説明

Fターム[4M104BB30]の内容

半導体の電極 (138,591) | 電極材料 (41,517) | 高融点金属窒化物 (3,639) | TiN (1,457)

Fターム[4M104BB30]に分類される特許

141 - 160 / 1,457


【課題】金属窒化膜に隣接する他の膜の特性を劣化させない温度範囲において、金属窒化膜中の塩素原子や酸素原子の残留量を低減し、金属窒化膜の耐酸化性を改善する。
【解決手段】自然酸化膜が形成され、塩素原子を含む窒化チタニウム膜が形成された基板を処理室内に搬入して基板支持部により支持する工程と、基板を基板支持部により加熱する工程と、窒素原子含有ガス及び水素原子含有ガスをガス供給部により処理室内に供給しつつ、処理室内をガス排気部により排気する工程と、処理室内に供給された窒素原子含有ガス及び水素原子含有ガスをプラズマ生成部により励起する工程と、を有する。 (もっと読む)


【課題】露光マスク数を削減することでフォトリソグラフィ工程を簡略化し、酸化物半導
体を有する半導体装置を低コストで生産性よく作製することを課題の一とする。
【解決手段】チャネルエッチ構造の逆スタガ型薄膜トランジスタを有する半導体装置の作
製方法において、透過した光が複数の強度となる露光マスクである多階調マスクによって
形成されたマスク層を用いて酸化物半導体膜及び導電膜のエッチング工程を行う。エッチ
ング工程において、第1のエッチング工程は、エッチングガスによるドライエッチングを
用い、第2のエッチング工程はエッチング液によるウエットエッチングを用いる。 (もっと読む)


【課題】下地膜のエッチングを防止することができる窒化チタン膜の形成方法、窒化チタン膜の形成装置及びプログラムを提供する。
【解決手段】窒化チタン膜の形成方法では、まず、半導体ウエハWを収容した反応管2内を、昇温用ヒータ7により200℃〜350℃に加熱する。続いて、反応管2内にチタン原料を含む成膜用ガスを供給して半導体ウエハWに窒化チタン膜を形成する。このチタン原料には、塩素原子を含まず、チタンを含むメチルシクロペンタジエニルトリス(ジメチルアミノ)チタニウムを用いる。 (もっと読む)


【課題】トランジスタのチャネル部が形成される領域にU字状の縦長溝を形成し、見かけ上のチャネル長に対してチャネル長を長くする方法は、溝を掘るためにフォトリソグラフィ工程を余分に行う必要があり、コストや歩留まりの観点で問題があった。
【解決手段】ゲート電極または絶縁表面を有する構造物を利用し、三次元形状のチャネル領域を形成することにより、チャネル長が、上面から見たチャネル長に対して3倍以上、好ましくは5倍以上、さらに好ましくは10倍以上の長さとする。 (もっと読む)


【課題】n型MOSトランジスタ及びp型MOSトランジスタのそれぞれに共通のゲート電極材料を用い、且つそれぞれの閾値電圧が適切な値に調整された半導体装置を実現できるようにする。
【解決手段】半導体装置は、第1トランジスタ11及び第2トランジスタ12を備えている。第1トランジスタ11は、第1ゲート絶縁膜131と、第1ゲート電極133とを有し、第2トランジスタ12は、第2ゲート絶縁膜132と、第2ゲート電極134とを有している。第1ゲート絶縁膜131及び第2ゲート絶縁膜132は、第1絶縁層151及び第2絶縁層152を含む。第1ゲート電極133及び第2ゲート電極134は、断面凹形の第1導電層155及び該第1導電層155の上に形成された第2導電層156を含む。第1絶縁層151及び第2絶縁層152は平板状であり、第1ゲート絶縁膜131は、仕事関数調整用の第1元素を含んでいる。 (もっと読む)


【課題】p型不純物のドーピングおよびそのp型不純物の活性化を必要とすることなく、簡便かつ低コストでノーマリオフ型HFETを提供する。
【解決手段】ノーマリオフ型HFETは、厚さtのアンドープAlGa1−xN層(11)、この層(11)へ電気的に接続されかつ互いに隔てられて形成されたソース電極(21)とドレイン電極(22)、これらソース電極とドレイン電極との間でAlGa1−xN層上に形成された厚さtのアンドープAlGa1−yN層(12)、ソース電極とドレイン電極との間においてAlGa1−yN層の部分的領域上でメサ型に形成された厚さtのアンドープAlGa1−zN層(13)、およびAlGa1−zN層上に形成されたショットキーバリア型ゲート電極(23)を含み、y>x>zおよびt>t>tの条件を満たすことを特徴としている。 (もっと読む)


【課題】可撓性を有する基板上に有機化合物を含む層を有する素子が設けられた半導体装置を歩留まり高く作製することを課題とする。
【解決手段】基板上に剥離層を形成し、剥離層上に、無機化合物層、第1の導電層、及び有機化合物を含む層を形成し、有機化合物を含む層及び無機化合物層に接する第2の導電層を形成して素子形成層を形成し、第2の導電層上に第1の可撓性を有する基板を貼りあわせた後、剥離層と素子形成層とを剥す半導体装置の作製方法である。 (もっと読む)


【課題】p型SiC領域と金属との低抵抗コンタクトの実現を可能とする半導体装置を提供する。
【解決手段】実施形態の半導体装置は、導電性材料を用いた電極240と、導電型がp型の炭化珪素(SiC)半導体部220と、を備えており、かかるp型のSiC半導体部220は、前記第1の電極240に接続され、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、及びバリウム(Ba)のうちの少なくとも1種類の元素が前記電極との界面部に面密度がピークになるように含有されたことを特徴とする。 (もっと読む)


【課題】特性の良好な半導体装置を形成する。
【解決手段】本発明は、pチャネル型MISFETをpMIS形成領域1Aに有し、nチャネル型MISFETをnMIS形成領域1Bに有する半導体装置の製造方法であって、HfON膜5上にAl膜8aを形成する工程と、Al膜上にTiリッチなTiN膜7aを形成する工程と、を有する。さらに、nMIS形成領域1BのTiN膜およびAl膜を除去する工程と、nMIS形成領域1BのHfON膜5上およびpMIS形成領域1AのTiN膜7a上にLa膜8bを形成する工程と、La膜8b上にNリッチなTiN膜7bを形成する工程と、熱処理を施す工程とを有する。かかる工程によれば、pMIS形成領域1Aにおいては、HfAlON膜のN含有量を少なくでき、nMIS形成領域1Bにおいては、HfLaON膜のN含有量を多くできる。よって、eWFを改善できる。 (もっと読む)


【課題】nチャネル型電界効果トランジスタとpチャネル型電界効果トランジスタを有する半導体装置において、nチャネル型電界効果トランジスタ、pチャネル型電界効果トランジスタ共にドレイン電流特性に優れた半導体装置を実現する。
【解決手段】nチャネル型電界効果トランジスタ10と、pチャネル型電界効果トランジスタ30とを有する半導体装置において、nチャネル型電界効果トランジスタ10のゲート電極15を覆う応力制御膜19には、膜応力が引張応力側の膜を用いる。pチャネル型電界効果トランジスタ30のゲート電極35を覆う応力制御膜39には、膜応力が、nチャネル型トランジスタ10の応力制御膜19より、圧縮応力側の膜を用いることにより、nチャネル型、pチャネル型トランジスタの両方のドレイン電流の向上が期待できる。このため、全体としての特性を向上させることができる。 (もっと読む)


【課題】GaN系の材料により形成されるHEMTの信頼性を高める。
【解決手段】基板10の上方に形成された窒化物半導体からなる半導体層21〜24と、半導体層21〜24の上方に、金を含む材料により形成された電極41と、電極41の上方に形成されたバリア膜61と、半導体層21〜24の上方に、シリコンの酸化膜、窒化膜、酸窒化物のいずれかを含む材料により形成された保護膜50と、を有する。 (もっと読む)


【課題】ゲート電極同士の間の突合わせ部を挟むように形成されたコンタクトプラグ同士が、当該突合わせ部の絶縁膜内に形成されたボイドを介してショートすることを防ぐ。
【解決手段】ゲート電極G2およびG5間の突合わせ部において対向するサイドウォールSW上には、ライナー絶縁膜6と層間絶縁膜7が形成されている。サイドウォールSW同士の間において、サイドウォールSWの側壁にそれぞれ形成されたライナー絶縁膜6を接触させてサイドウォールSW間を閉塞させることにより、層間絶縁膜7とライナー絶縁膜6の内部にボイドが発生することを防ぐ。 (もっと読む)


【課題】成膜原料としてコバルトカルボニルを用いてCo膜を成膜する場合に、段差被覆性が良好でかつ再現性高くCo膜を成膜することができる成膜方法を提供すること。
【解決手段】処理容器1内に単一原料として気体状のCo(CO)12を供給し、基板W上でCo(CO)12を熱分解させて基板W上にCo膜を成膜する。このとき、成膜原料として固体原料であるCo(CO)を用い、これをCo(CO)の分解開始温度未満の温度で気化させ、これにより生成された気体状のCo(CO)をCo(CO)12が安定に存在する温度にして気体状のCo(CO)12に変化させ、処理容器1内に供給する。または、成膜原料として固体原料であるCo(CO)12を用い、これを気化させて処理容器1内に供給する。 (もっと読む)


【課題】成膜原料としてコバルトカルボニルを用いてCo膜を成膜する場合に、下地との密着性を良好にすることができる成膜方法を提供すること。
【解決手段】処理容器1内に基板Wを配置し、処理容器1内に気体状のコバルトカルボニルを供給し、基板W上でコバルトカルボニルを熱分解させて基板W上にCo膜を成膜するにあたり、基板WのCo膜の下地が、Co膜との界面近傍に混合層を形成する材料で構成されており、基板Wの加熱温度を190〜300℃とする。 (もっと読む)


【課題】成膜原料としてCo(CO)を用いてCo膜を成膜する場合に、段差被覆性が良好でかつ再現性高くCo膜を成膜することができる成膜方法を提供すること。
【解決手段】処理容器1内に基板Wを配置し、成膜原料として固体原料であるCo(CO)を用い、これをCo(CO)の分解開始温度未満の温度で気化させて気体原料とし、これを基板Wに至るまでCo(CO)12が生成されないようにして基板Wに供給し、前記基板上で熱分解によりCo膜を成膜する。 (もっと読む)


【課題】成膜原料としてCo(CO)を用いてCo膜を成膜する場合に、Co膜の針状の異常成長を抑制することができる成膜方法を提供すること。
【解決手段】処理容器1内に基板Wを配置し、基板Wの温度を160〜300℃とし、処理容器1内に気体状のCo(CO)を供給し、基板W上でCo(CO)を熱分解させて基板W上にCo膜を成膜する。 (もっと読む)


【課題】占有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】第1の制御ゲート、第2の制御ゲート及び記憶ゲートを有するトランジスタを用いる。記憶ゲートを導電体化させ、該記憶ゲートに特定の電位を供給した後、少なくとも該記憶ゲートの一部を絶縁体化させて電位を保持させる。情報の書き込みは、第1及び第2の制御ゲートの電位を記憶ゲートを導電体化させる電位とし、記憶ゲートに記憶させる情報の電位を供給し、第1または第2の制御ゲートのうち少なくとも一方の電位を記憶ゲートを絶縁体化させる電位とすることで行う。情報の読み出しは、第2の制御ゲートの電位を記憶ゲートを絶縁体化させる電位とし、トランジスタのソースまたはドレインの一方と接続された配線に電位を供給し、その後、第1の制御ゲートに読み出し用の電位を供給し、ソースまたはドレインの他方と接続されたビット線の電位を検出することで行う。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】LDMOSと、LDMOSのソース領域と電気的に接続されるソースプラグP1Sと、ソースプラグP1S上に配置されるソース配線M1Sと、LDMOSのドレイン領域と電気的に接続されるドレインプラグP1Dと、ドレインプラグP1D上に配置されるドレイン配線M1Dと、を有する半導体装置のソースプラグP1Sの構成を工夫する。ドレインプラグP1Dは、Y方向に延在するライン状に配置され、ソースプラグP1Sは、Y方向に所定の間隔を置いて配置された複数の分割ソースプラグP1Sを有するように半導体装置を構成する。このように、ソースプラグP1Sを分割することにより、ソースプラグP1SとドレインプラグP1D等との対向面積が低減し、寄生容量の低減を図ることができる。 (もっと読む)


【課題】電気特性の変動が生じにくく、且つ電気特性の良好な半導体装置の作製方法を提供することである。
【解決手段】基板上にゲート電極を形成し、ゲート電極上にゲート絶縁膜を形成し、酸化物半導体膜を形成し、第1の酸化物半導体膜を形成した後、加熱処理をして第2の酸化物半導体膜を形成し、第1の導電膜を形成し、厚さの異なる領域を有する第1のレジストマスクを形成し、第1のレジストマスクを用いて第2の酸化物半導体膜および第1の導電膜をエッチングして第3の酸化物半導体膜および第2の導電膜を形成し、第1のレジストマスクを縮小させて、第2のレジストマスクを形成し、第2のレジストマスクを用いて第2の導電膜の一部を選択的に除去することでソース電極およびドレイン電極を形成する半導体装置の作製方法である。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


141 - 160 / 1,457