説明

Fターム[4K058CA03]の内容

金属の電解製造 (5,509) | 溶液電解(電解精製、電解採取) (831) | 電解液 (585) | 主成分 (314) | 酸、その塩 (267)

Fターム[4K058CA03]の下位に属するFターム

Fターム[4K058CA03]に分類される特許

41 - 48 / 48


【課題】溶液中の金属を再利用が容易な状態で効率的に回収できる金属回収装置を提供す
る。
【解決手段】溶液から析出された金属成分Rが付着する導電性板5aと、導電性板5aの
表面の一部に形成されて導電性板5aと溶液Rを非接触状態にする絶縁膜5bとを備えた
金属回収ベルト5を有する。 (もっと読む)


【課題】 簡単な工程で、安価に、短時間で且つ高回収率で高純度のインジウムを回収することができる、インジウム回収方法を提供する。
【解決手段】 ITOターゲット屑などのインジウム含有物を解砕した後、所定の粒径より大きい粗粒が所定の割合以下になるまで粉砕し、その後、酸で溶解し、この溶解液にアルカリを加えてpHが0.5〜4になるように中和し、60〜70℃の温度で3時間以上熟成させ、溶解液中の所定の金属イオンを水酸化物として析出させて除去し、次いで、これに硫化水素ガスを吹き込み、次工程の電解に有害な金属イオンを硫化物として析出除去した後、この溶解液を電解液としてインジウムメタルを電解採取することにより、高純度のインジウムを回収する。 (もっと読む)


【課題】 第1の目的は、Auとシアンを含む水溶液からAuを回収する方法であって、Auの回収効率が高く、しかもAu回収装置を省スペース化できる方法を提供する。第二の目的は、こうした方法を実現するための装置を提供する。
【解決手段】 第1の目的は、Auおよびシアンを含む原料水溶液からAuを回収する方法であって、前記原料水溶液を、逆浸透膜を用いて濃縮液と透過液に分離する膜分離工程と、前記濃縮液を第1の電気分解槽で電気分解してAuを回収する電気分解工程を含み、前記膜分離工程で得られた半濃縮液を第2の電気分解槽で電気分解して半濃縮液中のAuの一部を回収しつつ再循環して膜分離し、前記半濃縮液中のAu濃度が増大した任意の時点で前記濃縮液として前記第1の電気分解槽へ送ってAuを回収すれば、解決できる。 (もっと読む)


【課題】 スズ製錬または鉛製錬を利用することによって、製錬条件を大幅に変更することなく、低コストで効率良くインジウムを回収する方法を提供する。
【手段】 インジウム含有物をスズ製錬原料または鉛製錬原料と共に乾式熔錬し、インジウムを含む粗スズまたは粗鉛を製造する乾式熔錬工程、上記粗スズまたは粗鉛を電解精製して電解スズまたは電解鉛を回収する電解精製工程、インジウムが溶出した電解後液からインジウムを回収する工程を有することを特徴とする方法であり、上記電解後液から溶媒抽出またはイオン交換によってインジウムを抽出し、さらに逆抽出して得たインジウム含有液から電解採取によって金属インジウムを回収し、またはインジウム含有液にスズおよびインジウムよりも卑な金属を投入して析出した金属インジウムを回収する方法、さらには回収した金属インジウムを電解精製して高純度金属インジウムを得る方法。 (もっと読む)


本発明は、各種処理廃水から金属イオンを除去・回収する装置に関する。この方法は、廃水から酸化剤を分解および除去する酸化剤除去装置と、酸化剤除去装置から排出された廃水から金属イオンを回収する電気析出装置(21)とを備えている。電気析出装置は、電極と、電極間にイオン交換体を有する。
(もっと読む)


【課題】貴金属を含有する硫化銅鉱と酸性塩化物水溶液を向流接触させ、塩素浸出し、かつ得られる浸出生成液を還元する工程を含む湿式精錬法において、貴金属の回収に際して、高収率で、かつ貴金属を濃縮して回収する方法を提供する。
【解決手段】貴金属を含有する硫化銅鉱と酸性塩化物水溶液を向流接触させながら、銅を浸出する浸出工程と得られた浸出生成液を還元する還元工程とを行う湿式精錬法において、浸出工程における酸化還元電位を制御することにより浸出残渣中に貴金属の大部分を濃縮し回収するとともに、還元工程に先だって、前記浸出生成液に一部溶出されて含まれる貴金属イオンを金属化して回収する貴金属回収工程を行うことを特徴とする硫化銅鉱からの貴金属回収方法などによって提供する。 (もっと読む)


【課題】 外部から高電圧を印加しなくても、高効率に酸化還元反応を行うことができる酸化還元反応装置を提供する。
【解決手段】 高濃度ホウ素ドープダイヤモンドにより陽極となる半導体層2を形成する。次に、この半導体層2の一方の面上に、半導体層2と電気的に接続するように半導体層2よりも仕事関数が大きい低濃度ホウ素ドープダイヤモンドにより陰極となる半導体層3を形成して電極対1とする。このとき、半導体層2と半導体層3との仕事係数の差を0.03乃至9eVとする。そして、この電極対1を陽イオン及び陰イオンを含む溶液4中に浸漬する。 (もっと読む)


本発明において、結晶ゲルマニウムまたはゲルマニウム合金の電気化学エッチングは、ナノ粒子のよく分離された色クラスターを作り出す。別の強いバンドは、430nm、480nm、580nmおよび680−1100nmにおいて同定される波長で最も低いピークを有する350nm励起の下の光ルミネセンススペクトルに現われる。この材料は、コロイド中に調製することができて、フィルム、結晶などに再構築できる別々のセットの直径1〜3nmの発光性ナノ粒子の中に分散させることができる (もっと読む)


41 - 48 / 48