説明

Fターム[5F048BG01]の内容

MOSIC、バイポーラ・MOSIC (97,815) | 絶縁体分離 (5,896) | 材料 (562)

Fターム[5F048BG01]の下位に属するFターム

PSG (79)
Si3N4 (216)

Fターム[5F048BG01]に分類される特許

1 - 20 / 267


【課題】能動素子または受動素子が一つの半導体基板に複数個形成されてなる半導体装置およびその製造方法であって、両面電極素子についても絶縁分離と集積化が可能であり、安価に製造することのできる半導体装置およびその製造方法を提供する。
【解決手段】半導体基板20が、当該半導体基板20を貫通する絶縁分離トレンチTに取り囲まれて、複数のフィールド領域F1〜F8に分割されてなり、複数個の能動素子31〜33,41〜43または受動素子51,52が、それぞれ異なるフィールド領域F1〜F8に分散して配置されてなり、二個以上の素子が、当該素子に通電するための一組の電極dr1,dr2が半導体基板20の両側の表面S1,S2に分散して配置されてなる、両面電極素子41〜43,51,52である半導体装置100とする。 (もっと読む)


【課題】低耐圧トランジスタ特性への影響なく、耐圧特性および動作特性が安定した高耐圧素子を組み込む。
【解決手段】同一の半導体基板2上に、トレンチ分離絶縁膜(プラズマ酸化膜6)によって素子分離された高耐圧素子20aと低耐圧素子20bを設けた半導体装置1において、高耐圧素子形成領域におけるトレンチ分離絶縁膜(プラズマ酸化膜6)の表面高さが低耐圧素子形成領域におけるトレンチ分離絶縁膜(プラズマ酸化膜6)の表面高さよりも低く形成されている。高耐圧素子形成領域におけるトレンチ分離絶縁膜(プラズマ酸化膜6)の表面高さが、高耐圧素子20aのチャネルを形成する半導体基板2の表面に対して−10〜60nm(より好ましくは−10〜30nm)だけ高くなるように形成されている。 (もっと読む)


【課題】マイクロコンタクト印刷の版を凹版として使用し、微細な電気回路と高生産性のCMOS半導体装置の製造方法を提供するものである。
【解決手段】Pチャネル型電界効果トランジスタのPチャネル領域101とNチャネル型電界効果トランジスタのNチャネル領域102とを、凹版601を用いた印刷によって形成するようにし、凹版601が、第1凹部602と第2凹部603とを備え、インクジェット法によって、第1凹部602にP型半導体インク111を供給し、第2凹部603にN型半導体インク112を供給する工程と、インク供給後に、凹版601を被印刷基板001に押しつけて、第1凹部602に供給したP型半導体インク111と第2凹部603に供給したN型半導体インク112とを一括して被印刷基板001に転写する工程と、を含むCMOS半導体装置の製造方法を提供する事により、上記課題を解決する。 (もっと読む)


【課題】新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】直列に接続されたメモリセルと、メモリセルを選択して第2信号線及びワード線を駆動する駆動回路と、書き込み電位のいずれかを選択して第1信号線に出力する駆動回路と、ビット線の電位と参照電位とを比較する読み出し回路と、書き込み電位及び参照電位を生成して駆動回路および読み出し回路に供給する、電位生成回路と、を有し、メモリセルの一は、ビット線及びソース線に接続された第1のトランジスタと、第1、第2の信号線に接続された第2のトランジスタと、ワード線、ビット線及びソース線に接続された第3のトランジスタを有し、第2のトランジスタは酸化物半導体層を含み、第1のトランジスタのゲート電極と、第2のトランジスタのソース電極またはドレイン電極の一方が接続された、多値型の半導体装置。 (もっと読む)


【課題】チャネル形成領域に対しトランジスタの電流駆動能力を向上させる方向に応力をかけ、さらに電流駆動能力が向上し、性能が向上された半導体装置を提供する。
【解決手段】半導体基板1aの活性領域1cが素子分離絶縁膜2で区画され、チャネル形成領域、ゲート絶縁膜、ゲート電極8a、ソース・ドレイン領域及び被覆応力膜を有するNTrを有し、ソース・ドレイン領域の両側部に位置する素子分離絶縁膜2aの表面は、ソース・ドレイン領域の表面より低い位置に形成されており、ゲート電極8a、活性領域1c、及び表面がソース・ドレイン領域の表面より低い位置に形成された素子分離絶縁膜2aを被覆して、チャネル形成領域に対し引張応力を印加する被覆応力膜が形成されている構成とする。 (もっと読む)


【課題】チャネル形成領域に対しトランジスタの電流駆動能力を向上させる方向に応力をかけ、さらに電流駆動能力が向上し、性能が向上された半導体装置を提供する。
【解決手段】半導体基板(1a,1b)の活性領域(1c,1d)が素子分離絶縁膜(2,6a)で区画され、チャネル形成領域、ゲート絶縁膜、ゲート電極(8a,8b)、ソース・ドレイン領域及び被覆応力膜を有するNTrとPTrを有し、活性領域におけるゲート長方向が<100>方向であり、素子分離絶縁膜としてNTrにおけるソース・ドレイン領域の両端部に第1の引張応力膜6aが形成され、ソース・ドレイン領域の両端部以外に第1の圧縮応力膜2が形成され、PTrの素子分離絶縁膜は第1の圧縮応力膜2が形成され、被覆応力膜としてNTrに第2の引張応力膜が形成され、PTrに第2の圧縮応力膜が形成されている構成とする。 (もっと読む)


【課題】待機電力を十分に低減した新たな半導体装置を提供することを目的の一とする。
【解決手段】第1の電源端子と、第2の電源端子と、酸化物半導体材料を用いたスイッチ
ングトランジスタと、集積回路と、を有し、前記第1の電源端子と、前記スイッチングト
ランジスタのソース端子またはドレイン端子の一方は電気的に接続し、前記スイッチング
トランジスタのソース端子またはドレイン端子の他方と、前記集積回路の端子の一は電気
的に接続し、前記集積回路の端子の他の一と、前記第2の電源端子は電気的に接続した半
導体装置である。 (もっと読む)


【課題】オン抵抗を低減し、かつ高耐圧で駆動することが可能な半導体装置を提供する。
【解決手段】当該高耐圧トランジスタは、第1の不純物層PEPと、第1の不純物層PEPの内部に形成される第2の不純物層HVNWと、第2の不純物層HVNWを挟むように、第1の不純物層PEPの内部に形成される1対の第3の不純物層OFBおよび第4の不純物層PWと、第3の不純物層OFBから、第2の不純物層HVNWの配置される方向へ、主表面に沿って突出するように、第1の不純物層PEPの最上面から第1の不純物層PEPの内部に形成される第5の不純物層OFB2と、第2の不純物層HVNWの最上面の上方に形成される導電層GEとを備える。第4の不純物層PWにおける不純物濃度は、第3および第5の不純物層OFB,OFB2における不純物濃度よりも高く、第5の不純物層OFB2における不純物濃度は、第3の不純物層OFBにおける不純物濃度よりも高い。 (もっと読む)


【課題】ブートストラップ方式のドライブ回路を有する半導体装置において、ブートストラップダイオードの順バイアス時にp-基板側に流れるホールによるリーク電流を抑制することができる半導体装置を提供することにある。
【解決手段】ブートストラップダイオードDb下にSON構造の空洞3を形成し、ブートストラップダイオードDbとグランド電位(GND)となるGNDp領域4との間のn-エピ層2にその空洞3に達するフローティングp領域5を形成することで、外部のブートストラップコンデンサC1充電時のp-基板1へのホールによるリーク電流を抑えることができる。 (もっと読む)


【課題】ウェル給電領域の面積を縮小して、半導体装置の微細化を行う。素子形成領域間のウェル電位のばらつきを抑制する。分離部の幅を細くする。
【解決手段】半導体装置は、半導体基板の表面に形成され、底部がウェル領域内に位置する溝状の分離部を有する。分離部は、ウェル領域と電気的に接続された導体配線と、底部に導体配線を埋め込む絶縁膜とを有する。分離部に囲まれるようにして区画されたウェル領域の一部は素子形成領域を形成し、素子形成領域には半導体素子が配置される。 (もっと読む)


【課題】平板状空洞を形成する際におけるホール半径Rと、ホールとホールの最短距離Sのプロセスマージンを広げ、信頼性の高い半導体装置の製造方法を提供すること。
【解決手段】半導体基板1の表面にホール4を複数形成し、非酸化性雰囲気のアニール処理により、該半導体基板1の表面を半導体の表面マイグレーションを利用して平坦化し、基板内部に平板状空洞6を形成する際に、前記ホール4の開口部が閉じる前に半導体のソースガスを供給する。 (もっと読む)


【課題】半導体基板を貫通する貫通電極の周囲に形成される環状の絶縁分離部において、絶縁分離部を構成する酸化膜の応力により絶縁分離部周囲の半導体基板が変形する。
【解決手段】絶縁分離部の基板側に深さ方向に圧縮応力を与える第1の膜4を形成し、第1の膜4上に深さ方向に引張応力を与える第2の膜6膜を形成し、その際、第1及び第2の膜の膜厚を圧縮応力と引張応力とがほぼ釣り合うように調整する。 (もっと読む)


【課題】工程数を削減して生産性を向上できる構造の半導体装置およびその製造方法を提供する。
【解決手段】半導体装置の製造方法は、半導体層1にトレンチ20を形成する工程と、トレンチ2の内壁およびトレンチ2外の表面を覆うように半導体層1上に絶縁膜3を形成する工程と、トレンチ2を埋め尽くし、トレンチ2外の絶縁膜3上に堆積されるように導電性のポリシリコン膜4を形成する工程と、トレンチ2内、およびトレンチ2外の絶縁膜3上の所定領域にポリシリコン膜4が残るように、当該ポリシリコン膜4を選択的に除去するポリシリコンエッチング工程とを含む。 (もっと読む)


【課題】電子及び正孔の移動度を向上させたSOI構造のCMOSの提供
【解決手段】Si基板1上にシリコン窒化膜2及びシリコン酸化膜3を介して、歪みSi層6を挟み、左右にSiGe層5を有する構造からなる第1のエピタキシャル半導体層及び歪みGe層8を挟み、左右にSiGe層7を有する構造からなる第2のエピタキシャル半導体層が島状に絶縁分離されて設けられ、歪みSi層6には概略チャネル領域が形成され、SiGe層5には概略高濃度及び低濃度のソースドレイン領域(10、11、12,13)が形成された包囲型ゲート電極構造のNチャネルのMISFETと、歪みGe層8には概略チャネル領域が形成され、SiGe層7には概略高濃度のソースドレイン領域(14、15)が形成された包囲型ゲート電極構造のPチャネルのMISFETとから構成したCMOS。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】nチャネル型MISFET用のメタルゲート電極であるゲート電極GE1とpチャネル型MISFET用のダミーゲート電極GE2とを形成してから、nチャネル型MISFET用のソース・ドレイン領域とpチャネル型MISFET用のソース・ドレイン領域をそれぞれ形成する。その後、ダミーゲート電極GE2を除去し、ダミーゲート電極GE2が除去されたことで形成された凹部にpチャネル型MISFET用のメタルゲート電極を形成する。 (もっと読む)


【課題】ゲート絶縁膜をHigh−k材料で構成し、ゲート電極をメタル材料で構成するHK/MGトランジスタと、抵抗素子とを同一基板に有する半導体装置において、安定したHK/MGトランジスタの動作特性を得ることのできる技術を提供する。
【解決手段】TiN膜と多結晶Si膜との積層膜からなるHK/MGトランジスタのゲート電極を形成し、同様に、TiN膜と多結晶Si膜との積層膜からなる抵抗素子を形成した後、抵抗素子の側壁に形成したオフセットサイドウォール9aおよびサイドウォール9の一部を除去し、そのオフセットサイドウォール9aおよびサイドウォール9が除去された箇所から薬液を浸入させることによりTiN膜を除去して空洞18を形成し、多結晶Si膜のみからなる抵抗部RESを形成する。 (もっと読む)


【課題】I/O用バルク部とコアロジック用SOI部が混載されたバルク&SOIハイブリッド型CMISデバイスでは、閾値電圧制御の最適化のため多数のゲートスタックを用いる必要があり、プロセス及び構造が複雑になるという問題がある。
【解決手段】本願発明は、High−kゲート絶縁膜およびメタルゲート電極を有するSOI型半導体CMISFET集積回路装置において、いずれかのバックゲート半導体領域に不純物を導入することにより、対応する部分のMISFETの閾値電圧を調整するものである。 (もっと読む)


【課題】I/O用バルク部とコアロジック用SOI部が混載されたバルク&SOIハイブリッド型CMISデバイスでは、閾値電圧制御の最適化のため多数のゲートスタックを用いる必要があり、プロセス及び構造が複雑になるという問題がある。
【解決手段】本願発明は、High−kゲート絶縁膜およびメタルゲート電極を有するSOI型半導体CMISFET集積回路装置において、いずれかのバックゲート半導体領域に不純物を導入することにより、対応する部分のMISFETの閾値電圧を調整するものである。 (もっと読む)


【課題】ゲート絶縁膜をHigh−k材料で構成し、ゲート電極をメタル材料で構成するHK/MGトランジスタを有する半導体装置において、安定した動作特性を得ることのできる技術を提供する。
【解決手段】素子分離部2で囲まれた活性領域14に位置し、後の工程でコア用nMISのゲートGが形成される領域Ga1のみに、Nch用ゲートスタック構造NGを構成する積層膜を形成し、上記領域Ga1以外の領域NGa1には、Pch用ゲートスタック構造PGを構成する積層膜を形成する。これにより、コア用nMISのゲートGが形成される領域Ga1へ素子分離部2から引き寄せられる酸素原子の供給量を減少させる。 (もっと読む)


【課題】赤外線センサにおけるMOSトランジスタのしきい値のばらつきを小さくすることが可能な赤外線センサの製造方法を提供する。
【解決手段】半導体基板1の一表面側にシリコン酸化膜31とシリコン窒化膜32との積層膜を形成してから、シリコン窒化膜32のうち熱型赤外線検出部3の形成予定領域A1に対応する部分を残してMOSトランジスタ4の形成予定領域A2に対応する部分をドライエッチングにより除去する。その後、半導体基板1の一表面側に第1のイオン注入を行ってウェル領域41を形成してから、MOSトランジスタ4のしきい値電圧を制御するための第2のイオン注入を行う。ウェル領域を形成する工程では、シリコン酸化膜31のうちMOSトランジスタ4の形成予定領域A2に形成されている部分(シリコン酸化膜51)の一部をウェットエッチングにより除去してから、シリコン酸化膜31をマスクとして第1のイオン注入を行う。 (もっと読む)


1 - 20 / 267