンサ9の検知データの、電圧レベル毎の発生数を検出して検知データの分布を作成する。ノック判定値以上の検知データがノックセンサ9から入力されたときに、検知データの分布を調べて、例えば、広い範囲に検知データが分布している場合、あるいは検知データの合計のノックレベル電圧が所定値以上の場合にリタード指令を発生させる。 (もっと読む)


【課題】データ退避中に短時間にIG‐ON、IG‐OFFが繰り返されても、データの不整合を防止することができる情報処理装置を提供すること。
【解決手段】エンジン停止操作を受け付けたタイミングで第一の記憶装置のデータを第二の記憶装置に書き出す情報処理装置100であって、エンジン停止操作若しくはエンジン始動操作を受け付ける操作受け付け手段51,52と、操作受け付け手段がエンジン停止操作を受け付けてから、所定時間内にエンジン始動操作を受け付けた特定操作を記録すると共に、前記操作受け付け手段がエンジン停止操作を受け付けてから所定時間経過後に記録を消去する停止始動操作記録手段42と、前記第一の記憶装置のデータを前記第二の記憶装置に書き出すデータ書き出し手段43と、を有し、前記データ書き出し手段は、前記特定操作の記録がある場合には第一の記憶装置から第二の記憶装置へのデータの書き出しを取り消す、ことを特徴とする。 (もっと読む)


【課題】振動センサから出力される波形をAD変換回路でデジタルデータに変換することにより内燃機関の異常燃焼を検出する構成において、ゲインを切替える場合であっても波形振幅の変化を確実に検出することができる内燃機関の異常燃焼検出装置及び内燃機関の制御装置を提供する。
【解決手段】異常燃焼判定期間において大きな異常燃焼から小さな異常燃焼の発生期間を区分け可能な点火時期においてゲイン回路のゲインを小さいゲインから大きいゲインに切替えるようにした。これにより、AD変換回路のダイナミックレンジを最大限に有効活用することができる。 (もっと読む)


【課題】燃費を迅速に算出して瞬間燃費を表示することができるようにするとともに、ノイズによる燃料噴射量情報FIの受信エラーを回避できるようにする。
【解決手段】噴射弁42は噴射パルスに応答して一定量の燃料をエンジン3に噴射する。ECU33は、算出された燃料噴射量に対応する噴射パルスを噴射弁42に入力する。ECU33は、噴射弁42に供給された噴射パルス数に対応する噴射量情報FIを、通信線48を介して表示制御部45に入力する。ECU33は、一定量の燃料に対応する噴射パルス数が入力される毎にデジタルデータIDからなる噴射量情報FIを作成する。表示制御部45は、デジタルデータIDが予定数正しく受信されたときに、一定の燃料が噴射弁42から噴射されたことを確定する。表示制御部45は確定した燃料噴射量と走行距離とによって瞬間燃費を算出し、メータ31に表示させる。 (もっと読む)


【課題】制御装置と駆動装置との間のインターフェースを変更することなく既存の信号により流量調整弁の駆動電流の切り替えを行う。
【解決手段】EDU7のデコーダ15は、何れか1つの気筒の噴射信号IJTnが噴射指令状態となったときにインジェクタ駆動回路16に対し駆動信号Dnを出力する。さらに、エンジンが無噴射減速状態にある期間において、全ての気筒の噴射信号IJT1〜IJT4が同時に1(噴射指令状態)となったとき、電流切替信号SCを1にして電流検出抵抗回路39の電流検出抵抗値を低下させる。駆動制御回路45は、電圧検出回路46の検出電圧が所定のしきい値に達するまでの期間、駆動信号S2を1にしてトランジスタ32をオン駆動するので、電磁コイルPCの立ち上がり時の駆動電流が増加する。 (もっと読む)


【課題】内燃機関の構造上の特性の相違を吸収して、正確にノック判定ができる燃焼制御装置を提供する。
【解決手段】標準機器について振動検出値Yに基づいてノック判定するための標準第1判定値TYを記憶する第1記憶手段と、標準機器の所定の運転領域について、イオン検出値Xに基づいてノック判定するための標準第2判定値TXを記憶する第2記憶手段と、個々の内燃機関について、所定の運転領域において複数組の振動信号V1及びイオン信号V2に基づいて、イオン検出値Xと振動検出値Yの関係を示す相関関係Y=G(X)を特定する第1手段と、相関関係Y=G(X)と標準第2判定値TXと、に基づいて実機第1判定値G(TX)を特定する第2手段と、実機第1判定値G(TX)と標準第1判定値TYとの関係に基づいて、標準第1判定値TYを補正する第3手段と、を設ける。 (もっと読む)


1 - 20 / 538