説明

Fターム[3L211DA44]の内容

車両用空気調和 (23,431) | 形態、機構 (7,033) | ヒートポンプ以外の加熱装置 (945) | 温水経路 (120) | バイパス経路を有する (44)

Fターム[3L211DA44]に分類される特許

1 - 20 / 44



【課題】厳寒地においてエンジン冷却水をエンジンの排気ガスの熱を用いて加熱する際、エンジンの排気ガスの熱をエンジン冷却水に伝達する能力が外気の影響により低下することを防止できる作業機械の暖房装置を提供すること。
【解決手段】吹出口41と、送風機42と、この送風機42から吹出口41に向かって流れる空気を加熱するヒータコア44と、エンジン冷却装置20からヒータコア44にエンジン冷却水を導く暖房用配管45と、この暖房用配管45を流れるエンジン冷却水をエンジン10の排気ガスの熱で加熱する加熱手段50とを備え、加熱手段50は、エンジン10の排気マニホールドから作業機械の外部に向かって延びた排気管11内(消音器12のケース12a内)に位置して暖房用配管45の一部を成す受熱管51を備え、この受熱管51は排気管11内の排気ガスの熱をエンジン冷却水に伝達する。 (もっと読む)


【課題】OBCとモーターの廃熱を室内暖房とモーターの予熱に活用することで電気自動車の燃費を向上させる電気自動車の廃熱管理システム及び管理方法を提供する。
【解決手段】冷却水の流れを制御するウォーターポンプ、ウォーターポンプの冷却水ラインの出口側で並列に分岐されたOBC冷却水ラインとモーター冷却水ライン、及び、ウォーターポンプ冷却水ラインの入口側とOBC冷却水ライン及びモーター冷却水ラインの出口側合流地点とにそれぞれ並列に連結されたヒーターコア冷却水ラインとラジエーター冷却水ライン、を含み、ウォーターポンプ冷却水ラインの出口側とOBC冷却水ライン及びモーター冷却水ラインの分岐される入口側とは第1バルブで連結され、OBC冷却水ライン及びモーター冷却水ラインの出口側合流地点とヒーターコア冷却水ライン及びラジエーター冷却水ラインとは第2バルブで連結される。 (もっと読む)


【課題】異なる温度帯の熱媒体を加熱源として送風空気を加熱する複数の加熱用熱交換器を備える車両用空調装置において、送風機の送風能力を適切に制御する。
【解決手段】第1ヒータコア31へ流入する比較的低温のエンジン10の冷却水の上昇に伴って、送風機34へ出力される第1制御電圧Bv1を増加させるように決定し、第2ヒータコア31へ流入する比較的高温のエンジン10の冷却水の上昇に伴って、送風機34へ出力される第2制御電圧Bv1を増加させるように決定する。さらに、第1、第2制御電圧Bv1、Bv2を、第1、2ヒータコア31、32へ流入する冷却水の第1、第2流量V1、V2に基づいて重み付け平均し、実際に送風機34へ出力される制御電圧Bvの上限値とする。 (もっと読む)


【課題】燃料電池、あるいはハイブリッド車用エンジンにおける少ない廃熱を有効に利用しつつ、簡素な構成で好適な空調を可能とし、燃料電池あるいはエンジンの温度を一定に保つことのできる車両用空調装置を提供する。
【解決手段】車両用空調装置において、燃料電池車の燃料電池111、あるいはハイブリッド車のエンジンを冷却する冷却回路110の冷却水を加熱源として空調用空気を加熱するヒータコア116と、ヒータコア116に対して、空調用空気の流れ方向の上流側に配設されて、ヒートポンプサイクル120を循環する冷媒を加熱源として空調用空気を加熱する加熱用熱交換器122と、冷却水の温度TFCに応じて、加熱用熱交換器122によって加熱される空調用空気の温度目標値として設定される目標加熱温度TAVOを変化させるようにヒートポンプサイクル120の作動を制御する制御部140とを設ける。 (もっと読む)


【課題】ヒータコアの熱交換量が変化する場合でもセンサ温度によるシステム故障の判定を高い精度で行う。
【解決手段】故障診断部61は、電動ウォータポンプ42及び加熱ヒータ51を駆動開始させてから予め設定した第1設定時間が経過し(ステップS3、ステップS4)、加熱ヒータ出口温度センサ53が検出した温度から加熱ヒータ入口温度センサ52が検出した温度を減算した値が予め設定した第1しきい値以下であり(ステップS5)、かつ水温センサ43が検出した温度から電動ウォータポンプ42及び加熱ヒータ51の駆動開始前に水温センサ43が検出した温度を減算した値が予め設定した第2しきい値以下の場合(ステップS6)、システムが故障していると判定して加熱ヒータ51の駆動を停止する(ステップS8)。 (もっと読む)


【課題】燃料電池のフラッディングを抑制しつつ、燃料電池の排熱により効率よく暖房を行うことができる燃料電池車両用空調装置を提供する。
【解決手段】冷却水温度が基準冷却水温度Tw1以上である場合に、シャットバルブ42を開弁させる冷却水供給手段S3と、冷却水温度が基準熱媒体温度Tw1を下回っている場合に、燃料電池2から放出される熱を増加させる放熱量増加手段S9と、放熱量増加手段S9によって燃料電池2から放出される熱を増加させる際に、燃料電池2に供給される空気流量が基準空気流量Ga1以下である場合に、燃料電池2に供給される空気流量を増加させる空気流量増加手段S7とを備える。 (もっと読む)


【課題】ガソリン車用空調装置の冷房サイクル、HVACを共用し、最小限の暖房用回路と機器を追加するだけで、低コストで搭載性に優れ、着霜時の課題をも解消できる、EVやHEV車等に好適なヒートポンプ式車両用空調装置を提供することを目的とする。
【解決手段】車内蒸発器9およびヒータコア10を備えたHVACユニット2と、ヒータコア10を含むクーラント循環回路5と、車内蒸発器9を含む冷房用の冷凍サイクル27と、冷房用冷凍サイクル27に対して、冷媒/クーラント熱交換器28、第1暖房用回路30、第2膨張弁32および車外蒸発器33を備えた第2暖房用回路35を追設し、冷房用冷凍サイクル27と圧力条件が同一の回路および機器等を共用化した暖房用のヒートポンプサイクル36とを備え、暖房時、車外蒸発器33に着霜したとき、車内蒸発器9側に冷媒を流通させた除湿暖房に切替え可能とされているヒートポンプ式車両用空調装置1。 (もっと読む)


【課題】第1液体と車室内への送風空気とを熱交換させる第1ヒータコアと、第1液体よりも高温かつ小流量の第2液体と第1ヒータコアで加熱された送風空気とを熱交換させる第2ヒータコアとを備える加熱用熱交換器の小型化および生産性向上を図る。
【解決手段】加熱用熱交換器2の第1、第2ヒータコア10、20は、ともに、積層された複数の扁平状のチューブ11、21と、複数のチューブ11、21の長手方向一端側に連通し、冷却水入口側となる入口側タンク部12、22とを備えている。このとき、1つの入口側タンク50の内部を仕切壁51によって2つに仕切る構造として、第1、第2ヒータコア10、20の入口側タンク部12、22を一体化させる。さらに、第1、第2ヒータコア10、20において、チューブ11、21同士を一体化させるとともに、フィン14、24同士を一体化させる。 (もっと読む)


【課題】本発明は、車載熱交換システムに係り、車室内暖房の能力不足を解消させることにある。
【解決手段】車両に駆動力を発生させるべくスイッチング駆動される半導体素子の発生する熱を車外へ放出するラジエータと、半導体素子の発生する熱を車室内へ放出するヒータコアと、半導体素子を冷却した冷却媒体をラジエータへ導く第1冷却通路と、半導体素子を冷却した冷却媒体をヒータコアへ導く第2冷却通路と、第1冷却通路に流れる冷却媒体の量及び第2冷却通路に流れる冷却媒体の量を調整する制御バルブと、車室内の暖房要求時に、半導体素子の損失増加量が車室内の暖房に要求される暖房要求熱量と一致するように制御バルブ又は半導体素子をコントロールする制御手段と、を設ける。 (もっと読む)


【課題】燃費を悪化させることなく暖房性能を向上させる。
【解決手段】車両の走行用エネルギー発生手段1を冷却する熱媒体を熱媒体回路に循環させる熱媒体循環手段2と、電気部品を熱媒体で冷却するための電気部品冷却手段3、4と、熱媒体の持つ熱を空気に放熱させる放熱器5、6と、熱媒体と車室内へ送風される空気とを熱交換する加熱用熱交換器7、8と、熱媒体の流れを熱媒体の温度に応じて複数のモードに切り替える弁手段21、22とを備え、複数のモードは、熱媒体が放熱器5、6を迂回して流れる放熱器バイパスモードと、熱媒体が放熱器5、6を流通する放熱器流通モードとを含み、弁手段は、熱媒体の温度が第1所定温度に達していないと放熱器バイパスモードに切り替え、熱媒体の温度が第1所定温度に達すると放熱器流通モードに切り替える。 (もっと読む)


【課題】電気自動車の駆動用バッテリ温度調整システムに関し、部品点数の増加を抑えて駆動用バッテリを適切に温度管理することができるようにする。
【解決手段】冷媒の気化潜熱を利用して車室内に冷風を供給して冷房する冷却装置20と、加熱された液体を利用して車室内に温風を供給して暖房するヒータ装置30と、を有するエアコンシステム2が装備された電気自動車において、駆動用バッテリ1を冷却するシステムであって、ヒータ装置30の液体循環回路31に介装されて内部の液体を加熱する加熱装置34を迂回するように接続され、駆動用バッテリ1のケース内に一部を配管されたバッテリ内循環回路41と、液体循環回路31内を流通する液体をバッテリ内循環回路41へ導入するように切り替え可能な切替弁42と、冷却装置20の冷風を用いて液体循環回路31内の液体を冷却する液体冷却構造43と、を備える。 (もっと読む)


【課題】エンジンの冷却水を利用して車両室内を暖房する際に、エンジン停止時の暖房性能をより増大させることのできるハイブリッド車両の熱管理システム及び方法を提供する。
【解決手段】ハイブリッド車両用熱管理システムはヒーターコアと、熱交換器と、エンジンとヒーターコア、熱交換器との間に冷却水が循環されるようにする冷却水ラインと、冷却水ラインに設置される冷却水ポンプと、熱交換器と駆動部品間に熱交換媒体が循環されるようにする熱交換媒体ラインを含み、エンジン側の冷却水ラインに設置されてエンジンの駆動及び停止状態に従って制御装置により開閉制御されるバイパス弁を更に含み、エンジン停止時、冷却水がエンジンを通過せずに熱交換器のみを通過するようにバイパス弁を制御して、前記熱交換器で昇温した後、室内暖房のためにヒーターコアに供給される冷却水がエンジンにより冷却されるのを防止することを特徴とする。 (もっと読む)


【課題】燃料電池の発電効率を安定に保ちつつ、燃料電池が配置された冷却回路を流れる冷却水を、効率良く上昇させることのできる技術を提供することを目的とする。
【解決手段】冷却システムは、流量制御部の制御モードとして、燃料電池の発電状態に応じて冷却回路を流れる冷媒の流量である第1の流量を制御する第1の流量制御モードと、燃料電池の発電状態に応じて第1の流量を制御する第2の流量制御モードであって、所定の発電状態における第1の流量が第1の流量制御モードに比べ小さい第2の流量制御モードと、を有する。冷却システムの流量制御部は、非連結状態から連結状態に切り替える連結要求があった場合に、燃料電池の出口水温が所定値より小さい場合は、流量制御部に第2の流量制御モードでの運転を実行させる。 (もっと読む)


【課題】空調回路に配置された空調ポンプにおける空回りの発生を低減させる技術を提供することを第1の目的とする。
【解決手段】空調システムは、冷却ポンプを有する冷却回路と、空調ポンプを有する空調回路と、冷却回路と空調回路との間で冷媒が流通する連結状態と、冷却回路と空調回路との間で冷媒が流通しない非連結状態と、を切り替え可能な切替部と、当該空調システムを制御する制御部とを備える。制御部は、空調ポンプに空回りが発生したと判定した場合、又は、空回りが発生し得る所定の条件が満たされる場合は、連結状態において、空調ポンプを駆動させつつ、燃料電池の発電状態にかかわらず冷却ポンプを所定値以上の回転数で駆動させる。 (もっと読む)


【課題】電力消費量を抑えて除湿と暖房とを両立させることができる車両用空調制御装置を提供することを目的とする。
【解決手段】本発明の車両用空調制御装置は、空調用冷却流路を流れる冷媒と前記ヒーター温水流路を流れる温水との間で熱交換させる熱交換器を備える。そしてヒーター温水流路の熱交換器よりも下流には、熱交換器で熱交換された温水をさらに温める電気ヒーターを設ける。さらに車載される電気機器の熱を室外熱交換器に通して冷却する電気用冷却流路を備え、電気用冷却流路とヒーター温水流路とを、ヒーター温水流路と電気機器とが並列になるように連絡流路で接続する。連絡流路とヒーター温水流路との接続部分には、ヒーター温水流路の温水の温度が所定温度よりも高い場合に、ヒーター温水流路を流れる温水を電気用冷却流路に流入させる流路切替バルブを備えることを特徴とする。 (もっと読む)


【課題】車両への搭載性に優れつつ車室内を省エネルギーで空調可能な車両用空調ユニット及び車両用空調システムを提供する。
【解決手段】本発明の車両用空調システムは、車両用空調ユニット1と、車両システム3と、ラジエータ5とを備えている。車両用空調ユニット1は、水空気熱交換器7と、蓄熱タンク9と、水熱交換器11と、ペルチェ素子13とを備えている。蓄熱タンク9は蓄熱材を有している。また、水熱交換器11と車両システム3及びラジエータ5とは配管21、22及び配管25〜28を介して接続されている。この車両用空調システムでは、蓄熱材に蓄えられた正又は負の熱量によって初期空調としての暖房又は冷房を行う。一方、車両システム3の排熱を水空気熱交換器7の水に放熱して周りの空気を加熱し、定常空調としての暖房を行う。また、水空気熱交換器7内の水から吸熱して周りの空気を冷却し、定常空調としての冷房を行う。 (もっと読む)


【課題】エンジン冷却水を熱源として空気を加熱する加熱用熱交換器を備え、ハイブリッド車のように走行状態等に応じてエンジンを自動停止する車両に搭載される車両用空調装置において、燃費の悪化を抑制する。
【解決手段】第1に、エンジンEGと加熱用熱交換器14との間を冷却水が循環する冷却水回路30に対して、加熱用熱交換器14から流出したエンジン冷却水から吸熱して、加熱用熱交換器14に流入するエンジン冷却水に放熱するペルチェ素子53を設ける。第2に、加熱用熱交換器としての第1ヒータコア14と第2ヒータコア15とを、冷却水流れに対して並列に配置するとともに、第2ヒータコア15を第1ヒータコア14の空気流れ下流側に配置し、第2ヒータコア15の冷却水流れ上流側に水加熱用電気ヒータ111を設け、水加熱用電気ヒータ111の通電時に、第2ヒータコア15を流れる冷却水の流量を第1ヒータコア1よりも少なくする。 (もっと読む)


【課題】排熱エネルギーや太陽光などの熱エネルギーを回収・貯蔵できる蓄熱材及びそれを用いた熱利用システムを提供する。
【解決手段】式(I)で示されるメタロポリマーを含む蓄熱材。


〔式中、各Rは、互いに独立して、炭素数1〜18の直鎖又は分岐のあるアルキル基であり、ここで、該アルキル基は、非置換であるか又は−OH、−C(=O)OH、−O−C(=O)H、−NH2、=NH、−NHC(=O)H、−C(=O)NH2、若しくは芳香環で置換されており、ならびに/あるいは該アルキル基は、アルキル鎖の中間に−CH=CH−、−C≡C−、−O−、−C(=O)O−、−O−C(=O)−、−NH−、=N−、−N=、−NHC(=O)−、若しくは−C(=O)NH−を含んでもよく;Mは二価の遷移金属イオンである〕 (もっと読む)


【課題】内燃機関の停止中に車室内の暖房を行うに当たり、その暖房のために無駄なエネルギ消費が生じることを抑制できるようにする。
【解決手段】内燃機関1の停止中に車室3内の暖房要求がなされたとき、ヒータコア7を流れる冷却水の熱を利用しての空調装置4による車室3内の暖房が行われる際には、制御弁8により循環経路2の流体通路2aでの冷却水の流れが禁止され、同循環経路2のバイパス通路2b及び循環通路2cのみで冷却水の循環が行われる。更に、ヒータコア7を流れる冷却水の温度Twが推定されて求められる。従って、上記暖房を可能な限り空調装置4による冷却水の熱を利用した暖房のみで行い、上記ヒータ10の発熱開始を可能な限り遅らせるよう、ヒータコア7を通過する冷却水の温度Twに基づき、空調装置4の駆動制御及びヒータ10の駆動・停止を適切に行うことが可能となる。 (もっと読む)


1 - 20 / 44