説明

Fターム[4K070AC15]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 原料 (1,319) | 副原料 (650) | 酸化物・水酸化物 (444) | SiO2 (41)

Fターム[4K070AC15]に分類される特許

1 - 20 / 41


【課題】スピッチングやスロッピングの発生を低減しつつ、製鋼における転炉の脱炭処理を高速化することが可能な、転炉の精錬方法を提供する。
【解決手段】事前の転炉脱炭処理における操業実績から、スラグ1トン当たりの炉内残留酸素濃度を計算する工程S1と、その処理後の実績値と対比して、その差から排ガス流量の補正係数を求める工程S2と、現在の転炉脱炭処理における酸素供給量、並びに、求めた排ガス補正係数を用いて補正した排ガス流量、排ガス組成、溶銑成分及び副原料使用量から炉内残留酸素濃度を逐次算出してスラグ性状の絶対値を把握する工程S3と、炉内残留酸素濃度の値に応じて、酸素供給量、ランス高さ、及び底吹きガス流量のうち少なくとも何れか1つを調整する調整工程S4と、を有する転炉の精錬方法とする。 (もっと読む)


【課題】取鍋精錬で発生する取鍋スラグを脱炭吹錬時に使用し、その使用原単位を高めることによって副原料使用コストを低減するとともに、取鍋スラグ投棄量を削減しスラグ処理コストをも低減することができる技術を確立する。
【解決手段】転炉内の溶銑に上吹きランスから酸素を吹き付けて脱炭処理する際に、転炉内に供給する取鍋スラグの量(R)を、該Rが溶鋼1トン当たり(1)式により規定する範囲に収まるように調整する。(1)式において、S:装入溶銑中のS濃度(質量%)、S:脱炭吹錬終了時の溶鋼中目標S濃度(質量%)、X:取鍋スラグ中のS濃度(質量%)、V:装入塩基度(CaO質量/SiO質量)、M:脱炭吹錬終了時の炉内スラグ生成予測量(kg/溶鋼t)である。
(もっと読む)


【課題】 燐を含有する製鋼スラグの製銑工程及び製鋼工程へのリサイクルに当り、該スラグから燐及び鉄を安価に回収するとともに、回収した燐及び鉄を資源として活用する。
【解決手段】 本発明のスラグからの鉄及び燐の回収方法は、燐含有製鋼スラグを、該スラグを含めて還元処理される対象物全体の塩基度(CaO/SiO2)が1.0〜3.0の範囲になるように調整した上で、1100〜1300℃で炭素含有還元剤でスラグ中の鉄酸化物を還元して還元鉄を得る第1の工程と、第1の工程によって鉄酸化物量が低下したスラグを、炭素含有還元剤で還元してスラグ中の燐酸化物を気相へ還元除去する第2の工程と、第2の工程によって得られたスラグを製銑又は製鋼工程でのCaO源として再利用する第3の工程と、第1の工程で得た還元鉄を製銑又は製鋼工程での鉄源として再利用する第4の工程と、第2の工程で気相へ還元除去した燐を、排ガス設備で回収して燐酸資源原料とする第5の工程と、を有する。 (もっと読む)


【課題】転炉での脱炭処理において、スピッティングを抑制して耐火物寿命を維持しつつ高速処理を実現することができる溶鋼の製造方法を提供する。
【解決手段】予備脱りん処理後の溶銑に対し、転炉内で上吹きランスからの酸素の供給速度を溶銑1トン当たり4.0〜5.5Nm3/minとする高速脱炭処理を行うに際し、処理開始時にカルシウムフェライトを含む精錬剤(FetO/(CaO+FetO)比が57〜74質量%)を投入するとともに、上吹きランスの高さを下記(2)式または(3)式を満足するように制御する。ここで、L:酸素ジェットによる鋼浴の凹み深さ(mm)、L0:鋼浴深さ(mm)である。
L/L0≦0.04 (酸素吹付け開始〜全酸素吹付け時間の30%経過) …(2)
L/L0≧0.07 (全酸素吹付け時間の30%経過後〜酸素吹付け終了) …(3) (もっと読む)


【課題】スラグから回収する鉄−マンガン酸化物の回収率を向上することができるようにする。
【解決手段】CaO−SiO2−P25相及び(Fe,Mn)OX相を含む製鋼スラグに対して地金を除去する地金除去処理を行ってから鉄、マンガン酸化物を回収する方法であって、処理後に塩基度が1.5〜2.5となっている製鋼スラグ、又は処理後に塩基度が1.5〜2.5になるように調整した製鋼スラグに対して、1200℃までの平均冷却速度が20℃/min以下となるように当該製鋼スラグを冷却する冷却処理を行っておき、地金除去処理及び冷却処理を行った製鋼スラグに対して、粉砕後の代表粒径が50μm以下となるように粉砕処理を行い、粉砕処理後のスラグを粗粒と微粒とに分級する分級処理の際に、粗粒の代表粒径と微粒の代表粒径との比が2.5倍以上となるよう処理し、分級処理後に粗粒を回収する点にある。 (もっと読む)


【課題】製鋼スラグ中のダイカルシウムシリケートの炭酸化を促進し、また、炭酸化未反応の遊離CaOやCa(OH)2の残存を抑制することができ、これによって炭酸化処理後の製鋼スラグが水分と接触したときに発生するスラグ溶出水のpHを短期に亘ってだけではなく、長期に亘っても可及的に低減することができる製鋼スラグの処理方法を提供する。
【解決手段】製鋼スラグにSi含有物質と水を配合して混練し、得られた混練物を水熱養生処理し、次いで得られた養生物を炭酸化処理する製鋼スラグの処理方法である。 (もっと読む)


【課題】生石灰粉を上吹きして溶銑を脱りんする方法において、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑tに増加して、上吹き酸素の供給時間が5〜8分間という短時間に高速で溶銑脱りん処理する場合に、上吹きした生石灰粉の飛散ロスをCaO純分換算で1.0kg/溶銑t以下に抑制するとともに処理後溶銑中[%P]を0.015質量%以下にまで低減する方法を提供する。
【解決手段】上底吹き転炉でCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、上吹き酸素と共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ吹き付け、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t、サブランスから0.1〜1.0Nm3/min/溶銑tのガスと共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ上吹きし、CaO・FetO・SiO2・Al2O3を含有するプリメルトフラックス4〜10kg/溶銑tと、前記生石灰粉と前記プリメルトフラックスと塊生石灰とのCaO純分に対して前記生石灰粉中のCaO純分が40質量%以上となるように定めた量の生石灰粉とを吹錬開始前後に添加し、且つ処理後スラグ塩基度を2.0〜3.0とする。 (もっと読む)


【課題】転炉を用いる溶銑の脱燐処理において、蛍石等のハロゲン化物を実質的に用いず、スピッティングやスロッピングによる操業上の困難を発生させることなく、脱燐処理時間が5〜8分間で脱燐率80%以上を安定して達成することができる技術を提供する。
【解決手段】転炉に収容された溶銑に、上吹き酸素ガス流量を1.5〜2.5Nm/min/ton、底吹きガス流量を0.15〜0.8Nm/min/tonとしつつ、脱燐剤として供給する全CaO質量を粉状として前記上吹き酸素ガスと共に溶銑へ吹き付けて、脱燐処理終了時のスラグ組成を、塩基度:2.2〜3.2、Al:4.5〜7.5質量%、T.Fe:7〜13質量%に調整する。 (もっと読む)


【課題】 クロム鉱石を溶融状態で還元してクロム含有溶銑を溶製するにあたり、液相が多く、Al23を多く含有し、且つCr23も含有する生成スラグによるMgO系耐火物からなる炉壁耐火物の損耗を、コストの増大を招くことなく抑制する。
【解決手段】 MgO系耐火物6を内張り耐火物とする転炉型反応容器2に収容された溶銑に、クロム鉱石、炭材及び造滓剤を添加し且つ上吹きランス3から酸素ガスを供給し、前記クロム鉱石を溶融して還元するとともに、生成するスラグ12のMgO含有量がその生成スラグにおける飽和溶解度よりも過剰になるようにMgO源を添加する、クロム鉱石の溶融還元方法において、製錬初期の昇温期に、MgO純分換算で溶銑トンあたり1.0kg以上のMgO源を前記反応容器内に添加し、且つ、製錬進行度の75〜90%の時点で、スラグの塩基度調整用のSiO2源を前記反応容器内に添加する。 (もっと読む)


【課題】脱燐剤にフッ素を含む副原料を使わず、上吹き酸素の供給時間が5〜8分間でも、スピッティングやスロッピングを発生せずに脱燐率80%以上で溶銑から燐を除去する。
【解決手段】上底吹き転炉を用いて、脱燐剤として供給するCaO質量の40%以上を上吹き酸素の供給開始と同時に、または1分経過時点までに、溶銑への吹き付けを開始し、脱燐処理終了時のスラグ塩基度を2.0〜2.9とする。上吹き酸素の供給前に、或いは開始直後に、取鍋スラグまたはカルシウムフェライトを投入する第1の条件と、上吹き酸素の供給前に、或いは上吹き酸素の供給時間全体の21%が経過する前に、取鍋スラグを、かつ、上吹き酸素の供給前に、或いは供給時間の28%が経過する前に、カルシウムフェライトを投入し、脱燐処理終了時のスラグ中Al2O3濃度が6〜12%に調整する第2の条件とを満足する。 (もっと読む)


【課題】処理中における炉壁及び炉口へのスピッティング粒鉄の付着を抑制し、かつ処理後の溶銑中[P]濃度を0.007質量%以下とする。
【解決手段】上底吹き転炉型精練容器内への溶銑装入と前後して塊状のCaO含有物質を添加し,上吹きランスから粉状のCaO含有物質を伴わずに酸素含有ガスを該溶銑へ吹き付けて該溶銑上にカバースラグを生成した後に該上吹きランスから粉状のCaO含有物質を伴って酸素含有ガスを該溶銑へ吹き付けて該溶銑の脱燐処理を行う。全酸素供給時間の40%以上が経過した後、該全酸素供給時間の70%が経過するまでの期間中に,CaOを30〜50質量%,FetOを40〜65質量%,SiO2を1.0〜10質量%以下及びAl2O3を1.0〜20質量%含有し,かつそれらの4成分の合計が90質量%以上であるプリメルトフラックス2〜12kg/tを添加し,かつ処理後のスラグ塩基度を2.2〜3.1とする。 (もっと読む)


【課題】 蛍石などのフッ素源を使用しなくともCaO系媒溶剤を迅速に滓化させることができ、溶銑を効率的に且つ安価に脱燐することのできる脱燐処理方法を提供する。
【解決手段】 上吹きランス1の軸心部に配置した中心孔4から不活性ガスを搬送用ガスとして脱燐用媒溶剤を溶銑に向けて噴出すると同時に、前記中心孔の周囲に設けた燃料供給ノズル6及び酸素含有ガス供給ノズル7により、前記中心孔からの噴出流の周囲に酸素含有ガスと燃料との反応による火炎の包囲帯を形成させ、且つ、前記中心孔の周囲に設置された3孔以上の周囲孔5から酸素含有ガスを溶銑の浴面に向けて吹き付ける。 (もっと読む)


【課題】同一の転炉で脱りん精錬と脱炭精錬を行うことによるメリットを享受しつつ、P規格の特に厳しい極低りん鋼についても安定的に溶製することのできる転炉精錬方法を提供する。
【解決手段】上底吹き転炉を用いて鋼を精錬するに際し、第1工程で溶銑を転炉に装入し、第2工程でフラックスを用いた転炉上底吹き精錬により溶銑脱りんを行い、第3工程で転炉を傾動して第2工程で生成したスラグの一部又は全部を排出し、第4工程でフラックスを追加して転炉上底吹き精錬により溶銑脱りんを行い、第5工程で転炉を傾動して第4工程で生成したスラグの一部又は全部を排出し、第6工程で転炉上底吹き精錬により脱炭を行う。最初の脱りん精錬とその後のスラグ除去の後、フラックスを追加して第2の脱りん精錬とスラグ除去を行い、さらにその後に脱炭精錬を行うので、脱炭精錬終了後の溶鋼中P濃度を十分に極低P鋼レベルまで低減できる。 (もっと読む)


【課題】 脱燐スラグや転炉スラグなどの燐を含有する製鋼スラグのリサイクルにあたり、該製鋼スラグから燐及び鉄を安価且つ容易に回収する方法を提供する。
【解決手段】 本発明による製鋼スラグからの鉄及び燐の回収方法は、製鋼精錬過程において発生した燐を含有する製鋼スラグを、塩基度(質量%CaO/質量%SiO2)が1.7以上2.1以下になるように調製する調製工程と、塩基度を調製した製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元処理して製鋼スラグ中の鉄酸化物及び燐酸化物を溶融状態の燐含有溶融鉄として製鋼スラグから還元する還元工程と、還元処理後の製鋼スラグ及び燐含有溶融鉄を放冷して還元処理後の製鋼スラグを粉化させる冷却工程と、を有する。 (もっと読む)


【課題】転炉を用いる製鋼精錬プロセス全体として蛍石等のハロゲン化物やAl源を使用すること無く、低燐鋼を安定的に大量製造すると共に、製鋼精錬プロセスを高能率かつ高効率化する方法を提供する。
【解決手段】溶銑予備脱燐処理された溶銑を上底吹き型転炉で吹錬して低燐溶鋼を製造する際に、前記吹錬後のスラグの質量濃度をAl:3.5%以下、T.Fe:15%以上とし、さらにCaOとSiOとの質量濃度比(CaO%/SiO%)を4.0以上6.0以下とすることによって、該スラグ中のフリーCaO質量濃度を7%以上に調整した転炉スラグを同時に製造し、かつ、溶銑予備脱燐処理をされていない溶銑であってSi質量濃度が0.20%以上のものを上底吹き型転炉で溶銑予備脱燐処理する際に、前記のように製造した転炉スラグを脱燐剤の一部として用いてその脱燐処理を行う。 (もっと読む)


【課題】製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法において、還元用炭素源の適切な添加量を規定することにより、製鋼スラグ中の酸化鉄やP等の酸化物の還元反応を促進させるとともに、還元用炭素源のスラグ中への残留を抑制し、緻密で強度の高いスラグを得る。
【解決手段】溶銑が保持されている反応容器に装入された製鋼スラグを加熱手段で加熱しながら、製鋼スラグにSiO含有改質材および還元用炭素源を添加し、製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法において、溶融改質還元処理を通じて製鋼スラグの質量100質量部に対して炭素量が5質量部以上25質量部以下となるように還元用炭素源を添加し、溶融改質還元処理後の製鋼スラグの塩基度が0.7以上となるようにSiO含有改質材を添加するようにした。 (もっと読む)


【課題】製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法及びこの処理により得られる改質スラグにおいて、Alの適切な添加量を規定することにより、製鋼スラグ中の酸化鉄やP等の酸化物還元速度を向上させるとともに、緻密で強度の高い改質された製鋼スラグを得る。
【解決手段】溶銑が保持されている反応容器に装入された製鋼スラグを加熱手段で加熱しながら、SiO含有改質材および還元用炭素源を添加し、製鋼スラグを溶融改質還元処理する製鋼スラグの処理方法において、溶融改質還元処理を通じて製鋼スラグ中のAl濃度が7質量%以上20質量%以下となるように、Al含有物質を添加し、溶融改質還元処理後の製鋼スラグの塩基度が0.7以上となるようにSiO含有改質材を添加するようにした。 (もっと読む)


【課題】製鋼工程の精錬処理時に発生する製鋼スラグの溶融改質処理方法において、スラグ組成等の影響により流動性が低いスラグを溶融改質処理した場合であっても、高品質のスラグを高い歩留りで得る。
【解決手段】SiO含有物質を改質材として、溶融改質処理装置内の製鋼スラグに改質材を溶射することにより、製鋼スラグを溶融改質処理する製鋼スラグの溶融改質処理方法において、溶融改質処理の開始前における(TLL−T)/(TLL−TSL)で表される固相率が0.5以上の製鋼スラグを使用した場合に、製鋼スラグの溶融改質処理開始前の温度Tと製鋼スラグの液相線温度TLLとの関係が、T+150℃≧TLLを満たす条件で溶融改質処理を開始する。 (もっと読む)


【課題】スラグ中での溶解速度が高く、かつハンドリング性の良好なスラグ調整剤を提供すること。
【解決手段】スラグ調整剤は、酸化物換算で20質量%以上、98%質量%以下のMgOを主成分とし、残部がCaO、SiO、カルシウム炭酸化物、及びカルシウム水酸化物の少なくともいずれか1種以上、並びに不可避的不純物からなる原料に、外掛けで0.1質量%以上、2.0質量%以下の発泡剤、及び、外掛けで0.01質量%以上、0.2質量%以下の有機繊維の少なくともいずれか一方を添加し、さらにバインダーを加えて混練、成形、及び乾燥してなる。 (もっと読む)


【課題】製鋼スラグから、クロム濃度が低く、好ましくは水和反応性が高いセメント原料用スラグを安定的に製造する。
【解決手段】酸化クロムを含有し、塩基度1.5以上、Fe含有量が10質量%以上の製鋼スラグに還元材を添加し、1000℃以上で撹拌混合した後、冷却する。高温状態で撹拌混合を行う還元処理において、酸化クロムとともに酸化鉄も還元され、スラグ中の金属鉄と金属クロムが撹拌作用によって物理的に凝集するので、クロムを含む金属分がスラグから容易に分離除去可能な形態になる。また、還元処理によりクロムや鉄を還元して非固溶状態とし、且つ処理後の冷却条件を、冷却後の2CaO・SiOの結晶相のうちγ相の比率が50質量%以下となるように最適化することにより、セメント原料としての水和反応性が高められる。 (もっと読む)


1 - 20 / 41