説明

Fターム[5F003BM02]の内容

バイポーラトランジスタ (11,930) | 構成材料 (828) | 3−5族 (514)

Fターム[5F003BM02]の下位に属するFターム

三元以上 (275)

Fターム[5F003BM02]に分類される特許

101 - 120 / 239


本発明は、装置10であって、前表面14及び後表面24を有する基板12と、前記基板の前記前表面に設けられる半導体要素16と、第1不動態層18と、前記基板の前記後表面に設けられる第2不動態層22と、を含む、装置に関する。本発明は、このような装置を製造する方法にも関する。
(もっと読む)


トランジスタデバイス(600)の製造方法であって、この製造方法が、基板(102)中に溝(106)を形成するステップと、この溝(106)を電気絶縁材料(202)により部分的にのみ充填するステップと、部分的にのみ充填された溝(106)を介して前記トランジスタデバイス(600)のバイポーラトランジスタ(608)のコレクタ領域(304)にインプラント処理するステップとを有するトランジスタデバイスの製造方法を提供する。
(もっと読む)


(例えばシリコン)バイポーラデバイス(40、100、100’)の高周波性能は、外部ベースコンタクト(46)とコレクタ(44、44’、44”)との間の容量結合(Cbc)の低減により向上される。外部ベースコンタクト(46)をコレクタ(44、44’、44”)の外周部(441)から隔てるように、製造中に誘電体突出部(453、453’)が作製される。誘電体突出部(453、453’)は、外部ベースコンタクト(46)を真性ベース(472)に結合するトランジション領域(461)の下に位置する。デバイス製造中に、多層誘電体スタック(45)が真性ベース(472)に隣接して形成され、真性ベース(472)から外部ベースコンタクト(46)へのトランジション領域(461)を形成可能なアンダーカット領域(457、457’)の同時作製が可能にされる。キャビティ(457、457’)内に形成されたトランジション領域(461)が、それをコレクタ(44、44’、44”)の外周部(441)から隔てる誘電体突出部(453、453’)の上に位置することで、ベース−コレクタ接合容量(Cbc)が低減される。デバイスのfMAXが有意に上昇される。
(もっと読む)


【課題】非選択エピタキシャル法により半導体層を形成しても、エミッタとベースとを確実に接続して高い信頼性を確保することができる半導体装置及びその製造方法を提供する。
【解決手段】非選択エピタキシャル成長法により、ベース開口部8の内壁を覆うようにシリコン酸化膜7の全面にSiGe膜9を成長させる。このときの成膜条件としては、ベース開口部8内において、底部9aが単結晶からなり、側壁部9b等のその他の部位が多結晶となると共に、側壁部9bの膜厚が底部9aの膜厚の1.5倍以下になる成膜条件を選択する。このような非選択エピタキシャル成長では、原料ガスとして、モノシラン、水素、ジボラン及びゲルマンを用いる。このとき、モノシラン及び水素の各流量は、夫々20sccm、20slmとする。また、成長温度を650℃、ジボランの流量を75sccmに設定し、ゲルマンの流量を35sccmに設定する。 (もっと読む)


【課題】追加部材を形成することなく表面保護膜の端部での剥がれを防止でき、チップエッジからの水分浸入を防止して信頼性(耐湿性)を向上できる半導体装置を提供する。
【解決手段】この半導体装置では、エピタキシャル層4Aを覆う表面保護膜11が高抵抗GaAs層(素子間絶縁層)5の外周側の外周エピタキシャル層4A−1の一部を覆って上記一部に接しているので、表面保護膜11の端部の密着性が向上して外部からの水分侵入を防止できる。 (もっと読む)


【課題】静電気放電に耐久性を有するヘテロ接合バイポーラトランジスタ素子を提供する。
【解決手段】静電気放電耐久性を有するヘテロ接合バイポーラトランジスタ(HBT)およびシステム、およびその製造方法が開示されている。静電気放電耐久性を有するHBT素子は、サブコレクタ層と、サブコレクタ層の上に形成されたコレクタ層と、コレクタ層の上に形成されたベース層と、ベース層の上に形成されたエミッタ層と、エミッタ層の上に形成された遷移層と、遷移層の上に形成されたエミッタキャップ層と、を備える。 (もっと読む)


【課題】犠牲層を介してInP系のデバイスを形成したときに、犠牲層としてAlAs単層を用いたときのデバイス特性よりも良好なデバイス特性を得ることができ、かつ、犠牲層をエッチングする際に、デバイス層もエッチングされてしまう虞のない半導体デバイスの製造方法を提供する。
【解決手段】保護膜35の平坦面35Aに支持基板10を接合もしくは接着したのち、InPと疑似格子整合するInAlAsからなる犠牲層42を、フッ酸を用いて選択的に除去することにより、InP基板41を、InP系のデバイス層21を含む支持基板10から剥離する。 (もっと読む)


【課題】 エッチング量を工程内で測定し、フィードバックをかけることにより、エッチング量のばらつきを無くすことを実現する。
【解決手段】 半導体層が選択エッチングされることにより半導体素子が形成される半導体素子領域と、前記半導体層と同じ材質からなり、前記半導体素子が選択エッチングされた量を検査するモニタ用半導体素子が設けられたモニタ領域とを有することを特徴とする。 (もっと読む)


【課題】コレクタ電流が流れている状態でのオン抵抗および耐圧を両方同時に向上させることが可能なHBTを提供する。
【解決手段】n型のGaAsサブコレクタ層101と、GaAsサブコレクタ層101上に形成されたInGaPコレクタ層102と、InGaPコレクタ層102上に形成されたn型のGaAsスペーサ層103と、GaAsスペーサ層103上に形成されたn型のGaAs第2コレクタ層104およびGaAs第1コレクタ層105と、GaAs第1コレクタ層105上に形成されたp型のGaAsベース層110と、GaAsベース層110上に形成されたn型のInGaPエミッタ層111とを備え、GaAsサブコレクタ層101は、GaAs第2コレクタ層104およびGaAs第1コレクタ層105より高いキャリア濃度を有し、GaAs第2コレクタ層104はGaAs第1コレクタ層105より高いキャリア濃度を有する。 (もっと読む)


【課題】コレクタ電流が流れている状態でのオン抵抗および耐圧を両方同時に向上させることが可能なHBTを提供する。
【解決手段】n型GaAsサブコレクタ層101と、GaAsサブコレクタ層101上に形成されたInGaPコレクタ層102と、InGaPコレクタ層102上に形成されたn型GaAsコレクタ層103と、GaAsコレクタ層103上に形成されたp型GaAsベース層104と、GaAsベース層104上に形成されたn型GaAsエミッタ層105とを備え、GaAsサブコレクタ層101のキャリア濃度は、GaAsコレクタ層103のキャリア濃度より高く、InGaPコレクタ層102とGaAsサブコレクタ層101との間には、p型GaAsスペーサ層110が挿入される。 (もっと読む)


【課題】トレードオフの関係にあるHBTの特性上のメリットとHFETの特性上のメリットとを両立することが可能な半導体装置及びその製造方法を提供する。
【解決手段】Bi−HFETであって、HBTは、順次積層されたサブコレクタ層107、GaAsコレクタ層108、GaAsベース層109及びInGaPエミッタ層110を有し、サブコレクタ層107は、GaAs外部サブコレクタ領域107aと、GaAs外部サブコレクタ領域107a上に位置するGaAs内部サブコレクタ領域107bとを有し、GaAs外部サブコレクタ領域107a上には、メサ状のコレクタ部830と、コレクタ電極203とが離間して形成され、HFETは、GaAs外部サブコレクタ領域107aの一部により構成されたGaAsキャップ層105と、GaAsキャップ層105上に形成されたソース電極304及びドレイン電極305とを有する。 (もっと読む)


【課題】 偶発的に生成される層を異方性エッチングすることにより、エッチングを行う時間によるエッチングのばらつきを改善し、かつ任意の層を異方性エッチングで一定量エッチングすることにより、回り込みエッチングの制御性の向上を図ることを実現する。
【解決手段】 第1の層の表面に第2の層を積層したものに、前記第1の層を横方向にエッチングする半導体素子の製造方法において、前記第2の層側から前記第1の層側に向かって縦方向に異方性エッチングを行うステップと前記第1の層を横方向に等方性エッチングを行うステップとを有することを特徴とする。 (もっと読む)


【課題】二酸化ケイ素や窒化ケイ素など非常に薄い低応力誘電体材料と半導体層とで形成された可とう性の膜で集積回路(24、26、28、...30)を製造する汎用手法を提供する。
【解決手段】膜(36)の半導体層中に半導体デバイス(24、26、28...30)を形成する。最初に、標準厚さの基板(18)から半導体膜層(36)を形成し、次いで、基板の薄い表面層をエッチングまたは研磨する。他のバージョンでは、ボンディングされた従来の集積回路ダイ用の支持および電気的相互接続として可とう性膜を使用し、膜中の複数の層に相互接続部を形成する。1つのそのような膜に複数のダイを接続することができ、膜は次いでマルチチップ・モジュールとしてパッケージされる。 (もっと読む)


【課題】移動度が高いトランジスタ素子を提供する。
【解決手段】基板2上に高電子移動度トランジスタ(HEMT)3が形成され、そのHEMT3上にヘテロバイポーラトランジスタ(HBT)4が形成されたトランジスタ素子1において、HEMT3に、キャリア濃度が1×1019cm-3以下である電子供給層6,10を備える。 (もっと読む)


【課題】素子の個数を減らして実装面積を小さくすることができる保護回路を得る。
【解決手段】ダイオードD11(第1ダイオード)のアノードが端子Tに接続されている。ダイオードD12(第2ダイオード)のアノードがGNDに接続され、カソードがダイオードD11のカソードに接続されている。トランジスタQ11のコレクタが端子Tに接続され、エミッタがGNDに接続されている。ダイオードD11,D12のカソードからトランジスタQ11のベースに向けて順方向にダイオードD13〜D15(第3ダイオード)が直列に接続されている。 (もっと読む)


【課題】安価な、また、放熱特性に優れたSi基板を用いて、良質なGaAs系の結晶薄膜を得る。
【解決手段】Siの基板と、基板上に結晶成長され、孤立した島状に形成されたGe層と、Ge層の上に結晶成長され、Pを含む3−5族化合物半導体層からなるバッファ層と、バッファ層の上に結晶成長された機能層と、を備える半導体基板を提供する。Ge層は、アニールした場合に、アニールの温度および時間において結晶欠陥が移動する距離の2倍を越えない大きさの島状に形成する。あるいはGe層は、アニールした場合に、アニールの温度において基板であるSiとの熱膨張係数の相違によるストレスが剥離を発生させない大きさの島状に形成する。 (もっと読む)


【課題】安価な、また、放熱特性に優れたSi基板を用いて、良質なGaAs系の結晶薄膜を得る。
【解決手段】Siの基板と、基板の上に形成され、結晶成長を阻害する阻害層とを備え、阻害層は、基板の一部を覆う被覆領域と、被覆領域の内部に基板を覆わない開口領域とを有し、さらに開口領域に結晶成長されたGe層と、Ge層上に結晶成長された機能層と、を備える半導体基板を提供する。当該半導体基板において、Ge層は、結晶欠陥が移動できる温度および時間でアニールされることにより形成されてよい。 (もっと読む)


【課題】安価な、また、放熱特性に優れたSi基板を用いて、良質なGaAs系の結晶薄膜を得る。
【解決手段】単結晶Siの基板と、基板の上に形成され、開口領域を有する絶縁層と、開口領域の基板上にエピタキシャル成長されたGe層と、Ge層の上にエピタキシャル成長されたGaAs層と、を備え、Ge層は、超高真空の減圧状態にできるCVD反応室に基板を導入し、原料ガスを熱分解できる第1温度で第1のエピタキシャル成長を実施し、第1温度より高い第2温度で第2のエピタキシャル成長を実施し、第1および第2のエピタキシャル成長を実施したエピタキシャル層をGeの融点に達しない第3温度で第1のアニールを実施し、第3温度より低い第4温度で第2のアニールを実施して形成された半導体基板を提供する。 (もっと読む)


【課題】安価な、また、放熱特性に優れたSi基板を用いて、良質なGaAs系の結晶薄膜を得る。
【解決手段】Siの基板と、基板上に結晶成長され、孤立した島状に形成されたGe層と、Ge層上に結晶成長された機能層と、を備える半導体基板を提供する。Ge層は、アニールした場合に、アニールの温度および時間において結晶欠陥が移動する距離の2倍を越えない大きさの島状に形成する。あるいはGe層は、アニールした場合に、アニールの温度において基板であるSiとの熱膨張係数の相違によるストレスが剥離を発生させない大きさの島状に形成する。 (もっと読む)


【課題】電流利得、高周波特性が良好であり、かつ微細化することができるようにする。
【解決手段】基板1上に、コレクタ層3、ベース層4、エミッタ層およびキャップ層9を順次積層する。エミッタ層が、ベース層4に接したバリア層14とキャップ層9に接したキャリア供給層13との積層構造から形成されている。バリア層14のバンドギャップが、キャリア供給層13のバンドギャップよりも大きく、バリア層14とキャリア供給層13とが、タイプI型のヘテロ接合を形成している。キャリア供給層13を構成する半導体が、不純物添加によって縮退している。 (もっと読む)


101 - 120 / 239