説明

Fターム[5E040NN18]の内容

硬質磁性材料 (8,571) | 数値限定の対象 (1,979) | 製造、処理方法、装置 (486) | 温度 (275)

Fターム[5E040NN18]に分類される特許

61 - 80 / 275


【課題】高残留磁束密度、高保磁力の焼結磁石であるR−T−B−M系焼結磁石となるためのR−T−B−M系焼結磁石用合金を作製する。
【解決手段】焼結磁石全体に亘って結晶粒の主相外殻にDyの多いR14Bが存在するR−T−B−M系焼結磁石を作製できるように、R−T−B−M母合金1と重希土類元素RHの金属又は合金のRH拡散源2とを処理室3内にて連続的または断続的に移動させながら、雰囲気圧力10Pa以下600℃以上1000℃以下の熱処理を10分以上48時間以下行い、R−T−B−M系焼結磁石用合金の主相であるR214B化合物の結晶とそれ以外の相との界面部分に重希土類元素RHの濃度が高い領域を連続して生成する。 (もっと読む)


【課題】耐食性に優れた希土類磁石を提供すること。
【解決手段】本発明の希土類磁石100は、希土類元素R、遷移金属元素T及びホウ素Bを含有するR−T−B系の希土類磁石であって、Cu及びCoを更に含有し、希土類磁石におけるCuの濃度分布が、希土類磁石の表面から内部へ向かう方向に沿った勾配を有し、希土類磁石の表面側のCuの濃度が、希土類磁石の内部側のCuの濃度よりも高く、希土類磁石におけるCoの濃度分布が、希土類磁石の表面から内部へ向かう方向に沿った勾配を有し、希土類磁石の表面側のCoの濃度が、希土類磁石の内部側のCoの濃度よりも高い。 (もっと読む)


【課題】高性能なSm2Co17型磁石の増磁の際に必要な磁化電流を低下させることを可能にした永久磁石を提供する。
【解決手段】実施形態の永久磁石は、組成式:R(FepqCur(Co1-ss1-p-q-rz(R:希土類元素、M:Ti、Zr、Hf、A:Ni、V、Cr、Mn、Al、Si、Ga、Nb、Ta、W、0.05≦p≦0.6、0.005≦q≦0.1、0.01≦r≦0.15、0≦s≦0.2、4≦z≦9)で表される組成を有し、Th2Zn17型結晶相と銅リッチ相との二相組織を備える。永久磁石のTh2Zn17型結晶相の結晶c軸を含む断面において、銅リッチ相間の平均距離は120nmを超えて500nm未満の範囲とされている。 (もっと読む)


【課題】優れた磁気特性を備える磁性材料を、簡易な操作で確実に製造することができる磁性材料の製造方法を提供する。
【解決手段】磁石粉末と、変形開始温度が600℃以下の金属ガラスとを混合し、混合粉末を得て、その混合粉末を金型に充填するとともに、磁場中で圧力成形し、成形体を得た後、成形体を、同一の金型内において、放電プラズマ焼結することにより、金属ガラスの前記変形開始温度以上の温度に加熱し、これにより、磁性材料を製造する。 (もっと読む)


【課題】Dy、Tbなどを使用することなく、R−T−B系永久磁石粉末の保磁力を向上させる製造方法を提供する。
【解決手段】HDDR処理によって作製されたR−T−B系永久磁石粉末を準備する(工程A)。RはNd、PrをR全体に対して80原子%以上含む希土類元素、TはFeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50原子%以上含む遷移金属元素である。一方、R’とAlからなり、かつ、Alが2原子%以上65原子%以下であるR’−Al系合金粉末を準備する(工程B)。R’はNdおよび/またはPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素である。R−T−B系永久磁石粉末とR’−Al系合金粉末とを混合した(工程C)後、混合粉末を不活性雰囲気または真空中において550℃以上900℃以下の温度で熱処理を行う(工程D)。 (もっと読む)


【課題】本発明は、フッ素化合物の使用量が少なく、熱処理により磁性粉末材料の磁気特性劣化を抑えることと目的とする。
【解決手段】本発明は、主相結晶粒、及び前記主相結晶粒の周りを取り囲む結品粒界部で構成する希土類鉄硼素系の焼結磁石において、フッ素の濃度は、磁石の表面に近い領域の方が磁石中心よりも高く、2族から16族の元素のうち希土類元素、炭素及び硼素を除いた元素から選択される一種の金属元素の濃度は、磁石の表面に近い領域の方が磁石中心よりも高く、磁石の表面からの距離が1μm以上の領域の前記結晶粒界部において、Dy及び前記金属元素を含有する炭酸フッ化物が形成され、磁石の表面からの距離が1μmから500μmの領域において、炭素の濃度の方が前記金属元素の濃度よりも高いことを特徴とする。 (もっと読む)


【課題】 本発明は、六方晶フェライト粒子粉末に関するものであり、平均板面径が10〜20.5nmである六方晶フェライト粒子粉末を工業的な生産性に優れた水熱合成法によって得るものである。
【解決手段】 バリウム、ストロンチウム、及びカルシウムより選ばれた少なくとも1種の金属イオンを含む金属塩と鉄化合物、並びに、2価乃至5価の金属元素から選ばれる1種又は2種以上の金属塩を混合した懸濁液を、アルカリ水溶液に添加した後、オートクレーブを用いて100〜300℃の温度範囲で反応し、得られた六方晶フェライト粒子の前駆体を濾別・乾燥し、次いで、融剤の存在下で600〜780℃の温度で焼成した後、融剤を除去することによって得られる六方晶フェライト粒子粉末の製造法において、前記懸濁液をアルカリ水溶液に添加する際に、20分以上かけて徐添加することによって六方晶フェライト粒子粉末を得ることができる。 (もっと読む)


【課題】仮焼処理により活性化された仮焼体の活性度を低下させる永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジウム磁石の微粉末に対して、M−(OR)(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。その後、粉末状の仮焼体を圧縮成形し、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジウム磁石の微粉末に対して、M−(OR)x(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。その後、粉末状の仮焼体を圧縮成形し、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】仮焼処理により活性化された仮焼体の活性度を低下させる永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジウム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。 (もっと読む)


【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。 (もっと読む)


【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に、均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】磁気特性の高い永久磁石を製造することが可能な希土類磁石用合金及び希土類磁石用合金の製造方法を提供する。
【解決手段】希土類磁石用合金は、R214B相(RはNdを含む1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表す)を含む主相と、R相及びR1+δ44相を含む粒界相とを有し、粒界相におけるR相の体積%とR1+δ44相の体積%との和に対するR1+δ44相の体積%の割合が0.25以上である。 (もっと読む)


【課題】粉砕後の磁石粉末を加熱することによって、磁石粒子の表面を再生し、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末31を、M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物とともに溶媒中でビーズミルにより粉砕し、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末43を低酸素雰囲気下において600℃〜1000℃で数時間保持することにより、磁石粉末43を構成する各磁石粒子の再生処理を行う。更に、再生された磁石粉末44を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】磁性材料を、低コストで、かつ、作業性および生産性よく製造することのできるアモルファス金属、および、そのアモルファス金属を用いて得られる磁性材料を提供すること。
【解決手段】希土類元素、鉄およびホウ素を含有するアモルファス金属において、希土類元素の原子割合を、22〜44原子%の範囲とし、ホウ素の原子割合を、6〜28原子%の範囲とする。また、このようなアモルファス金属を、その結晶化温度より30℃低い温度以上の温度で、または、アモルファス金属がガラス遷移現象を示す場合は、ガラス遷移温度以上の温度で、熱処理することにより、磁性材料を得る。 (もっと読む)


【課題】焼結時における単磁区粒子径を有する磁石粒子の粒成長を抑制するとともに、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】単磁区粒子径に粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。 (もっと読む)


【課題】 アルミニウムまたはその合金の蒸着被膜が優れた密着性をもって表面に形成されてなる希土類系永久磁石の製造方法を提供すること。
【解決手段】 蒸着槽内において抵抗加熱方式によって加熱された溶融蒸発部にワイヤー状のアルミニウムまたはその合金の蒸着材料を連続供給しながら蒸発させることで、希土類系永久磁石の表面にアルミニウムまたはその合金の蒸着被膜を形成する際、蒸着処理を開始してから終了するまでの間の磁石の温度上昇勾配を10℃/分以下に制御して蒸着処理を行うことを特徴とする。 (もっと読む)


【課題】 磁性粉末の配向を容易に生じさせることができ、高いBrを有する希土類ボンド磁石を得ることが可能な希土類ボンド磁石の製造方法を提供すること。
【解決手段】 好適な実施形態の希土類ボンド磁石の製造方法は、希土類元素を含む組成を有しており且つ水素化分解・脱水素再結合法によって得られた磁性粉末を含有する原料粉末を、80〜200℃で加熱しながら磁場中で成形して成形体を得る成形工程と、成形体に樹脂を含浸させる含浸工程と、樹脂を硬化させる硬化工程とを有する。 (もっと読む)


【課題】粉砕後の磁石粉末を加熱することによって、磁石粒子の表面を再生し、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、溶媒中でビーズミルにより粉砕し、その後、乾燥した磁石粉末を低酸素雰囲気下において600℃〜1000℃で数時間保持することにより、磁石粉末43を構成する各磁石粒子の再生処理を行う。更に、再生された磁石粉末を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】粉砕後の磁石粉末を加熱することによって、磁石粒子の表面を再生し、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物とともに溶媒中でビーズミルにより粉砕し、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末を低酸素雰囲気下において600℃〜1000℃で数時間保持することにより、磁石粉末43を構成する各磁石粒子の再生処理を行う。更に、再生された磁石粉末を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


61 - 80 / 275