説明

Fターム[4K037FD06]の内容

薄鋼板の熱処理 (55,812) | 熱延後、巻取りまでの冷却速度 (1,226) | 水冷(急冷)するもの (118)

Fターム[4K037FD06]に分類される特許

41 - 60 / 118


【課題】優れた延性および伸びフランジ性を有する引張強度が590MPa以上の高張力冷延鋼板の製造方法を提供する。
【解決手段】下記工程(A)〜(C)を有することを特徴とする,主相が低温変態生成相であり第二相にフェライトを含む金属組織を備える冷延鋼板の製造方法:
(A)質量%で,C:0.020%超0.20%未満,Si:0.10%超2.0%以下,Mn:1.50〜3.50%,P:0.10%以下,S:0.010%以下,sol.Al:0.10%以下及びN:0.010%以下を含有する化学組成を有するスラブに,Ar3点以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板となし,前記熱延鋼板を前記圧延の完了後0.4秒以内に720℃以下の温度域まで冷却し,400℃以上の温度域で巻取る熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;及び
(C)前記冷延鋼板に(Ac3点-40℃)以上の温度域で均熱処理を施す焼鈍工程。 (もっと読む)


【課題】優れた延性および伸びフランジ性を有する高張力冷延鋼板の製造方法を提供する。
【解決手段】下記工程(A)〜(C)を有することを特徴とする,主相がフェライトであり第二相に低温変態生成相を含む金属組織を備える冷延鋼板の製造方法:
(A)質量%で,C:0.010%超0.10%未満,Si:0.10%超2.0%以下,Mn:1.50〜3.50%,P:0.10%以下,S:0.010%以下,sol.Al:0.10%以下及びN:0.010%以下を含有する化学組成を有するスラブに,Ar3点以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板となし、前記熱延鋼板を前記圧延の完了後0.4秒間以内に720℃以下の温度域まで冷却し,400℃以上の温度域で巻取る熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;及び
(C)前記冷延鋼板に(Ac3点-40℃)以上の温度域で均熱処理を施す焼鈍工程。 (もっと読む)


【課題】優れた延性および伸びフランジ性を有する引張強度が590MPa以上の高張力冷延鋼板の製造方法を提供する。
【解決手段】下記工程(A)〜(C)を有することを特徴とする,主相が低温変態生成相であり第二相にフェライトを含む金属組織を備える冷延鋼板の製造方法:
(A)質量%で,C:0.020%超0.20%未満,Si:0.10%超2.0%以下,Mn:1.50%以上3.50%以下,P:0.10%以下,S:0.010%以下,sol.Al:0.10%以下及びN:0.010%以下を含有する化学組成を有するスラブに,Ar3点以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板となし,前記熱延鋼板を前記圧延の完了後0.4秒間以内に720℃以下の温度域まで冷却して,フェライトの粒界上に存在する鉄炭化物の平均数密度を5.0×10-2個/μm2以上とする熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(C)前記冷延鋼板に(Ac3点-40℃)以上の温度域で均熱処理を施す焼鈍工程。 (もっと読む)


【課題】引張り強さが980MPa以上で、強度−延性バランスに優れ、かつ溶接熱影響部の軟化が小さい高強度熱延鋼板を提供する。
【解決手段】質量%で、C:0.10〜0.25%、Si:1.5%以下、Mn:1.0〜3.0%、P:0.10%以下、S:0.005%以下、Al:0.01〜0.5%、N:0.010%以下およびV:0.10〜1.0%を含み、かつ(10Mn+V)/C≧50を満足し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、1000℃以上に加熱後、粗圧延によりシートバーとし、ついで仕上げ圧延出側温度:800 ℃以上の条件で仕上げ圧延を施したのち、仕上げ圧延完了後3秒以内に、平均冷却速度:20℃/s以上の速度で、400〜600℃の温度範囲で、かつ次式(1)
11000−3000[%V]≦24×Ta≦15000−1000[%V] ・・・ (1)
ここで、[%V]はVの含有量(質量%)
を満足する温度Ta℃まで冷却して、巻取る。 (もっと読む)


【課題】圧延方向および圧延直角方向の曲げ性および耐遅れ破壊特性に優れた引張強さが1500MPa以上の高強度鋼板およびその製造方法を提供する。
【解決手段】フェライトと炭化物が層をなしており、炭化物のアスペクト比が10以上で、かつ、前記層の間隔が50nm以下である層状組織が組織全体に対する体積率で65%以上である。さらに、炭化物のうちアスペクト比が10以上かつ圧延方向に対して45°以内の角度を有している炭化物の分率が面積率で30%以上60%以下である。上記鋼板は、パーライト組織を主相とし、残部組織におけるフェライト相が組織全体に対する体積率で20%以下であり、パーライト組織のラメラ間隔が500nm以下である組織を有し、ビッカース硬さがHV200以上の鋼板に対して、圧延方向を90°回転させて圧延を繰り返し行うクロス圧延にて圧延率:70%以上で冷間圧延を施すことで得られる。 (もっと読む)


【課題】耐肌荒れ性に優れた缶用鋼板およびその製造方法を提供する。
【解決手段】C:0.0040〜0.01%、Nb:0.02〜0.12%を含有する。鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径が7μm以上10μm以下であり、板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径が15μm以下である。さらに、前記鋼板表層から板厚の1/4厚さまでの圧延方向断面フェライト平均結晶粒径<前記板厚の1/4厚さから板厚中央部までの圧延方向断面フェライト平均結晶粒径である。以上の缶用鋼板は、最終仕上圧延後に1秒以内に50〜100℃/sで冷却し、500℃〜600℃で巻取り、酸洗処理を施した後、圧延率90%以上で冷間圧延し、再結晶温度以上800℃以下で連続焼鈍を施すことで得られる。 (もっと読む)


【課題】590MPa以上の引張強度を有し、均一伸びと穴広げ性とを同時に向上させた、加工性に優れる高強度鋼板及びその製造方法を提供する。
【解決手段】質量%で、C:0.04〜0.10%、Mn:0.5〜2.6%、Si:0.8〜2.0%を含有し、C量とSi量の比C/Siを0.04以上、0.10未満とし、Al、P、S、Nの含有量を制限し、金属組織が、体積率で、90〜95%のフェライトと5〜10%の焼戻しマルテンサイトとからなる加工性に優れた高強度鋼板。熱間圧延後、600〜750℃の範囲内まで一次水冷し、空冷した後、二次水冷して焼戻しを行うか、又は冷間圧延後の焼鈍をAc1〜Ac+100[℃]で行い、20℃/s以下で600〜700℃の範囲内に一次冷却し、二次冷却した後、焼戻しを行って製造する。焼戻しの代わりに、溶融亜鉛めっき、合金化処理を施してもよい。 (もっと読む)


【課題】590MPa以上の引張強度を有し、均一伸びと穴広げ性とを同時に向上させた、加工性に優れる高強度鋼板及びその製造方法を提供するものである。
【解決手段】質量%で、C:0.02〜0.05%、Si:0.8〜2.0%、Mn:0.5〜2.6%を含有し、C量とSi量との比C/Siを0.035以上、0.060未満とし、Al、P、S、Nの含有量を制限し、金属組織が、体積率で、90〜95%のフェライトと5〜10%のマルテンサイトとからなる加工性に優れた高強度鋼板。熱間圧延後、600〜750℃の範囲内まで水冷し、1〜10s空冷して急冷するか、又は冷間圧延後の焼鈍をAc1〜Ac+100[℃]で行い、20℃/s以下で600〜700℃の範囲内に一次冷却し、更に、70℃/s以上の冷却速度で二次冷却して製造する。 (もっと読む)


【課題】超微細結晶粒を有する熱延鋼板を製造することが可能な熱延鋼板の冷却装置及び熱延鋼板の製造装置、並びに、超微細結晶粒を有する熱延鋼板の製造方法を提供する。
【解決手段】熱間仕上げ圧延機列における最終スタンドの下工程側に配置され、搬送される鋼板へ向けて高圧ジェット水を噴射可能に設けられた複数のフラットスプレーノズルを備えるヘッダーを具備し、最終スタンドのワークロールの半径相当位置以内から最終スタンドのハウジングポスト出側までの区間で、鋼板へ向けてフラットスプレーノズルから高圧ジェット水を鋼板の搬送方向へ連続的に噴射可能に構成され、ノズルにねじり角が付与され、少なくとも鋼板の搬送方向最上流側に位置するノズルから、垂直面と交差する方向へ高圧ジェット水が噴射され、少なくとも垂直面と交差する方向へ高圧ジェット水を噴射するノズルに水平面内傾き角が付与されている、熱延鋼板の冷却装置とする。 (もっと読む)


【課題】鋼板長手方向の材質のばらつきや、板厚変動の小さい、高強度冷延鋼板を製造する。それにより、製造時のトラブル防止や歩留り向上を図り、プレス加工する際の加工性や作業性の向上、プレス加工後の製品の品質向上も図る。
【解決手段】鋼板のミクロ組織として、ベイナイトおよび/若しくはベイニチックフェライトが合計面積分率にして70%以上の組織で、ポリゴナルフェライトが面積分率にして30%以下で、前記ポリゴナルフェライトの平均結晶粒径が10μm以下の組織を有することを特徴とする高強度冷延鋼板用熱延鋼板。 (もっと読む)


高マンガン窒素含有鋼板を提供する。本発明にかかる高マンガン窒素含有鋼板は、0.5重量%〜1.0重量%の炭素と、10重量%〜20重量%のマンガンと、0.02重量%〜0.3重量%の窒素と、残部の鉄と、不可避な不純物を含む。本発明にかかる高マンガン窒素含有鋼板は、常温でオーステナイト組織を形成し、クロムと窒素の添加によって積層欠陥エネルギーが効果的に調節される。よって、鋼の塑性変形中に機械的双晶が発生し、高い加工硬化と引張強度及び優れた加工性を有する。 (もっと読む)


【課題】曲げ性及び靭性の異方性に優れた高強度熱延鋼板及びその製造方法を提供する。
【解決手段】質量%で、C:0.08〜0.15%、Si:0.3〜1.5%、Mn:1.5〜2.5%、P:≦0.01%、S:≦0.01%、Al:0.01〜0.05%、Ti:0.03〜0.15%、N:≦0.004%、B:0.0003〜0.001%、O:≦0.005%を含有し、残部Fe及び不可避的不純物からなり、JIS Z 2242に規定するシャルピー試験における下記エネルギ吸収量Eab−L、Eab−C の比が0.9以上1.3以下であることを特徴とする曲げ加工性及び靭性の異方性に優れた高強度熱延鋼板。
ここで、Eab−L:長さ方向がL方向の試験片のシャルピー試験(−40℃で実施)におけるエネルギ吸収量、Eab−C:長さ方向がC方向の試験片のシャルピー試験(−40℃で実施)におけるエネルギ吸収量を意味する。 (もっと読む)


【課題】微細セメンタイトを均一分散させることで高い加工性と焼入れ性とを付与した球状化焼鈍ずみ中高炭素鋼板、球状化焼鈍前の好適な中高炭素鋼板およびその製造方法を提供する。
【解決手段】C=0.14〜0.85%、Si=0.01〜1.00%、Mn=0.10〜2.00%、P≦0.04%、S≦0.03%、Al=0.002〜0.08%を含み、残部は鉄および不可避的不純物にてなり、球状化焼鈍の施された中高炭素鋼板であって、平均粒径が0.6μm以下で最大粒径が4.0μm以下のセメンタイトが、中心間平均距離λが(1.2−0.3×C)μm以下で、中心間距離の標準偏差σが(0.6×λ)μm以下となるように分散していることを特徴とする中高炭素鋼板を採用する。 (もっと読む)


【課題】自動車用高強度鋼板の製造において、熱間圧延時の捲取温度CTに応じた冷間圧延前の焼戻し熱処理により、鋼帯長手及び幅方向の硬度を均一化し、冷間圧延することを特徴とする板厚精度に優れた高強度鋼板の製造方法を提供する
【解決手段】所定の成分のスラブを熱間圧延し、5〜500℃/秒の冷却速度にて室温〜700℃の範囲の鋼帯捲取温度[CT]まで冷却後、(1)に示す焼戻し温度[TA]℃以上の加熱温度で3秒以上の加熱を行い、しかる後に冷間圧延する。
[TA]=0.0006[CT]2+0.15[CT]+350・・・(1)
[TA]:焼戻し温度(℃)
[CT]:鋼帯捲取温度(℃) (もっと読む)


【課題】冷間圧延前の焼鈍処理の省略化を可能にするとともに、使用状態における熱履歴による金属組織の変動が抑制される、生産性と耐熱性とに優れるフルハード冷延鋼板を提供する。
【解決手段】質量%で,C:0.03~0.2%,Si:1.0%以下,Mn:0.5~2.5%,P:0.05%以下,S:0.05%以下、Al:2.0%以下およびN:0.01%以下を含有し,さらにTi:0.2%以下およびNb:0.2%以下の1種または2種を含有するとともに下記式(1)を満足し,残部Fe及び不純物からなる化学組成を有し、Ti及び/又はNbの析出物を有し,該析出物の平均粒径が50nm以下である。
978.2-290√C+76Si-31Mn+150Al≧880 (1)
ここで、式中の元素記号は、鋼中における各元素の含有量(単位:質量%)を示す。 (もっと読む)


【課題】高炭素熱延鋼板を製造するに際し、変態発熱を念頭において、仕上圧延終了後の鋼板の温度を目的の温度範囲に制御することにより、熱延段階にて初析フェライトを発生させることなく、厳しいプレス加工用途にも適用可能であり、伸びフランジ性を始めとする加工性に優れた高炭素熱延鋼板の製造方法を提供する。
【解決手段】所定量のCrを添加することで、強冷却後の変態発熱挙動が緩やかで、温度制御が行いやすいようにした成分系の高炭素鋼を用いて、仕上圧延終了後の熱延鋼板の温度履歴を所定の値に制御し、熱延鋼板の組織を所定量のベイナイトを有する組織に制御する。 (もっと読む)


【課題】筋模様がなく表面性状が良好で、優れたプレス成形性を有する、溶融亜鉛めっき鋼板を提供する。
【解決手段】質量%で、C、Si、Mn、P、S、sol.Al:、N、sol.Ti、NbおよびOを所定量範囲で含有し、さらにsol.TiおよびNbの含有量が下記式(1)〜(3)を満足し、残部がFeおよび不純物からなる化学組成を有し、酸化物系介在物中のTi酸化物の含有量がTiO2換算で50.0%以上でありNb酸化物の含有量がNbO換算で1.0%未満である鋼板の表面に溶融亜鉛めっき層を備える。1.0<(Ti*/48+Nb/93)/(C/12+N*/14)(1)、Ti*=max[sol.Ti-(48/14)×N,0](2)、N*=max[N-(14/48)×sol.Ti,0](3)、ここで、各式中の元素記号は、各元素の含有量を質量%にて表したものであり、max[]は[]内の引数の最大値を返す関数である。 (もっと読む)


【課題】表面疵がなく表面性状が良好で、かつ、優れたプレス成形性および耐二次加工脆性を有する、高張力冷延鋼板を提供する。
【解決手段】質量%で、C:0.0005%以上0.010%未満、Si:1.0%以下、Mn:0.05%以上2.50%以下、P:0.015%超0.10%以下、S:0.010%未満、sol.Al:0.0050%未満、N:0.005%以下、sol.Ti:0.003%以上0.20%以下、Nb:0.010%以上0.20%以下、O:0.015%以下およびB:0.0002%以上0.0030%以下を含有し、さらにsol.TiおよびNbの含有量が相関式(1)〜(3)を満足し、残部がFeおよび不純物からなる化学組成を有し、酸化物系介在物中のTi酸化物の含有量がTiO2換算で50.0%以上でありNb酸化物の含有量がNbO換算で1.0%未満である。 (もっと読む)


【課題】筋模様がなく表面性状が良好で、優れたプレス成形性を有する、溶融亜鉛めっき鋼板を提供する。
【解決手段】質量%で、C、Si、Mn、P、S、sol.Al、N、sol.Ti、NbおよびOを所定範囲内で含有し、さらにsol.TiおよびNbの含有量が下記式(1)〜(3)を満足し、残部がFeおよび不純物からなる化学組成を有し、酸化物系介在物中のTi酸化物の含有量がTiO2換算で50.0%以上でありNb酸化物の含有量がNbO換算で1.0%未満である鋼板の表面に溶融亜鉛めっき層を備える。1.0<(Ti*/48+Nb/93)/(C/12+N*/14)(1)、Ti*=max[sol.Ti-(48/14)×N,0](2)、N*=max[N-(14/48)×sol.Ti,0](3)、ここで、各式中の元素記号は、各元素の含有量を質量%にて表したものであり、max[]は[]内の引数の最大値を返す関数である。 (もっと読む)


本発明は、i)重量%で、C:0.60〜1.20%、Si:0.10〜0.35%、Mn:0.10〜0.80%、P:0よりは大きく0.03%以下、およびS:0よりは大きく0.03%以下を含み、Ni:0.25%以下(0を含む)、およびCr:0.30%以下(0を含む)、Cu:0.25%以下(0を含む)のうちのいずれか一つ以上を含み、残部Feおよびその他の不可避不純物を含み、ii)セメンタイトの幅は0より大きく0.2μm以下であり、前記セメンタイトとセメンタイトとの間隔が0よりは大きく0.5μm以下である微細パーライト組織を有する、高炭素熱延鋼板を提供する。
(もっと読む)


41 - 60 / 118