説明

Fターム[4K017EH18]の内容

金属質粉又はその懸濁液の製造 (21,321) | 固体化合物還元 (505) | 被還元化合物 (281) | 酸化物 (185)

Fターム[4K017EH18]の下位に属するFターム

Fターム[4K017EH18]に分類される特許

141 - 160 / 179


本発明は金属合金粉末の製造方法に関し、特に、本発明は二酸化チタンとアルミニウムからチタン金属合金を製造する方法に関する。場合により、本発明の方法は、一種又はそれ以上の他の酸化物(金属又は非金属)も含む。少なくともTi−Al合金粉末を得られる。もし一種の他の金属酸化物を使用するとTi−三元合金粉末となるであろう。もしSiOを用いると、Ti−Al−Si合金となる。
(もっと読む)


【課題】還元拡散法において、合金粉末の磁気特性を低下させることを防ぎ、高い収率で、良好な保磁力と角形性を有する希土類−鉄−窒素系合金粉末の製造方法を提供する。
【解決手段】希土類酸化物粉末を還元し鉄に拡散させることにより、希土類鉄系合金粉末と、還元によって生成した副生成物とを含有する多孔質塊状反応生成物を得る。その多孔質塊状反応生成物を水素雰囲気中に晒し塊状崩壊物を得る。得られた塊状崩壊物を粒度4メッシュ(タイラーメッシュ)分級し、篩上の塊状崩壊物は破砕して、窒素を含有する雰囲気中で熱処理をすることにより、希土類鉄系合金粉末を窒化し、湿式処理により、副生成物を除去する。 (もっと読む)


【課題】 本発明は、従来の希土類−鉄系合金粉末の窒化方法を改良し、これにより磁気特性の高い希土類−鉄−窒素系磁石が得られる希土類−鉄−窒素系磁石微粉末を製造する方法の提供を課題とする。
【解決手段】 希土類酸化物粉末と、鉄粉末と、アルカリ金属、アルカリ土類金属又はこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合し、得られた混合物を不活性ガス雰囲気中900〜1180℃で加熱し、得られた反応生成物に水素を吸収させ崩壊させ、その後崩壊した反応生成物を窒化処理し、湿式処理し、湿式処理された磁石粗粉末を加熱処理し、微粉砕して希土類−鉄−窒素系磁石微粉末を製造するに際して、窒化処理工程で、ロータリーキルンを用い、ロータリーキルン内に前記アンモニアと水素とを含有する混合ガスを流入させつつ、前記崩壊した反応生成物を略球状の粉砕媒体と共にロータリーキルン内に供給する。 (もっと読む)


【課題】厚膜ペースト、例えばセラミック積層電子部品を製造するための導体ペーストに用いるのに特に適した、高純度、高密度、高分散性で極めて粒度分布の狭い、微細な球状の高結晶性ニッケル粉末を、原料の粒度や分散条件、反応条件の制御を厳密に行う必要なく、ローコストかつ効率的に得る方法を提供することにある。
【解決手段】硝酸ニッケル水和物の融液を、液滴または液流として加熱した反応容器中に導入し、気相中、1200℃以上の温度で、かつ前記温度におけるニッケル−酸化ニッケルの平衡酸素分圧以下の酸素分圧下で熱分解を行うことを特徴とする、高結晶性ニッケル粉末の製造する。前記の熱分解時の酸素分圧が好ましくは10−2Pa以下であり、また、硝酸ニッケル水和物の融液に、ニッケル以外の金属、半金属またはこれらの化合物を添加することにより、高結晶性ニッケル合金粉末または高結晶性ニッケル複合粉末を製造することもできる。 (もっと読む)


【課題】高密度記録に適する磁性層が形成できる塗布型磁気記録媒体用の強磁性粉末を得る。
【解決手段】Co:5超え〜50at.%,Al:0.1〜30at.%,希土類元素(Yを含む):0.1〜10at.%,周期律表第1a族元素:0.05重量%以下,周期律表第2a族元素:0.1重量%以下(0重量%を含む)を含有した鉄を主体とする強磁性粉末であって,平均長軸長:0.01〜0.40μm,X線結晶粒径(Dx):50〜250オングストロームであり,且つ,長軸と直角方向に切断した短軸断面が長い方の幅と短い方の幅をもち,この長幅と短幅の短軸断面比が長軸方向にほぼ一様に1より大きく,好ましくは1.5以上となっている平針状粒子からなり,飽和磁化率(σs)とX線結晶粒径(Dx)の比(σs /Dx)が0.7以上である塗布型磁気記録媒体用の強磁性粉末。 (もっと読む)


【課題】 本発明は、熱や雰囲気による化学変化に対して極めて安定であるボンド磁石用Sm−Fe−N系磁性粒子粉末、該Sm−Fe−N系磁性粒子粉末を用いたボンド磁石用樹脂組成物並びにボンド磁石を提供する。
【解決手段】 リン化合物で被覆されたSm−Fe−N系磁性粒子粉末であって、前記リン化合物被覆は、Sm−Fe−N系磁性粒子の粒子表面に不溶性のリン酸塩からなる第一層被膜が形成され、該第一層被膜の表面に水溶性のリン酸からなる第二層被膜が形成されているSm−Fe−N系磁性粒子粉末は、Sm−Fe−N系磁性粒子の解砕後もしくは粉砕後に、濾過して含水ケーキとしたものにオルトリン酸とIPAの混合液を投入し、減圧窒素気流中にて撹拌しながら加熱し乾燥して得ることができる。 (もっと読む)


本発明は、金属粒子含量が1g/Lである金属粒子ゾルの製造方法であって、(a)金属塩溶液を、水酸化物イオンを含有する溶液と反応させる工程;および(b)工程(a)から得られる溶液を、還元剤と反応させる工程;を含み、工程(a)の溶液の少なくとも1つが分散助剤を含有する方法に関する。さらに、本発明は、本発明の方法によって製造した金属粒子および該金属粒子の使用に関する。
(もっと読む)


本発明は、タングステン化合物とコバルト化合物を原材料として経済的に優れた超微粒タングステンカーバイド−コバルト複合粉末(Ultra−fine WC−Co Composite powder)を製造するための方法に関し、詳しくは、タングステン化合物とコバルト化合物、そして粒子成長抑制剤化合物及び酸化物を機械的方法により混合する工程と、混合した粉末のアンモニアと水分を除去して酸化物に形成するためのか焼工程と、か焼された酸化物粉末を純粋金属粉末に製造するための還元工程と、還元された金属複合粉末に炭素ソースを添加する混合工程と、混合した粉末を最終形態であるタングステンカーバイド−コバルト複合粉末を製造するための浸炭工程とからなる製造方法を提供する。本発明の製造方法を用いると、0.1〜0.2μm、0.2〜0.3μm、0.3〜0.4μmの超微粒の粒子サイズと結合相が均一に混合された高硬度・高靭性の高特性を有する超微粒超硬合金複合粉末を製造することができ、特に、タングステン化合物とコバルト化合物を用いた化合物の価格競争力と工程の単純化を通じた経済的な利点を以てタングステンカーバイド−コバルト複合粉末を製造することができる。
(もっと読む)


【課題】湿式還元法で得られる銅粉は高い充填率で樹脂に混練すると低い粘性を維持することが困難である。湿式還元法で得られる銅粉の粒径や比表面積などの特質に変化を与えないで,前記の高粘性の問題を解決する。
【解決手段】湿式還元法で製造された銅粉に,粒子同士を機械的に衝突させる表面平滑化処理が施された導電ペースト用銅粉である。高い充填率で樹脂に混練しても粘度の低いペーストにすることができ,その結果,高品質の銅ペーストを安定して得ることができる。 (もっと読む)


【課題】飽和磁束密度Bsの高い鉄系の金属粉末を用いて優れた磁気特性と高い絶縁性を兼ね備えた高性能な圧粉磁芯を提供すること、および、これを実現するために好適な金属粉末であるマグネタイト−鉄複合粉末およびその製造方法を提供することを目的とする。
【解決手段】マグネタイトを含有し、平均一次粒径dが0.7〜5.0μm、比表面積が1.3×d−0.43 〜4.0×d−0.58/g、クロム含有量が0.01〜3.0mass%であることを特徴とする圧粉磁芯用マグネタイト−鉄複合粉末を用いる。 (もっと読む)


【目的】本発明では、鉄粒子に水を添加して水を還元する反応を起すことにより水素を得て、更に、当該反応後の当該粒子に水素または一酸化炭素を中心とするガスを反応させることにより、再度、鉄粒子に戻して水から水素を繰り返し製造する方法において、鉄粒子の耐久性を高めることを目的とする。
【解決手段】本発明では、鉄粒子に水を添加して水を還元する反応を起すことにより水素を得て、更に、当該反応後の当該粒子に水素および/または一酸化炭素を主成分とするガスを反応させることにより、再度、鉄粒子に戻して水から水素を繰り返し製造する方法において、鉄粒子として、鉄蒸気を冷却することで凝集させた、平均粒子径が1ミクロン以下である金属鉄と酸化鉄を主体とする粒子鉄粒子を使用する。かつ、水を還元して水素を得る反応温度を200〜700℃とすることで水素ガスを製造する。 (もっと読む)


【課題】均一に窒化され、非磁性相を低減させ、磁化反転の核になる結晶の歪みやα−Feの残留を低減させて、優れた磁気特性を有する希土類−鉄−窒素系磁石粉末、およびそれを還元拡散法で安価に製造する方法を提供。
【解決手段】希土類酸化物粉末と、鉄粉末と、アルカリ金属などから選ばれる還元剤粉末とを所定の割合で混合する工程、不活性ガス雰囲気中900〜1180℃で加熱する工程、引き続き、得られた反応生成物を500℃以下に冷却した後、不活性ガスを排出してから、水素を吸収させ崩壊させる工程、その後、崩壊した反応生成物を300℃以下に保ちながら、アンモニアと水素とを含有する混合ガスを供給し、この気流中で昇温し、350〜500°Cで反応生成物を窒化処理する工程、次に、水中に投入して湿式処理する工程、さらに、得られた磁石粗粉末を粉砕機に入れて微粉砕する工程を含む。 (もっと読む)


【課題】磁気特性を低下させる非磁性相を低減させ、磁化反転(ニュークリエーション)の核になる結晶の歪みやα−Feの残留を低減させて、優れた磁気特性を有する希土類−鉄−窒素系磁石粉末、およびそれを還元拡散法で安価に製造する方法を提供。
【解決手段】希土類酸化物粉末と、鉄粉末と、アルカリ金属などから選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合する工程、この混合物を不活性ガス雰囲気中、900〜1180℃で加熱する工程、引き続き、得られた反応生成物を不活性ガス雰囲気中で20〜300°Cに冷却する工程、その後、不活性ガスを排出してから、アンモニアと水素とを含有する混合ガスを供給し、この気流中で反応生成物を昇温し、350〜500°Cで窒化処理する工程、次に、得られた窒化処理生成物を水中に投入して湿式処理して崩壊させる工程、さらに、崩壊した窒化処理生成物を粉砕機に入れて微粉砕する工程を含む。 (もっと読む)


【課題】 本発明の磁性体は1〜20GHzの高周波領域の電波吸収特性に優れ、この領域の電波障害低減に極めて有効である多孔質鉄粉を提供する。
【解決手段】
平均粒子径を1〜90μmとし、かつ比表面積を4m/g以上と大きい多孔質鉄粉とすることで高周波域の電波吸収特性を大きくできる。そのような多孔質鉄粉を得る手段としては、鉄を主成分とする合金を酸水溶液に浸漬、特定の元素を溶出し、残った固形物を還元することにより得られる。 (もっと読む)


【課題】 優れた耐食性を有する金属微粒子とその製造方法を提供する。
【解決手段】 Feを主成分としグラファイトで被覆された金属微粒子であって、含有窒素量が0.1〜5wt%であることを特徴とする。さらに、金属微粒子の製造方であって、酸化鉄粉末と炭素を含有する粉末とを混合し、混合後の粉末を非酸化性雰囲気中で熱処理して、Feを主成分としグラファイトで被覆された金属微粒子を得た後に、さらに前記金属微粒子に窒化処理を施すことによって前記金属微粒子を得ることを特徴とする。 (もっと読む)


【課題】NaZn13型結晶構造を有し、0°C近傍にキュリー温度を有する磁気冷凍用希土類−鉄−水素系合金粉末、還元拡散法を用いて容易にシャープな粒度分布の合金粉末が得られる製造方法、さらに上記合金を用いた押出構造体とその製造方法、並びに磁気冷凍システムを提供。
【解決手段】希土類酸化物粉末、酸化珪素粉末、及び鉄粉末を含む原料粉末と、還元剤と、崩壊促進剤とを所定の割合で混合し、この混合物を不活性ガス雰囲気中、1000〜1250°Cで還元拡散するのに十分な時間加熱し、引き続き、得られた反応生成物を不活性ガス雰囲気中で冷却し、その後、不活性ガスを排気してから水素ガスを供給し、水素ガス雰囲気中100〜500°Cで反応生成物を熱処理した後、水中に投入して湿式処理し、還元剤成分、崩壊促進剤成分、副生成物を分離除去する磁気冷凍用希土類−鉄−水素系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】 キャパシタに使用するための高純度ニオブ粉末を製造する方法を提供する。
【解決手段】 対応するニオブ酸化物の還元によりニオブ粉末を製造する方法であって、還元を制御された温度で2段階で行い、還元をアルカリ土類金属及び希土類金属から成る群より選ばれる還元剤の使用により行い、第1反応段階を(Nb)O、式中xは0.5〜1.5である、に対応する平均組成に達するまで行い、次いで、第2段階の前に1種以上の鉱酸で洗浄することにより第1段階の還元生成物から還元剤の酸化物を除去し、次いで第2還元段階を行ってニオブの粉末を製造することを特徴とする方法。 (もっと読む)


【課題】比較的容易かつ確実に希土類組成を化学量論に近づけられる、還元拡散法による希土類−遷移金属−窒素系磁性粉末の製造方法と、保磁力や角形性を損なうことなく飽和磁化を向上させた希土類−遷移金属−窒素系磁性粉末の提供。
【解決手段】過剰の希土類酸化物粉末と遷移金属粉末と還元剤とを含む原料混合物から、還元拡散法を利用し、母合金中に存在する希土類元素の量がその主相に存在する希土類元素の化学量論組成よりも特定量以上過剰である希土類−遷移金属系母合金を製造した後に、該母合金を含窒素雰囲気中で、加熱下に窒化して希土類−遷移金属−窒素系磁性粉末を得る第一の工程と、得られた磁性粉末を、磁性粉末中に存在する希土類元素の過剰量がその主相に存在する希土類元素の化学量論組成に対して特定量以下になるまで、酸性水溶液で洗浄除去した後に乾燥させる第二の工程とを含む希土類−遷移金属−窒素系磁性粉末の製造方法。 (もっと読む)


【課題】 溶体化処理なしでα−Feの無い均質なLa(Fe-Si)13常温磁気冷凍合金粉末を得る。
【解決手段】 Fe-Si系合金粉末、酸化ランタン、およびアルカリ土類金属を含む混合物を不活性ガス雰囲気中または真空中で950〜1200℃の温度域で2時間以上保持し、その後200℃〜350℃で水素中あるいは、部分水素雰囲気中で水素化反応させることを特徴とする。最大粒径は500μm以下で、アルカリ土類金属量が0.005mass%以上0.2mass%以下含有する磁性合金が得られる。 (もっと読む)


【課題】 溶体化処理なしでα−Feの無い均質なLa(Fe-Si)13常温磁気冷凍合金粉末を得る。
【解決手段】 Fe-Si系合金粉末と、酸化ランタンおよびアルカリ土類金属を含む混合物を不活性ガス雰囲気中または真空中で950〜1200℃の温度で2時間以上保持し、その後200℃以下に冷却し、これによる反応生成物を水洗および乾燥することを特徴とする。最大粒径は500μm以下で、室温(23℃)で常磁性であり、その飽和磁化が5Am/kg以下であることを特徴とする磁性合金が得られる。 (もっと読む)


141 - 160 / 179