説明

半導体装置及びその製造方法

【課題】半導体基板を貫通する貫通電極の周囲に形成される環状の絶縁分離部において、絶縁分離部を構成する酸化膜の応力により絶縁分離部周囲の半導体基板が変形する。
【解決手段】絶縁分離部の基板側に深さ方向に圧縮応力を与える第1の膜4を形成し、第1の膜4上に深さ方向に引張応力を与える第2の膜6膜を形成し、その際、第1及び第2の膜の膜厚を圧縮応力と引張応力とがほぼ釣り合うように調整する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置及びその製造方法に関し、詳しくは、半導体基板を貫通する貫通電極を有する半導体装置及びその製造方法に関する。
【背景技術】
【0002】
近年、半導体装置の高機能化、多様化に伴い、複数の半導体チップを縦方向に積層して集積化した半導体装置が提案されている。このような半導体装置では、各半導体チップの半導体基板を貫通する貫通電極(Through Silicon (又はSubstrate) Via:TSVと称す)によって各半導体チップ間の電気的導通を図るように構成されている。
【0003】
一方、TSVは半導体基板を貫通して形成されるために、半導体基板とTSV間の絶縁を図る必要がある。そこで、TSVの周りに環状の絶縁分離部(絶縁リングという)で素子形成領域の半導体層と分離することが提案されている。
【0004】
半導体基板とTSV間の絶縁を図る方法の一つとして、半導体基板主面から貫通電極形成用の孔を形成し、この孔の内壁に絶縁層を形成した後、絶縁層の内側の孔内に導電材料を埋め込んで貫通電極を形成する方法がある。この場合、絶縁リングは貫通電極と接して設けられる。
【0005】
また他の方法として、貫通電極と隔離された絶縁リングを形成する方法がある。この場合は、まず、半導体基板の主面に環状の溝を形成し、この環状の溝を絶縁材料で埋設して絶縁リングを形成する。次に、半導体基板の主面上に半導体素子を形成した後、裏面研削等を用いて半導体基板の厚みを薄くすることで絶縁リングの底部を半導体基板の裏面に露出させ、絶縁リングで囲まれた半導体基板裏面から貫通電極形成用の孔を形成して導電材料を埋設することで貫通電極を形成する。
【0006】
環状の溝は、例えば、深さ40〜50μm、幅2〜3μm(アスペクト比13〜25)で形成し、この溝内をカバレジ良く絶縁膜で埋設する必要がある。
【0007】
この溝への絶縁膜の埋設方法としては、CVD(Chemical Vapor Deposition)法やSOD(Spin On Dielectric)法などがある(例えば、特許文献1)。
【0008】
カバレジの良いCVD法としては、TEOS(テトラエトキシシラン)を用いた低圧CVD(Low Pressure CVD:LPCVD)法により酸化シリコン膜(TEOS-NSG(Non-doped Silicate Glass)膜)を形成し、さらに焼き締めを行う方法が挙げられる。
【0009】
また、環状の溝のアスペクト比の増加を抑えるために、幅広に形成した環状の溝にポリシリコン膜を溝を埋設しない膜厚で形成し、内側を熱酸化する方法が提案されている(特許文献2)。特許文献2の形成方法によれば、シリコン基板にリング状の分離溝(溝幅約5μm)を形成した後、CVD法により約2μmの多結晶シリコン膜をコンフォーマルに形成する。そして、この多結晶シリコン膜を熱酸化して厚さ約0.8μm程度の熱酸化シリコン膜を形成する。その後、CVD法により酸化シリコン膜を形成して、隙間を埋設する(以上、〔0021〕〜〔0025〕段落参照)。ここで、多結晶シリコン膜を約0.8μm程度の熱酸化シリコン膜を形成する工程では、溝内の両側壁で合わせて約1.6μm程度の熱酸化シリコン膜で埋設されたことになる。一般的な熱酸化では、約半分が元のシリコン側に形成され、残り半分は元のシリコンを膨張させる方向に形成される。従って、分離溝内に残る隙間は約200nm幅であり、これをCVD酸化シリコン膜で埋設することになる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2009−111061号公報
【特許文献2】特開2008−251964号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
通常、CVD酸化シリコン膜は成膜後焼き締められるが、焼き締められたCVD酸化シリコン膜は、体積収縮に伴い周囲のシリコン基板に対して深さ方向に引張応力を作用させる傾向がある。そして、このようなCVD酸化シリコン膜で溝内全てを埋設すると、図1(a)に示すように、引張応力によって絶縁リング周囲の基板が陥没し得ることが分かった。
【0012】
一方、熱酸化法のようにシリコンを酸化することにより溝内に埋設した酸化シリコン膜は、体積膨張により周囲のシリコン基板に対して深さ方向に圧縮応力を作用させる傾向がある。そして、このような酸化シリコン膜で絶縁リングの大部分を形成すると、図1(b)に示すように圧縮応力によって絶縁リング周囲の基板が隆起し得ることが分かった。これらの現象は、TSVと隔離された絶縁リングの場合に限定されず、TSVに接して形成される絶縁リングの場合にも起こり得る。
【0013】
上記のように、従来の絶縁リングの形成方法によると絶縁リング周囲のシリコン基板が変形する場合がある。絶縁リングはTSVと素子領域とを電気的に絶縁するために設けられるものであるから、絶縁リングの外側には素子領域が形成され、内側にはTSVが形成される。絶縁リング周囲のシリコン基板が変形すると、外側の素子領域および/または内側のTSVを正常に形成できなくなる場合がある。したがって、このようなシリコン基板の変形は、製造歩留まりの低下をもたらす。
【課題を解決するための手段】
【0014】
本発明では、絶縁リング周囲のシリコン基板の変形を抑制する方法が提供される。
【0015】
すなわち、本発明の一実施形態によれば、
半導体基板の主面に溝を形成する工程と、
前記溝内にシリコンを熱酸化して第1の酸化シリコン膜を形成する工程と、
前記半導体基板主面上に、前記第1の酸化シリコン膜と同じかそれよりも大きい膜厚の第2の酸化シリコン膜を成膜する工程と、
前記半導体基板の厚さ方向に見て前記主面の反対側に位置する裏面から前記半導体基板の厚みを減じることで前記溝の底部を露出させる工程と、
を有することを特徴とする半導体装置の製造方法、が提供される。
【0016】
また、本発明の別の実施形態によれば、
半導体基板の主面に溝を形成する工程と、
前記溝内にシリコンを熱酸化して第1の酸化シリコン膜を形成する工程と、
前記半導体基板主面上に、第2の酸化シリコン膜を成膜する工程と、
前記半導体基板の厚さ方向に見て前記主面の反対側に位置する裏面から前記半導体基板の厚みを減じることで前記溝の底部を露出させる工程と、
を備え、
前記第1の酸化シリコン膜は深さ方向に圧縮応力を与え、前記第2の酸化シリコン膜は深さ方向に引張応力を与え、前記第1及び第2の酸化シリコン膜は前記圧縮応力と前記引張応力とがほぼ釣り合うようにそれぞれの膜厚を調整して形成されることを特徴とする半導体装置の製造方法、が提供される。
【0017】
また、本発明のさらに別の実施形態によれば、
半導体基板と、
前記半導体基板を貫通する溝と、
前記溝の側壁上に2層以上積層した側壁膜と、
を備え、
前記側壁膜は、少なくとも
深さ方向に圧縮応力を与える第1の膜と、
深さ方向に引張応力を与える第2の膜と、
を含み、
第2の膜の膜厚は第1の膜の膜厚と同等かそれ以上の膜厚を有する半導体装置、が提供される。
【発明の効果】
【0018】
本発明の一実施形態によれば、半導体基板の主面に形成された溝の側壁上にシリコンよりなる層を熱酸化して得られる第1の酸化シリコン膜と、CVD法等により成膜した第2の酸化シリコン膜とを積層することで、第1の酸化シリコン膜による圧縮応力と第2の酸化シリコン膜による引張応力とを相殺することができる。
【図面の簡単な説明】
【0019】
【図1】従来技術の課題を説明する概念図である。
【図2】本発明の一実施形態に係る半導体装置の製造工程を示す工程断面図である。
【図3】本発明の一実施形態に係る半導体装置の製造工程を示す工程断面図であり、(b)は(a)の部分拡大図である。
【図4】本発明の一実施形態に係る半導体装置の製造工程を示す工程断面図である。
【図5】本発明の一実施形態に係る半導体装置の製造工程を示す工程断面図である。
【図6】本発明の一実施形態に係る半導体装置の製造工程を示す工程断面図である。
【図7】本発明の一実施形態に係る半導体装置を示す模式縦断面図(a)及び模式横断面図(b)である。
【図8】本発明を適用して形成した絶縁リング周囲の基板表面の凹凸状態を示すグラフである。
【図9】比較例になる絶縁リング周囲の基板表面の凹凸状態を示すグラフである。
【図10】本発明の一実施形態の変形例に係る半導体装置の製造工程を示す工程断面図であり、(b)は(a)の部分拡大図である。
【図11】本発明の他の実施形態に係る半導体装置の断面図であり、(b)は(a)の部分拡大図である。
【図12】本発明の他の実施形態に係る半導体装置の製造工程を示す工程断面図である。
【図13】本発明の他の実施形態に係る半導体装置の製造工程を示す工程断面図であり、(b)は(a)の部分拡大図である。
【図14】本発明の他の実施形態に係る半導体装置の製造工程を示す工程断面図であり、(b)は(a)の部分拡大図である。
【図15】本発明の他の実施形態に係る半導体装置の製造工程を示す工程断面図である。
【図16】本発明の他の実施形態に係る半導体装置の製造工程を示す工程断面図である。
【発明を実施するための形態】
【0020】
以下、図面を参照して本発明の実施の形態について説明するが、本発明はこれらの実施の形態にのみ限定されるものではない。
【0021】
(実施形態例1)
まず、図2に示すように、ドライエッチングにより、半導体基板(シリコン基板)1の主面側に深さ50μm、幅2μmの環状(円形リング状)の溝3を形成する。シリコン基板上に、マスクとなる窒化シリコン膜2を形成し、フォトリソグラフィー技術を用いて上記リング形状の開口部を形成する。続いて、マスク窒化シリコン膜2をマスクに、シリコン基板をエッチングする。シリコン基板1をエッチング後、マスク窒化シリコン膜2は除去せずに、シリコン基板1表面の酸化防止膜として残す。なお、図示していないが、マスク窒化シリコン膜2を形成する前にシリコン基板表面にパッド酸化シリコン膜を形成しておくことが好ましい。
【0022】
次に、図3に示すように、形成した溝内を熱酸化して第1の酸化シリコン膜4を形成する。本実施例では後工程で形成する第2の酸化シリコン膜(TEOS−NSG膜)5の膜厚と膜収縮量から算出した引張応力とほぼ釣り合う圧縮応力となる膜厚として500nmを選択する。Siの酸化による熱酸化シリコン膜はSiの約2.27倍の体積となるため、リング状溝3の側壁に深さ方向の圧縮応力を作用させることができる。第1の酸化膜4の膜厚は、後工程で形成する第2の酸化膜5の種類、量(膜厚)、リング状溝3の深さや幅などにより、第2の酸化膜5によって与えられる引張応力と第1の酸化膜4の圧縮応力とがほぼ相殺される(釣り合う)ように調整される。溝幅2μmでは、300nm以上の膜厚に形成することが好ましい。熱酸化は、基板を酸化性雰囲気に保持し、800℃〜1100℃の温度で所望の膜厚の熱酸化シリコン膜が形成されるまで実施する。酸化性雰囲気としては、酸素(O)、オゾン(O)、一酸化炭素(CO)、一酸化窒素(NO)、水蒸気(HO)などの酸化剤を含む雰囲気であればよい。水蒸気による酸化が比較的短時間で厚い膜厚の熱酸化シリコン膜を形成できることから好ましい。
【0023】
次に、貫通電極として銅を用いることを考慮して、銅バリア膜として窒化シリコン膜5(図3(b)参照。図3(a)、図4〜図7では記載を省略)をリング状溝3内に形成する。本実施形態例では銅バリア膜としての窒化シリコン膜5(以下、バリア窒化シリコン膜という)の膜厚として50nmを選択した。以上の工程を経たリング状溝内の幅は約1.5μmとなる。
【0024】
次に、TEOSを原料ガスとして用い、低圧CVD法によって形成したNSG(Non-doped Silicate Grass)膜を第2の酸化シリコン膜6としてリング状溝内を完全に埋設する膜厚で形成する。本実施形態例ではTEOS−NSG膜を1.76μm厚に形成した。このような堆積法によって形成する第2の酸化シリコン膜6の成膜膜厚(マスク窒化シリコン膜2上の膜厚)は、リング状溝3を完全に埋設するという観点からリング状溝の溝幅(残存溝幅)の1/2以上の膜厚であり、好ましくは、残存溝幅以上の膜厚である。また、後工程で基板上の不要となる第2の酸化シリコン膜6の除去が容易となるという観点からは溝幅(初期幅)以下の膜厚とすることが好ましい。
【0025】
第2の酸化シリコン膜6としては、上記のTEOS−NSG膜に限定されず、後工程での焼き締めによって引張応力を与えるものであればいずれも使用できる。特に、深いリング状溝3への埋設性を考慮して、カバレジ性の良いCVD法やSOD(Spin On Dielectric)法で形成される酸化シリコン膜などを挙げることができる。上記の低圧CVD法によるTEOS−NSG膜は原料や製造装置コストが安価であるという利点を有する。通常、第2の酸化シリコン膜6の膜厚(リング状溝内での基板面に平行な方向での膜厚)は、第1の酸化シリコン膜4の膜厚(基板面に平行な方向で対向する第1の酸化シリコン膜4の合計膜厚)と同等かそれ以上の膜厚であり、好ましくは、第1の酸化シリコン膜4の膜厚の1〜5倍の範囲、より好ましくは、2〜4倍の膜厚である。
【0026】
続いて、図4に示すように、シリコン基板1上の余剰の第2の酸化シリコン膜6、バリア窒化シリコン膜5及びマスク窒化シリコン膜2をウエットエッチングやCMP法等により除去する。たとえば、第2の酸化膜6、バリア窒化シリコン膜5をマスク窒化シリコン膜2をストッパとしてCMP法で除去した後、マスク窒化シリコン膜2を熱リン酸によるウエットエッチングで除去する方法が挙げられる。
【0027】
その後、リング状溝内に埋め込んだ第2の酸化シリコン膜6の焼き締めを行うため、非酸化性雰囲気(窒素などの不活性ガス雰囲気)中、1000℃、60分間の熱処理を行って絶縁リングを形成した。焼き締めは900〜1100℃の範囲で行うことができる。処理時間は、処理温度、リング状溝の深さ、幅などにより異なるが、概ね30分以上であれば、十分な焼き締めを行うことができる。処理時間の上限については特に限定はなく、必要以上に焼き締めを行っても絶縁リングの機能上は問題は無いが、エネルギーコストが増大することとなるため、通常は、90分以下であることが好ましい。また、焼き締めは、シリコン基板1上のマスク窒化シリコン膜2を除去する前に実施しても良く、その場合は、シリコン基板が酸化される恐れがないために酸化性雰囲気中、例えば大気中で行うこともできる。なお、SOD法で形成される第2の酸化シリコン膜6の場合には、塗布した膜(例えば、ポリシラザン膜)を酸化シリコン膜へ変換するための酸化性雰囲気での熱処理が必要となる場合がある。
【0028】
このように、図4までの工程を終了した後、通常の半導体装置の素子形成工程を行う。すなわち、図5に示すように、素子分離領域となるSTI(Shallow Trench Isolation)7の形成、ゲート電極8の形成、拡散層(図示せず)の形成等を行う。
【0029】
さらに、第1層間絶縁膜9を形成し、第1層間絶縁膜9に、後に形成する貫通電極と接続するための接続電極10及び各トランジスタの拡散層に接続するコンタクトプラグ11を形成する。次に、接続電極10と接続する配線12及びコンタクトプラグと接続する配線13を含む配線層を形成する。
【0030】
続いて、第2層間絶縁膜14を形成することにより、シリコン基板表面側の製造プロセスが終了する。
【0031】
その後、以下に説明するように、シリコン基板の裏面側の処理に移る。
【0032】
まず、シリコン基板1の裏面から研削等により基板厚みを減じる処理を行う。この裏面研削等の処理は、絶縁リング(溝)の底部が露出するまで行う。これにより、図6に示すように、シリコン基板1の裏面1Bまで貫通した絶縁リングが完成する。こうして、絶縁リングで囲まれた貫通電極形成領域が形成される。
【0033】
次に、図7に示すように、シリコン基板(貫通電極形成領域を含む)の裏面1Bを覆う裏面絶縁膜15を形成する。続いて、貫通電極形成領域に、シリコン基板の裏面から裏面絶縁膜15及びシリコン基板1を貫通し、接続電極10の下面を露出する開孔を形成する。次に、開孔を埋め込むように貫通電極16を形成する。
【0034】
貫通電極16は、スパッタ法によりシード膜を形成した後、めっき法により銅を埋め込んで形成される。
【0035】
例えば、まず、最初に絶縁層15の表面、すなわちシリコン基板の裏面1B側に、めっき用シード膜として、スパッタ法またはMOCVD法によりチタン、および銅を順次形成する。次に、フォトレジスト層を形成する(図示せず)。このフォトレジスト層に対して公知のリソグラフィー法により開口パターンを形成し、この開口パターンをマスクとして、開口内部に電気めっき法により銅を埋設する。
【0036】
その後、例えば、アセトン等の有機溶剤等を用いてフォトレジスト層を剥離除去し、その後、余剰のめっき用シード膜の銅およびチタンを、硫酸やフッ酸を用いたウェットエッチング工程により除去する。上記工程を経て、図7に示す様に、内部貫通電極16aおよび電極パッド16bを含む貫通電極16を形成することができる。
【0037】
貫通電極16は、銅、アルミニウム、チタン、タングステン等の金属又はその合金、チタンシリサイド、タングステンシリサイド等の金属シリサイド、窒化チタン等の導電無機物、リン等のn型不純物やホウ素等のp型不純物を含有するポリシリコン等の一種もしくは二種以上からなるものである。貫通電極は、チタン、銅等の金属からなるものであることが好ましい。
【0038】
本実施例では、図7(b)に示すように、絶縁リング及び貫通電極16は円状に形成しているが、これに限定されず、それぞれ独立に矩形状等の他の形状であっても良い。
【0039】
さらに、絶縁リングは、1重のみ形成しているが、2重以上の多重リングとしても良い。例えば、貫通電極側に形成される第1の絶縁リング(絶縁分離部)と第1の絶縁リングの外周に半導体基板のシリコン領域を介して離間された第2の絶縁リング(絶縁分離部)などの構成でも良い。このように、絶縁リングを多重構造とすることで、各絶縁リングの幅を狭くしても絶縁性の確保が可能となり、各絶縁リングの幅を狭くすることで、絶縁リング内に作用する圧縮応力と引張応力はそれぞれ小さくなり、これら応力が完全に相殺させずわずかに差違が生じたとしても絶縁リング周辺への影響を低減することができる。また、溝幅が狭くなることで、形成する第1の酸化膜及び第2の酸化膜の膜厚はそれぞれ小さくなり、製造歩留まりが向上するという効果もある。
【0040】
ここで、本発明の主たる効果を説明するため、2重の絶縁リングを形成して絶縁リング周辺の基板表面状態がどのように変化するかを観察した。ここでは、絶縁リングとして、上記実施例と同様の深さ、幅として、2重の絶縁リングの3組を所定方向に配置して同様に形成し、焼き締め後の絶縁リング周辺の半導体基板表面の凹凸を接触式(探針)段差測定により測定した。結果を図8に示す。
【0041】
比較例として、第1の酸化膜(熱酸化シリコン膜)4の膜厚を9〜10nmとした以外は同様の方法で絶縁リングを形成し、絶縁リング周辺の半導体基板表面の凹凸を測定した結果を図9に示す。なお、図8,図9では、横軸は基板面に平行な方向の長さ(距離)、縦軸は基板面に垂直な方向の深さ(凹凸高さ)を示す。太矢印で示した凹凸高さの差が陥没量となる。
【0042】
半導体基板を貫通する絶縁リングの場合、それまで絶縁リング底部を支えていた裏面側の半導体基板が研削されてなくなってしまうため、比較例に示したような絶縁リングを引張応力のみを与えるTEOS−NSG膜で大部分を形成すると、その引張応力に対抗する応力がほとんどなくなってしまうため、絶縁リング構造自体がTEOS−NSG膜の応力に負けて破壊される場合がある。これに対して、本実施形態例による方法では、TEOS−NSG膜の引張応力は比較例よりも厚く形成した熱酸化シリコン膜の圧縮応力により相殺され、約1/6以下の陥没量に改善されており、これは、実用上問題のないレベルである。
【0043】
次に上述の実施形態例1の変形例について図面を用いて説明する。
図10(a)は本変形例に係る半導体装置の製造工程を示す工程断面図であり、図10(b)は図10(a)の部分拡大図である。
【0044】
上述の実施形態例1と同様、図2に示すように、マスク窒化シリコン膜2をマスクとしてシリコン基板1表面を選択的にエッチングすることでリング状溝3を形成する。
【0045】
次に、図10に示すように、シリコン基板1を熱酸化することで例えば9〜10nmと薄い酸化シリコン膜17を成膜後、LPCVD法により、バリア窒化シリコン膜18を成膜する。バリア窒化シリコン膜18上に多結晶シリコン層を成膜し(図示せず)、この多結晶シリコン層を熱酸化することで熱酸化シリコン膜19を形成する。この時、バリア窒化シリコン膜18はシリコン基板1の酸化を防止する。次に熱酸化シリコン膜19の内側の孔を、例えば、LP TEOS−NSG膜20で埋設する。シリコン基板1表面のマスク窒化シリコン膜2やバリア窒化シリコン膜18、熱酸化シリコン膜19およびLP TEOS−NSG膜20をCMP法またはドライエッチング法により除去した後、実施形態例1と同様の工程を施すことで半導体装置を完成させることができる。
【0046】
多結晶シリコン層を熱酸化することで得られる熱酸化シリコン膜19とLP TEOS−NSG膜20とを積層することで、熱酸化シリコン膜19による圧縮応力とLP TEOS−NSG膜20による引張応力とを相殺することができ、シリコン基板の変形を抑えることができる。さらに、比較的厚い熱酸化シリコン膜19とシリコン基板1との間に熱酸化シリコン膜19と比較して極薄い酸化シリコン膜17をシリコン基板1と接するように挿入することで、シリコン基板1に発生する応力を緩和することができ、シリコン基板の亀裂の発生を抑えることができる。
【0047】
(実施形態例2)
次に、他の実施形態について図面を用いて説明する。
図11(a)は本発明の実施形態例2に係る半導体装置の断面図であり、図11(b)は図11(a)の部分拡大図である。図12、13(a)、14(a)、図15〜図16は本実施形態例に係る半導体装置の製造工程を示す工程断面図であり、図13(b)及び図14(b)はそれぞれ図13(a)及び図14(a)の部分拡大図である。
【0048】
図11に示すように、シリコン基板1の主面にはシリコン基板1とは反対導電型の不純物拡散層よりなるソース・ドレイン24とゲート電極23よりなるMOSトランジスタが形成されている。ソース・ドレイン24の一方は層間絶縁膜21に形成された導電プラグ33を介して配線34に接続されている。配線34上は絶縁膜35で覆われている。シリコン基板1の裏面には裏面絶縁層36が設けられている。裏面絶縁層36としては窒化シリコンやポリマー絶縁膜を使用することができる。シリコン基板1および層間絶縁膜21を貫通し、配線34に接続する貫通電極形成用孔が設けられている。貫通電極形成用孔の内壁には薄い熱酸化シリコン膜26、窒化シリコン膜27、CVD酸化シリコン膜の積層膜28よりなる絶縁層が設けられており、さらに、その内側には、金またはパラジウムよりなる酸化防止膜29、拡散防止膜30、シード層31、銅よりなる貫通電極プラグ32よりなる貫通電極が設けられており、貫通電極は配線34に電気的に接続されている。また、貫通電極の底部はシリコン基板1裏面に設けられた裏面絶縁層36をも貫通して露出しており、ソルダーバンプ37が形成されている。
【0049】
貫通電極形成用孔の側壁に、シリコン基板1を熱酸化することで得られる熱酸化シリコン膜26を第1の膜、CVD酸化シリコン膜の積層膜28を第2の膜として少なくとも2層を積層することで、熱酸化シリコン膜26による圧縮応力とCVD酸化シリコン膜の積層膜28による引張応力とを相殺することができる。CVD酸化シリコン膜は実施形態例1のように一度に厚膜を形成するのではなく、極薄い膜に分割してそれらの積層膜で構成していることから、この積層膜による引張応力の大きさは格段に小さく抑える事が可能であるため、これと釣り合う圧縮応力も小さくでき、それを発生させる熱酸化シリコン膜26も薄くすることが可能である。また、薄い膜の積層構造とすることは、応力の増大を抑えながらトータルの厚さの厚い膜を利用できる。このような絶縁構造の厚膜化は、TSVによる寄生容量の低減を可能とし、信号伝達性能の向上に寄与する。成膜ごとに熱処理を加えて積層膜を形成すると、さらに大きな応力低減効果が得られる。つまり、第2の膜は、個々に焼き締められた少なくとも2層の酸化シリコン膜の積層膜とすることが好ましい。図11に示す例では4層の積層膜の場合を示している(図11(b)参照)。
【0050】
次に、本実施形態例2に係る半導体装置の製造工程について図面を用いて説明する。
図12に示すように、シリコン基板1の主表面に半導体装置を構成する素子を形成し、素子上に層間絶縁膜21を成膜する。ここでは、半導体装置を構成する素子としてソース・ドレイン24、ゲート電極23よりなるMOSトランジスタを模式的に表している。マスク窒化シリコン膜22を用いて層間絶縁膜21、シリコン基板1を選択的にエッチングすることで、貫通電極形成用孔25を形成する。
【0051】
図13に示すように、貫通電極形成用孔25の内壁に露出したシリコン基板1を熱酸化して熱酸化シリコン膜26を形成する。次にLP CVD法で窒化シリコン膜27を成膜する。さらに窒化シリコン膜27上にLP CVD酸化シリコン膜の積層膜28を形成する。この時、CVD法による成膜とそれに続く熱処理工程のサイクルを少なくとも2回繰り返す。
【0052】
図14に示すように、LP CVD酸化シリコン膜の積層膜28上に酸化防止膜29、拡散防止膜30、シード層31を順次、成膜する。次に電解メッキ法にて貫通電極プラグ32用の銅めっき膜32’を成膜する。
【0053】
図15に示すように、層間絶縁膜21上のマスク窒化シリコン膜22、窒化シリコン膜27、LP CVD酸化シリコン膜の積層膜28、酸化防止膜29、拡散防止膜30、シード層31、銅メッキ膜32’をCMP法、またはドライエッチングを用いて除去する。以上により、貫通電極プラグ32を含む貫通電極部が、貫通電極形成用孔25内に形成される。
【0054】
図16に示すように、層間絶縁膜21中にコンタクトプラグ33、層間絶縁膜21上に配線34を形成する。配線34の一部は貫通電極部と電気的に接続される。続いて、絶縁膜35を成膜する。その後は、シリコン基板1の裏面を研削およびエッチングすることで貫通電極部底部が露出するようにシリコン基板1の厚みを減じる。シリコン基板1裏面に裏面絶縁層36として窒化シリコン膜を成膜した後、再度貫通電極部底部を露出させ、ソルダーバンプ37を形成して、図11に示す半導体装置が完成する。
【符号の説明】
【0055】
1 半導体基板(シリコン基板)
2 マスク窒化シリコン膜
3 リング状溝
4 第1の酸化膜(熱酸化膜)
5 バリア窒化シリコン膜
6 第2の酸化膜(TEOS−NSG膜)
7 STI
8 ゲート電極
9 第1層間絶縁膜
10 接続電極
11 コンタクトプラグ
12,13 配線
14 第2層間絶縁膜
15 裏面絶縁層
16 貫通電極
16a 内部貫通電極
16b 電極パッド
17 酸化シリコン膜
18 バリア窒化シリコン膜
19 熱酸化シリコン膜
20 LP TEOS−NSG膜
21 層間絶縁膜
22 マスク窒化シリコン膜
23 ゲート電極
24 ソース・ドレイン
25 貫通電極形成用孔
26 熱酸化シリコン膜
27 窒化シリコン膜
28 CVD酸化シリコン膜の積層膜
29 酸化防止膜
30 拡散防止膜
31 シード層
32 貫通電極プラグ
32’ 銅メッキ膜
33 コンタクトプラグ
34 配線
35 絶縁膜
36 裏面絶縁層
37 ソルダーバンプ

【特許請求の範囲】
【請求項1】
半導体基板の主面に溝を形成する工程と、
前記溝内にシリコンを熱酸化して第1の酸化シリコン膜を形成する工程と、
前記半導体基板主面上に、前記第1の酸化シリコン膜と同じかそれよりも大きい膜厚の第2の酸化シリコン膜を成膜する工程と、
前記半導体基板の厚さ方向に見て前記主面の反対側に位置する裏面から前記半導体基板の厚みを減じることで前記溝の底部を露出させる工程と、
を有することを特徴とする半導体装置の製造方法。
【請求項2】
前記溝は前記半導体基板主面上において環状形状を有し、前記半導体基板の前記環状の溝に囲まれた領域と前記環状の溝の外側の領域とを電気的に絶縁する絶縁分離部を形成し、前記半導体基板の前記環状の溝に囲まれた領域の半導体基板を貫通する貫通電極を形成する工程を有する請求項1に記載の半導体装置の製造方法。
【請求項3】
前記溝は、孔形状に形成され、該溝内に形成された前記第1、第2の酸化シリコン膜の内側の凹部に貫通電極部を形成する工程を有する請求項1に記載の半導体装置の製造方法。
【請求項4】
前記第2の酸化シリコン膜の成膜工程は、酸化シリコン膜の成膜工程とそれに続く熱処理工程のサイクルを少なくとも2回繰り返す請求項1乃至3のいずれか1項に記載の半導体装置の製造方法。
【請求項5】
前記第2の酸化シリコン膜の基板面に平行な方向の膜厚は、前記第1の酸化シリコン膜の同方向の膜厚の1〜5倍である請求項1乃至4のいずれか1項に記載の半導体装置の製造方法。
【請求項6】
前記第2の酸化シリコン膜の基板面に平行な方向の膜厚は、前記第1の酸化シリコン膜の同方向の膜厚の2〜4倍である請求項5に記載の半導体装置の製造方法。
【請求項7】
前記第2の酸化シリコン膜は、CVD法によって形成する請求項1乃至6のいずれか1項に記載の半導体装置の製造方法。
【請求項8】
前記第2の酸化シリコン膜は、TEOSを原料とする低圧CVD法によって形成するNSG膜である請求項7に記載の半導体装置の製造方法。
【請求項9】
前記第2の酸化シリコン膜は、SOD法によって形成する請求項1乃至6のいずれか1項に記載の半導体装置の製造方法。
【請求項10】
前記第2の酸化シリコン膜を成膜した後に熱処理を施す請求項1に記載の半導体装置の製造方法。
【請求項11】
前記熱処理は、非酸化雰囲気中、900〜1100℃の範囲で実施する請求項10に記載の半導体装置の製造方法。
【請求項12】
前記環状の絶縁分離部を形成した後、
前記半導体基板主面に半導体装置を構成する構造物を形成する工程と、
前記半導体基板の厚さ方向に見て前記主面の反対側に位置する裏面から前記半導体基板の厚みを減じることで前記環状の絶縁分離部底部を露出させる工程と、
前記環状の絶縁分離部に囲まれた前記半導体基板に、前記裏面より前記主面側に到達する貫通孔を形成する工程と、
をさらに備え、前記貫通電極は前記貫通孔内に形成される請求項2に記載の半導体装置の製造方法。
【請求項13】
半導体基板の主面に溝を形成する工程と、
前記溝内にシリコンを熱酸化して第1の酸化シリコン膜を形成する工程と、
前記半導体基板主面上に、第2の酸化シリコン膜を成膜する工程と、
前記半導体基板の厚さ方向に見て前記主面の反対側に位置する裏面から前記半導体基板の厚みを減じることで前記溝の底部を露出させる工程と、
を備え、
前記第1の酸化シリコン膜は深さ方向に圧縮応力を与え、前記第2の酸化シリコン膜は深さ方向に引張応力を与え、前記第1及び第2の酸化シリコン膜は前記圧縮応力と前記引張応力とがほぼ釣り合うようにそれぞれの膜厚を調整して形成されることを特徴とする半導体装置の製造方法。
【請求項14】
半導体基板と、
前記半導体基板を貫通する溝と、
前記溝の側壁上に2層以上積層した側壁膜と、
を備え、
前記側壁膜は、少なくとも
深さ方向に圧縮応力を与える第1の膜と、
深さ方向に引張応力を与える第2の膜と、
を含み、
第2の膜の膜厚は第1の膜の膜厚と同等かそれ以上の膜厚を有する半導体装置。
【請求項15】
前記溝は前記半導体基板主面上において環状形状を有し、前記半導体基板の前記環状の溝に囲まれた領域と前記環状の溝の外側の領域とを電気的に絶縁する絶縁分離部を形成し、前記半導体基板の前記環状の溝に囲まれた領域の半導体基板を貫通する貫通電極が形成されている請求項14に記載の半導体装置。
【請求項16】
前記第1の膜はシリコンを熱酸化して得られる酸化シリコン膜である請求項14又は15に記載の半導体装置。
【請求項17】
前記第2の膜は、少なくとも2層の酸化シリコン膜の積層膜よりなる請求項14乃至16のいずれか1項に記載の半導体装置。
【請求項18】
半導体基板と、
前記半導体基板を貫通する溝と、
前記溝の側壁上に2層以上積層した側壁膜と、
前記側壁膜の内側の孔に設けられた貫通電極部と、
を備え、
前記側壁膜は、少なくとも
深さ方向に圧縮応力を与える第1の膜と、
深さ方向に引張応力を与える第2の膜と、
を含み、
第2の膜の膜厚は第1の膜の膜厚と同等かそれ以上の膜厚を有する半導体装置。
【請求項19】
前記第1の膜はシリコンを熱酸化して得られる酸化シリコン膜である請求項18に記載の半導体装置。
【請求項20】
前記第2の膜は、少なくとも2層の酸化シリコン膜の積層膜よりなる請求項18又は19に記載の半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2012−216812(P2012−216812A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2012−71513(P2012−71513)
【出願日】平成24年3月27日(2012.3.27)
【出願人】(500174247)エルピーダメモリ株式会社 (2,599)
【Fターム(参考)】