説明

Fターム[5F053HH07]の内容

半導体装置を構成する物質の液相成長 (5,002) | 基板 (516) | ダミー基板 (21)

Fターム[5F053HH07]に分類される特許

1 - 20 / 21


【課題】十分なキャパシタ容量が得られ、リーク電流や寄生容量を抑制した薄膜トランジスタ装置およびその製造方法を提供する。
【解決手段】薄膜トランジスタを備え、そのゲート電極111、ソース電極131、ドレイン電極132、バス配線、画素電極133、ゲート絶縁膜121、層間絶縁膜122、半導体層141の全部もしくは一部が塗布法もしくは印刷法で形成されてなり、ゲート絶縁膜121および/もしくは層間絶縁膜122が連続膜から構成され、連続膜が薄膜部と厚膜部から構成されてなる。 (もっと読む)


【課題】所定量の半導体粉末を含む小塊を溶融して球状溶融体を形成し、これを冷却凝固させて半導体粒子を製造する方法において、所定濃度のドーパントが均一にドープされた球状のp型またはn型の半導体粒子を安価に製造する方法を提供する。
【解決手段】ドーパントが所定濃度より高い濃度にドープされた第1の半導体粉末と、ノンドープあるいは前記ドーパントが所定濃度より低い濃度にドープされた第2の半導体粉末とを、平均ドーパント濃度が所定濃度と等しくなる比率で含む組成物を調製し、この組成物からなる所定質量の小塊を形成する。この小塊を加熱して球状の溶融体を形成し、これを凝固させる。 (もっと読む)


【課題】本発明の目的は、比較的低温において効率的に半導体シリコン膜を製造する方法を提供することである。また、本発明の目的は、基材がポリマー材料を有する半導体積層体を提供することである。
【解決手段】半導体積層体(110)を製造する本発明の方法は、(a)基材上にシリコン粒子分散体膜を形成する工程、(b)シリコン粒子分散体膜を乾燥して、未焼結半導体シリコン膜を形成する工程、及び(c)未焼結半導体シリコン膜に光を照射して、半導体シリコン膜を形成する工程を含む。また、本発明の半導体積層体(110)は、基材(112)及び半導体シリコン膜(118)を有し、基材が、ポリマー材料を有し、半導体シリコン膜が、互いに焼結されている複数のシリコン粒子から作られており、且つ半導体シリコン膜のキャリア移動度が、1.0cm/V・s以上である。 (もっと読む)


【課題】原料融液に下地板を浸漬させることにより、下地板表面に薄板を製造する薄板製造装置および製造方法において、薄板の板厚のむらの発生を防止して、板厚を制御することのできる薄板製造装置および薄板製造方法、ならびに坩堝を提供する。
【解決手段】本発明は、原料融液に下地板を浸漬させることにより、下地板表面に薄板を製造する薄板製造装置であって、原料融液を内部に充填可能な坩堝と、坩堝内の原料融液に下地板を浸漬させる浸漬部とを備える。坩堝は、坩堝本体と、下地板の浸漬方向に応じて原料融液の表面の液流の方向を制御する制御部とを含む。 (もっと読む)


【課題】本発明は、窒化物結晶製造方法に関するもので、結晶の品質向上を目的とするものである。
【解決手段】そしてこの目的を達成するために本発明は、種基板と、結晶材料とアルカリ金属またはアルカリ土類金属を、坩堝に収納する第1の工程と、前記坩堝を加熱して前記結晶材料と前記アルカリ金属または前記アルカリ土類金属の混合液を形成するとともに、前記坩堝に窒素ガスを供給して、前記種基板上に結晶を育成する第2の工程を備え、前記種基板上の前記混合液の平均流速をα、前記種基板上の最大流速平均値をA、前記種基板上の前記混合液の最大流速バラツキをBとしたときに、前記第2の工程中に式(1)及び式(2)を満たす条件で前記混合液が流動するように、前記混合液を撹拌する。
α≧0.008(m/s) (1)
B/A≦0.6 (2) (もっと読む)


【課題】フラックスおよび原料を含む融液中で結晶を成長させるのに際して、結晶の成長レートを向上させ、高品質で大きな結晶を短時間で育成できるようにすることである。
【解決手段】融液27を収容し、過飽和状態に保持することによって、窒化物結晶14を成長させる育成容器2;融液6を加熱して未飽和状態で保持することによって、融液中に窒素を溶解させる第一の窒素溶解容器1;融液28を加熱して未飽和状態で保持することによって、融液中に窒素を溶解させる第二の窒素溶解容器3;育成容器2と第一の窒素溶解容器1とを連結し、育成容器内の融液と第一の窒素溶解容器内の融液とを連通させる第一の連結部4;および育成容器2と第二の窒素溶解容器3とを連結し、育成容器内の融液と第二の窒素溶解容器内の融液とを連通させる第二の連結部5を使用する。結晶育成時に、育成容器、第一の窒素溶解容器、第二の窒素溶解容器、第一の連結部および第二の連結部を動かす。 (もっと読む)


【課題】使用する有機溶媒に限定されることなく、かつ、ドロップキャスト法で製膜した有機半導体薄膜のようにゆっくりと時間をかけて製膜して、結晶性に優れた有機半導体薄膜を、基板の表面自由エネルギーによらず、自由に形成する方法を提供する。
【解決手段】固体基板と、剥離性表面を有する弾性材からなるフィルム又は板との間に、薄膜形成用溶液をはさみ、該溶液中の溶媒を乾固させることにより前記固体基板の表面に有機薄膜を形成させることにより、ドロップキャスト法に見られた収縮を防ぐとともに、ドロップキャスト法ようにゆっくりと時間をかけて製膜することが可能であり、かつ、基板の表面自由エネルギーを問わず有機薄膜を形成することができる。 (もっと読む)


半導体材料の物品の製造方法には、その物品のための目標厚さを選択するステップと次に、鋳型の外部表面上に半導体材料の固体層を形成するために有効な潜没時間だけ溶融半導体材料中に鋳型を潜没させるステップとが関与し、ここで固体層の厚さは目標厚さと実質的に等しい。潜没時間は、鋳型の組成、鋳型の厚さおよび初期鋳型温度を含めた特定の属性を有する鋳型のための固体層厚さと潜没時間の関係のプロットから決定される遷移時間に実質的に等しくなるように選択される。遷移時間ひいては潜没時間は、特定の鋳型のための固体層厚さ対潜没時間の曲線における固体層厚さの最大値に対応する。
(もっと読む)


【課題】溶液法によって安定した品質のSiCを長時間製造し得るSiC単結晶の製造方法を提供する。
【解決手段】溶液法により、SiCとCと前記2成分以外の溶液成分を含む原料溶液3からSiC種結晶基板9上にSiC単結晶を成長させる方法であって、SIC成長開始前にはCを溶解させる工程を有し、SIC成長開始後にはSiCを補給する工程を有する。ここで、SiCを補給する工程は、溶液3内であってSiC種結晶基板9の支持棒5と黒鉛坩堝2との間に設けたSiC製の遮蔽壁4から補給する工程である。 (もっと読む)


【課題】高抵抗且つ低転位密度のZnドープ3B族窒化物結晶を提供する。
【解決手段】本発明のZnドープ3B族窒化物結晶は、比抵抗が1×102Ω・cm以上、3B族窒化物結晶中のZn濃度が1.0×1018atoms/cm3以上2×1019atoms/cm3以下、エッチピット密度が5×106/cm2以下のものである。この結晶は、液相法(Naフラックス法)により得ることができる。 (もっと読む)


本発明は、基板上にCTSおよびCZTSならびにそれらのセレンアナログの膜を製造するための方法に関する。そのような膜は、光起電力デバイスの製造において有用である。本発明はまた、被覆基板を製造するための方法および光起電力デバイスを作製するための方法に関する。 (もっと読む)


【課題】シート形成法を用いたシリコンシートの製造において、下地板をシリコン融液から脱出させる際に、形成途中のシリコンシートが液面から受ける影響を小さくし、シリコンシートを効率よく製造する方法を提供する。
【解決手段】シリコン融液4に下地板1を浸漬させた後に下地板1をシリコン融液4から脱出させて、シリコン融液4の凝固により下地板1上にシリコンシート2を形成するシリコンシート2の製造装置であって、下地板1の表面に形成されたシリコンシート2がシリコン融液4から脱出し終えるときの下地板1の移動速度が、下地板1がシリコン融液4に没入し始めるときの下地板1の移動速度に比べて大きくなるように、下地板1の速度を制御する制御手段を備える。 (もっと読む)


【課題】シート形成法を用いた薄板の製造において、下地板をシリコン融液から脱出させる際の薄板の剥がれ落ちを防止し、薄板を効率よく製造する方法を提供すること。
【解決手段】本発明は、原料融液に下地板を浸漬させた後に該下地板を原料融液から脱出させて、原料融液の凝固により該下地板上に薄板を形成する薄板製造装置であって、前記下地板が前記原料融液に没入し始めるときに、前記下地板を円弧状の軌道で移動させるための浸漬機構を設け、前記下地板の浸漬面と前記原料融液の液面とがなす角度が大きくなるように、前記下地板の浸漬面が前記円弧状の軌道の接線方向に対して角度をなすように前記下地板が設けられたことを特徴とする薄板製造装置である。 (もっと読む)


【課題】フラックス法により種結晶基板上に窒化ガリウムの結晶を生成させた窒化ガリウム結晶板であって、高品質なものを提供する。
【解決手段】種結晶基板54を金属ガリウム及び金属ナトリウムを含む混合融液に浸漬した容器50を、700〜1000℃で加圧窒素ガスの雰囲気下、種結晶基板54上での窒化ガリウムの結晶成長速度が10〜20μm/hとなるように回転させる。その後、容器50にエタノールを加えて金属ナトリウムを溶かし、溶け残った窒化ガリウム結晶板を回収する。 (もっと読む)


【課題】溶湯中の冷却体の溶湯中への浸漬軌道と干渉する物による生産性に対する悪影響を防止することができる析出板製造装置および析出板製造方法を提供する。
【解決手段】放射温度計50が、溶湯23の表面温度を検出すると、制御装置45は、溶湯23の表面温度の変化に基づいて、溶湯23中の冷却体基板25の溶湯23中への浸漬軌道と干渉する物の有無を判断する。具体的には、溶湯23の表面温度の変化が、予め定める変化幅以上であり、かつその状態が予め定める期間継続したときに、溶湯23中に冷却体基板25の溶湯23中への浸漬軌道と干渉する物が有るものと判断する。制御装置45は、溶湯23中に冷却体基板25の溶湯23中への浸漬軌道と干渉する物が有ると判断されたときは、冷却体基板25の溶湯23中への浸漬を停止する。 (もっと読む)


【課題】転位密度の小さな結晶を生産性よく成長させることができる結晶成長方法を提供する。
【解決手段】反応容器5内に基板7を設置した後、加熱装置4を用いて、反応容器5の温度が原料金属の融点以上になるように加熱し、原料金属が融解させ原料液8を得る。原料液は1mm以下の薄膜として基板7上に形成されることが好ましい。つづいて原料ガスを、供給部20である供給装置21から接続パイプ23を介して、耐熱耐圧容器3内に供給することにより原料液8と原料ガスとを反応させ、原料液8と原料ガスとの化合物の結晶を成長させる。 (もっと読む)


【課題】OSCM分子からなる活性薄膜を高品質に且つ再現性の高い状態で成膜制御することにより、有機電子デバイス及び光電子工学デバイスの性能を向上させることが出来ると共に、前記薄膜をウエハー基板の直径が200mm〜300mm程度の大口径ウエーハにおいて成膜可能とし、工業的な規模での適用が可能な成膜形成を容易かつ低コストで実現することが出来る薄膜形成方法。
【構成】ステップa)薄膜形成の為に、一定量のOSCM分子を融解状態でキャリア表面に供給するステップ、及び
b)薄膜を凝固する為に、一定の温度プロファイルに基づいて冷却を行うステップ
からなり、
ステップa)を実施の際、キャリア表面の温度はOSCM分子の融点と一致するか、あるいは融点より高いことを特徴とし、
またステップb)は、以下の第1のパートと第2のパートからなる温度プロファイルに基づいて実施されることを特徴とするOSCM分子を用いた薄膜の形成方法。
−OSCM分子が冷却されて再結晶温度に近い温度となり、該OSCM分子における冷却速度は、融解状態の薄膜中に1つの種結晶のみが出現するのに十分な程度遅く設定される、OSCM分子の徐冷制御に対応する第1のパート、及び
−前記1つの種結晶を発端として少なくとも1つの単結晶領域が成長し、最終的には単結晶薄膜が得られる、OSCM分子の冷却制御に対応する第2のパート。 (もっと読む)


【課題】析出用基板を案内する移送用ガイド体と、析出用基板を保持する搬送手段との位置関係の調整を容易に、短時間で行うことができる基板保持装置およびこの基板保持装置を備える析出板製造装置を提供する。
【解決手段】中継用ガイド体54は、鉛直方向Zおよび交差方向にそれぞれ位置調整可能である。この中継用ガイド体54は、移送用ガイド体に接続可能に構成され、析出用基板を移送方向Xに案内する。搬送手段55は、析出用基板を保持可能に構成され、移送される析出用基板を保持する保持位置、および析出用基板を融液24に浸漬する浸漬位置の間を移動する。これら中継用ガイド体54および搬送手段55は、チャンバの収容空間27を出入り自在に構成される移動体56に搭載される。 (もっと読む)


【課題】フラックス法において、半導体結晶の結晶性及びその均一性をより向上させると共に、その収率を従来よりも効果的に向上させること。
【解決手段】GaN単結晶層を有する種結晶10のc軸は水平方向(y軸方向)に配向され、種結晶10の1つのa軸は鉛直方向に配向され、1つのm軸はx軸方向に配向される。このため、挟持具T上の点p1,p2,p3は、何れも種結晶のm面と接する。即ち、この挟持具Tは、挟持部材T1,T2を有しており、両方とも鉛直方向に延びているが、挟持部材T1は、育成原料溶液の上面αに対して30°傾斜した端部T1aを有している。この様に、種結晶をm面で支持する理由は、m面がa面よりも結晶成長速度が遅いことと、所望のc面成長を阻害させないためである。なお、種結晶10及び挟持具Tは、それぞれy軸方向に複数周期的に配列されている。 (もっと読む)


【課題】フラックス法に基づいた結晶成長処理によって、バルク状の高品質な半導体結晶を容易に低コストで生産すること。
【解決手段】フラックス法に基づいて、3.7MPa、870℃の窒素(N2 )雰囲気下において、略同温のGa,Na及びLiの混合フラックスの中で、GaN単結晶20を種結晶(GaN層13)の結晶成長面から成長させる。この時、テンプレート10の裏面は、サファイア基板11のR面であるので、テンプレート10は混合フラックスの中で裏面から溶解または腐食し易い。このため、テンプレート10は、裏面側から徐々に溶解または腐食しつつ、徐々に分離又は消失されていく。GaN単結晶20が例えば約500μm以上の十分な膜厚にまで成長したら、引き続き坩堝の温度を850℃以上880℃以下に維持して、サファイア基板11を混合フラックス中にて全て溶解させる。 (もっと読む)


1 - 20 / 21