説明

Fターム[5E040NN18]の内容

硬質磁性材料 (8,571) | 数値限定の対象 (1,979) | 製造、処理方法、装置 (486) | 温度 (275)

Fターム[5E040NN18]に分類される特許

161 - 180 / 275


【課題】重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を供給しつつ、焼結磁石体を加熱し、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】熱処理による規則化後に有機スルホン酸塩やSiOなどの化学剤を除去する工程を必要としない規則化された磁性ナノ粒子の製造方法を提供する。
【解決手段】磁性ナノ粒子を規則化温度以上の温度で熱処理し、得られた、規則化された磁性ナノ粒子が凝集した粒子を機械的粉砕によって微細化する規則化された磁性ナノ粒子の製造方法。 (もっと読む)


【課題】酸素量1500質量ppm以下の希土類合金粉末の乾式プレスを行い、酸化耐性に優れたR−Fe−B系希土類磁石を製造する。
【解決手段】本発明のR−Fe−B系希土類磁石の製造方法は、希土類含有量が27.5質量%〜30.5質量%であり、かつ酸素含有量1500質量ppm以下の希土類合金粉末を乾式プレス法によって圧縮成形し、それによって成形体を作製するプレス工程と、前記成形体の表面から油剤を前記成形体に含浸させる工程と、前記成形体を焼結させる工程とを包含する。 (もっと読む)


【課題】均一な厚みの希土類合金鋳造板及びその製造方法を提供する。
【解決手段】本発明は、板厚の平均値がDであり、その板厚分散値がσである希土類合金鋳造板において、平均値Dは0.1mm〜1.0mmの範囲であり、少なくとも80%の希土類合金鋳造板の厚さが[D−0.1mm、D+0.1mm]の範囲にあり、σ≦0.015mmであることを特徴とする。この希土類合金は、Sc、Yを含めた17種の希土類元素の1種または2種以上であるRと、Fe以外の遷移元素である、Al、Ga、In、C、N、Si、Ge、Sn、Pb、Mg、Caの中の1種または2種以上であるMと、ホウ素であるBとからなる、R−(Fe,M)−B系の組成であり、Rの含有量が26.0〜50.0wt%、Mの含有量が0〜10.0wt%、Bの含有量が0〜1.5wt%、残部がFe及び不可避不純物からなる。 (もっと読む)


【課題】 NdFe14B系磁石よりも温度特性に優れ、SmFe17よりも飽和磁化の高い永久磁石とその製造方法と、それに用いられる永久磁石材料とを提供すること。
【解決手段】 永久磁石材料は、SmFe17−x系磁石粉末(但し,MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiから選ばれる少なくとも1種以上,x=0〜3,y=1〜4)を10〜95質量%含有し、かつ、飽和磁化の値が単体で1.4T以上を示す強磁性体を90〜5質量%含有する。永久磁石は、永久磁石材料に結合剤を混合して固化することで得られる。 (もっと読む)


【課題】 NdFe14B系磁石よりも温度特性に優れ、SmFe17ボンド磁石よりも飽和磁化の高い、磁気特性に優れた永久磁石および、その製造方法とそれに用いられる永久磁石材料を提供すること。
【解決手段】 永久磁石は、MnBi粉末とSmFe17−x系磁石粉末(但し、MはMn,Co,Zr,Al,Ga,Ta,Nb,Tiの内から選ばれる、少なくとも一種類以上,x=0〜3,y=1〜4)を含み、前記MnBiの含有量が総重量の8質量%以上、50質量%以下の範囲である。 (もっと読む)


【課題】金属ガラスとして安定的に存在することができ、低い周波数から高い周波数において優れた磁気特性を示すことができるCo基金属ガラス合金、かかるCo基金属ガラス合金で構成された高性能の磁心、および、この磁心を備えた高性能の電磁変換機および時計を提供すること。
【解決手段】電磁変換機2は、磁心1と、磁心1の巻線部40の周囲に複数層にわたって巻き付けられた導線(コイル)43とを有している。この磁心1は、Fe、B、SiおよびNbを含み、Feの含有率が2原子%以上かつ8原子%以下、Bの含有率が23原子%以上かつ27原子%以下、Siの含有率が1原子%以上かつ3原子%以下、Nbの含有率が0.5原子%以上かつ4原子%未満であることを特徴とするCo基金属ガラス合金で構成されている。 (もっと読む)


【課題】オキシ水酸化鉄粒子の表層にAlを偏在させることのできるオキシ水酸化鉄粒子の処理方法を提供する。
【解決手段】オキシ水酸化鉄粒子1が分散された処理液にアルミン酸化合物を添加する工程と、アルミン酸化合物が添加された処理液を、0.8〜10kgf/cmの圧力下、80〜150℃の温度で水熱処理を行う工程と、を備えることを特徴とするオキシ水酸化鉄粒子1の処理方法。水熱処理の際に、アルミン酸化合物からアルミン酸イオンが生成され、このアルミン酸イオンがオキシ水酸化鉄粒子1の表層に浸入する。 (もっと読む)


磁気熱交換用構造体及びその製造方法が提供される。反応焼結磁気構造体,外被と少なくとも1つのコアとを含む複合構造体,及び2つ以上の複合構造体を含む積層構造体が提供される。各構造体は,(La1−a)(Fe1−b−c13−dを含む。ここで,0=a=0.9,0=b0.2,0.05=c=0.2,−1=d=+1,0=e=3であり,Mは,Ce,Pr,及びNdの1つ以上の元素であり,Tは,Co,Ni,Mn,及びCrの1つ以上の元素であり,Yは,Si,Al,As,Ga,Ge,Sn,及びSbの1つ以上の元素であり,Xは,H,B,C,N,Li,及びBeの1つ以上の元素である。 (もっと読む)


【課題】極めて粒子サイズが小さく、かつ球状ないし楕円状の形状であるにもかかわらず、高い保磁力狭い保磁力分布を有する窒素含有磁性粉末の製造方法およびこの磁性粉末を用いた保磁力分布の狭い磁気記録媒体を提供する。
【解決手段】少なくとも鉄および窒素を構成元素とし、かつ少なくともFe16N2相を含む平均粒子サイズが10〜20nmの球状ないし楕円状の磁性粉末であって、さらに希土類元素、アルミニウムおよび/またはシリコンを含有する窒化鉄磁性粉末の製造において、原料となるゲータイト粒子を作製後、このゲータイト粒子を予め水熱処理に付すことにより、粒子サイズ分布が狭くて表面の滑らかなゲータイト粒子が得られる。このゲータイト粒子を原料に用いた窒化鉄磁性粉末は保磁力分布が狭くなり、磁気塗膜としたときにSFDが良好となる。 (もっと読む)


【課題】 大気開放時に、焼結磁石の結晶粒界相にDy、Tbが拡散した永久磁石を取り出すときに、永久磁石の表面が着色し、磁気特性が低下することを防止する。
【解決手段】 真空中で処理室20内に鉄−ホウ素−希土類系の焼結磁石を配置して所定温度に加熱すると共に、同一または他の処理室に配置したDy、Tbの少なくとも一方を含有する金属蒸発材料を加熱して蒸発させ、この蒸発したDy、Tbの金属原子を、焼結磁石表面への供給量を調節して付着させ、この付着した金属原子を、焼結磁石表面に金属蒸発材料からなる薄膜が形成される前に焼結磁石の結晶粒界相に拡散させる。次いで、真空下の前記処理室内に、大気より酸素濃度を低くした不活性ガスを導入し、Dy、Tbの少なくとも一方が結晶粒界相に拡散した焼結磁石表面及び処理室内を酸化させた後、大気開放する。 (もっと読む)


【課題】Tg、Tx、Tmが比較的低く、柔軟性に優れた磁気シートに適したFe基非晶質磁性合金及びそれを用いた磁気シートを提供すること。
【解決手段】本発明のFe基非晶質磁性合金は、5原子%以下の低アニール化促進元素Mと、10原子%以下のNiとを含有することを特徴とする。また、本発明の磁気シートは、マトリクス材料と、このマトリクス材料に含まれる、5原子%以下の低アニール化促進元素Mと、10原子%以下のNiとを含有するFe基非晶質磁性合金とを含むことを特徴とする。 (もっと読む)


【目的】磁束密度の低下を抑えつつ保磁力が高い希土類磁石及びその製造方法を提供すること。
【解決手段】希土類磁石Mは、R114B相(R1は希土類元素(但し、Dy及びTbを除く)から選ばれる少なくとも1種、Tは遷移金属元素から選ばれる少なくとも1種)を主相とする結晶粒1からなり、結晶粒1は、その結晶粒界近傍3にR214B相(R2は重希土類元素から選ばれるいずれか1種)が形成され、結晶粒1の粒径が1μm以下である。 (もっと読む)


【課題】磁場顆粒材を用いて製造されるフェライト磁石の磁気特性を向上することのできるフェライト磁石の製造方法を提供することを目的とする。
【解決手段】フェライト磁石の原料粉末を、磁界を印加しながら加圧成形することで、予備成形体を得る。この予備成形体を解砕して得た顆粒材を、磁界を印加しながら加圧成形して本成形体を得て、これを焼成することで、フェライト磁石を製造する。このとき、予備成形工程に先立ち、粒子の配向性を向上させるための第一添加剤としてオクタン酸またはヘキサン酸を原料粉末に添加するようにし、予備成形工程における磁場顆粒材の配向性を向上させる。 (もっと読む)


【課題】球状シリカ系メソ多孔体の内部に磁性ナノ粒子を担持させた磁性材料であって、前記磁性ナノ粒子に強磁性を発現させることが可能な磁性材料及びその磁性材料を効率よく製造することが可能な磁性材料の製造方法を提供する。
【解決手段】平均粒径が0.01〜3μmであり且つ中心細孔直径が2.6nm以上である球状シリカ系メソ多孔体と、該球状シリカ系メソ多孔体の内部に担持された強磁性ナノ粒子と、を備える磁性材料。該強磁性ナノ粒子が、強磁性を有する金属の単体、CuAu型強磁性規則合金、CuAu型強磁性規則合金及び希土類系強磁性合金からなる群から選択される。 (もっと読む)


【課題】比較的低いCo組成で、Dy拡散処理などの複雑な方法を採用することなく、高い飽和磁束密度および高い保磁力、良好な角形性を満たす磁石粉末を提供する。
【解決手段】(Nd、Pr)−Dy−Fe−Co−B系原料合金の微粉末を準備し(工程A)、この微粉末を加熱し、500℃未満の温度域で水素圧力100kPa以上300kPa以下で微粉末に水素を吸蔵させて粒子にクラックを導入し、500℃以上の温度域において真空または不活性ガス雰囲気中で更に昇温した後、750℃以上1000℃未満の温度で水素を導入する(工程B)。次に、800℃以上900℃未満の温度、水素圧力100kPa以上300kPa以下の圧力で3時間以上8時間未満の熱処理を行った(工程C)後、800℃以上900℃未満の温度、水素分圧10kPa以下の圧力で30分以上8時間未満の熱処理を行い(工程D)、冷却する(工程E)。 (もっと読む)


【課題】鉄基希土類永久磁石の耐食性を高める。
【解決手段】本発明の鉄基希土類永久磁石は、硬磁性相の平均粒径が300nm以下のナノ結晶からなり、その組成式は(Fe1-nCon100-x-y-z-k-l-mNikxyCrzTilm(但し、QはBおよびCからなる群から選択された元素、Rは一種以上の希土類元素、MはZr、Mo、Cu、Zn、Sn、Pb、In、Nb、Hf、TaおよびWからなる群から選択された少なくとも一種の元素)で表現される。組成比率x、y、z、k、l、mおよびnは、それぞれ、4≦x≦14原子%、5≦y≦9原子%、4≦z≦10原子%、0.5≦k≦5原子%、3.5≦l≦8原子%、0≦m≦5原子%、および0≦n≦1を満足する。 (もっと読む)


【課題】窒化量が均一であり、かつその窒化量における磁気特性が良好なものである希土類磁石粉末の製造方法および希土類ボンド磁石を提供する。
【解決手段】希土類元素および鉄を含む組成の磁石粉末を窒化する希土類磁石粉末の製造方法であって、前記磁石粉末に過剰に窒素を侵入させる過窒化工程と、前記磁石粉末に過剰に含まれる窒素を排出する過剰窒素排出工程とを含む製造方法。および前記製造方法によって製造される磁石粉末を用いて得られる希土類ボンド磁石。 (もっと読む)


【課題】煩雑で粒径分布コントロールも困難な逆ミセル法を経ることなく、既存の粉末原料を用いてε−Fe23結晶を生成させる手法を提供する。
【解決手段】オキシ水酸化鉄(α−FeOOH)の粒子を水蒸気が混合された水素ガス雰囲気等の弱還元雰囲気下において300〜600℃の範囲の温度で熱処理することにより立方晶酸化鉄を生成させる熱処理工程Aと、熱処理工程Aで得られた粒子を大気等の酸化雰囲気下において700〜1300℃の範囲の温度で熱処理することにより立方晶酸化鉄からε−Fe23結晶を生成させる熱処理工程Bを有するε−Fe23結晶の製法が提供される。上記熱処理工程Aと熱処理工程Bでは、いずれもSi酸化物に覆われた状態の粒子に対して熱処理を施すことが望ましい。 (もっと読む)


【課題】 高い電気抵抗が付与されているとともに優れた磁気特性を発揮する高抵抗希土類系永久磁石とその製造方法を提供すること。
【解決手段】 本発明の高抵抗希土類系永久磁石は、希土類フッ化物を絶縁層として用い、磁石組成を最適化することで、相対密度が98%以上、固有保磁力が800kA/m以上、体積抵抗率が2μΩm以上という優れた特性を有する。 (もっと読む)


161 - 180 / 275