説明

Fターム[5F092AC05]の内容

ホール/MR素子 (37,442) | 素子の種類 (3,422) | 磁気抵抗効果素子(MR素子) (2,873) | 異方性磁気抵抗効果素子(AMR) (102)

Fターム[5F092AC05]に分類される特許

1 - 20 / 102


【課題】本発明は、磁気抵抗材料と集積回路とを巧みに統合することのできる、磁気抵抗素子構造の製造方法を提供する。
【解決手段】基板を提供する工程と、上記基板の上に金属ダマシン構造を形成する工程と、該金属ダマシン構造に電気的に接続するように該金属ダマシン構造の上にパターン化磁気抵抗ユニットを形成する工程とを含む、磁気抵抗素子構造の製造方法である。 (もっと読む)


【課題】被実装部材上に回路チップと隣接して搭載される磁気センサにおいて、回路チップとパッドとを電気的に接続するワイヤ同士の接触を抑制することができる磁気センサを提供する。
【解決手段】複数のパッド31〜36を一辺10aと垂直方向において互いに完全にオフセットした状態で配置する。これによれば、被実装部材上に磁気センサの一辺10aを回路チップと隣接して搭載し、パッド31〜36と回路チップとをワイヤで接続した際に、ワイヤ同士が接触してしまうことを抑制することができる。 (もっと読む)


【課題】 動作点の変動と抵抗値比のばらつきを抑制することができると共に、温度特性を改善した磁気センサを提供する。
【解決手段】 磁気センサ1は、センサ回路部2を備える。このセンサ回路部2は、第1および第3の磁気抵抗素子R1,R3を直列接続した第1の直列回路6と、第2および第4の磁気抵抗素子R2,R4を直列接続した第2の直列回路7とを備え、第1の直列回路6と第2の直列回路7とを並列接続したブリッジ回路5によって構成される。第1ないし第4の磁気抵抗素子R1〜R4の表面は絶縁膜12によって覆われる。また、第3の磁気抵抗素子R3および第4の磁気抵抗素子R4の表面には、絶縁膜12を挟んで磁性材料からなる磁束集磁膜13が形成される。 (もっと読む)


【課題】マルチ軸センサを製造する方法を提供する。
【解決手段】第1のアプリケーション・エレクトロニクスを備えた第1の活性化表面114を有する第1のダイ102を製作するステップと、第2のアプリケーション・エレクトロニクスを有する第2の活性化表面115、および、第2のアプリケーション・エレクトロニクスから第2の活性化表面と隣接している第2のダイ104の側面インタフェースまで伸びる少なくとも一つの電気的接続を有する第2のダイを製造するステップと、第1の活性化表面と同一平面上の側面インタフェースを整列配置するステップと、複数の電気的接続119と第1の活性化表面との間に少なくとも一つの電気的接続を形成するステップとを有する。 (もっと読む)


【課題】磁界検出感度に優れた磁気センサ、及び磁気センサ用パターンを提供する。
【解決手段】磁気センサ10は、パターン22の抵抗変化率が大きくなる第1領域21d、及び抵抗変化率が第1領域21dよりも小さくなる第2領域21eを有する矩形のパターン形成領域21を備える。パターン22は、矩形の二辺21a、21aに対して所定の傾斜角θをもって平行に配置された複数の直線部分22a、及び隣接する直線部分22aの長さ方向両端部を交互に接続した複数の折り返し部分22bを有する。パターン22は、第1領域21dと、第2領域21eの一部とにわたって設けられており、第2領域21eの一部には、抵抗変化率が低下しない程度にパターン22が設けられている。 (もっと読む)


【課題】3軸センサ・チップパッケージためのシステムと方法を提供する。
【解決手段】センサパッケージは、ベース105と、第1のセンサダイ110が、第1のアクティブセンサ回路112および、第1のアクティブセンサ回路に電気的に結合された複数の金属パッド114とを備え、ベースに取り付けられた第2のセンサダイ120が、第1の表面128の上に配置された第2のアクティブセンサ回路122と、第2の表面の上に配置された第2のアクティブセンサ回路に電気的に結合された第2の複数の金属パッド122とを備え、第2のアクティブセンサ回路は、第1のアクティブセンサ回路に対して直交に方位付けされ、ベースに垂直であるように、第2のセンサダイが配置される。第2の表面は、第1の表面に隣接し、第1の表面の面に対して角度がつけられている。 (もっと読む)


【課題】磁気抵抗効果素子を飽和させることなく、被検知物へ掛かる磁界強度が強化され、検知感度を向上させる磁気センサ装置を得る。
【解決手段】筐体の中空部を搬送される被検知物の一方の面に搬送方向に沿って磁極が反転するように配置した第1の磁石と、前記被検知物の他方の面に前記第1の磁石の磁極と異なる磁極を対向して配置し前記第1の磁石との間で搬送方向に連続的な勾配磁界を形成する第2の磁石と、前記第1の磁石の磁極の反転部に第1の間隙を備えた第1のヨークと、前記第2の磁石の磁極の反転部に前記第1の間隙より長い第2の間隙を備えた第2のヨークと、前記被検知物と前記第1のヨークとの間の前記勾配磁界の弱磁界強度領域に設けられ、前記勾配磁界の強磁界強度領域を搬送される前記被検知物による磁界変化を検知する磁気抵抗効果素子とを備えた。 (もっと読む)


【課題】簡便な構成で電気配線に流れる電流を広い電流レンジで検知する電流センサを提供する。
【解決手段】測定対象Aに接続される電気配線wa,wb1,wc1と、抵抗値が一定比率で増加する直線部分と抵抗値が飽和する飽和部分とからなる磁気抵抗特性を有し、それぞれが前記電気配線から異なる距離d1,d2,d3で離間して配置される磁気抵抗素子11a,11b,11cと、磁気抵抗素子11a,11b,11cそれぞれにセンス電流を流すセンス電流部12と、磁気抵抗素子11a,11b,11cにおけるセンス電流値の変化から磁気抵抗特性の前記直線部分から飽和部分へ移行する抵抗値の飽和点に到達したことを検知し、前記電流配線に流れる電流がある規定値に到達したとして出力する検知手段13と、を備え、検知手段13は、前記電流配線に流れる電流について磁気抵抗素子11a,11b,11cごとに異なる規定値への到達を検知する。 (もっと読む)


【課題】磁界プローブ、磁界測定装置、及び磁界測定方法において、磁界プローブの小型化を図ること。
【解決手段】測定対象Sに近接する先端部2aを備えたベース2と、先端部2aに設けられた磁気抵抗素子8と、磁気抵抗素子8の横の前記ベース2に設けられ、磁気抵抗素子8に印加する第1のバイアス磁界H1を発生させる第1の磁界発生部3と、ベース2に設けられ、第1のバイアス磁界H1とは異なる向きの第2のバイアス磁界H2を発生させて、磁気抵抗素子8に前記第2のバイアス磁界H2を印加する第2の磁界発生部4とを有し、第1のバイアス磁界H1の向きを切り替えることにより、第1のバイアス磁界H1と第2のバイアス磁界H2とを合成した合成バイアス磁界Hsの向きが、ベース2の先端方向Dtから90°変化する磁界プローブによる。 (もっと読む)


【課題】センサ寸法の拡大が抑制され小型化に有利で、高いセンサ特性が安定して得られ、作製工程が複雑化しない、磁気センサを提供する。
【解決手段】抵抗素子を直列に接続した通電経路単位41,42,43,44のそれぞれに関し、一方端部は電源端子Vccに電気的に接続され、他方端部は接地端子GNDに電気的に接続され、抵抗素子同士の接続部は出力端子Vo1〜Vo4に電気的に接続される。通電経路単位のそれぞれを構成する複数の抵抗素子の少なくとも1つは、磁気抵抗効果膜からなる磁気抵抗効果素子であり、電源端子は全ての通電経路単位につき共通化され、接地端子は全ての通電経路単位につき共通化される。全ての通電経路単位は絶縁膜の一方の面に接して形成され、絶縁膜の他方の面に接して配置された導電膜を用いて、電源端子共通化のための電源接続配線及び接地端子共通化のための接地接続配線が形成される。 (もっと読む)


【課題】チップ面積を増大させることなく電流検出精度を向上することができる半導体装置を得る。
【解決手段】半導体素子1はエミッタ電極7を有する。引き出し線10は、エミッタ電極7に電気的に接続され、エミッタ電極7の上方を通ってサイドに引き出される。電流センサー11は、磁気抵抗素子12を有し、引き出し線10に流れる電流を検出する。磁気抵抗素子12は、エミッタ電極7上、かつ引き出し線10の下方に配置されている。磁気抵抗素子12の抵抗値は、電流により発生した磁界に対してリニアに変化する。 (もっと読む)


【課題】 磁性パターンを有する被検知物を磁気抵抗効果素子から微小距離離間させた非接触状態において、感度良く被検知物の磁性パターンを検出する磁気センサ装置を得る。
【解決手段】 被検知物が搬送される搬送路に平行に第1の磁石と第2の磁石とは磁極の異極同士が対向配置され、前記搬送路における搬送方向の磁界強度と第1の磁石と第2の磁石の対向方向における強度変化が零点を含んだ勾配磁界を形成し、前記搬送路と前記第1の磁石との間に設けられた磁気抵抗効果素子と、この磁気抵抗効果素子を包囲し樹脂で覆った多層基板を備え、前記磁気抵抗効果素子は前記勾配磁界の搬送方向の磁界強度の零点付近の弱磁界強度領域に設けられ、前記被検知物は前記勾配磁界の強磁界強度領域を通過する。 (もっと読む)


【課題】データ変換ヘッドにおける読取センサとして、または固体不揮発性メモリ素子などとして使用するための、磁気状態の変化を検出可能な磁気素子を提供する。
【解決手段】さまざまな実施例によれば、磁気素子は、第1の面積範囲を有する磁気応答性スタックまたは積層を含む。スタックは、第1および第2の強磁性フリー層間に位置付けられたスペーサ層を含む。少なくとも1つの反強磁性(AFM)タブが、第1のフリー層に、スペーサ層とは反対側のその表面上で接続されており、AFMタブは、第1の面積範囲よりも小さい第2の面積範囲を有する。 (もっと読む)


【課題】 一様な外乱磁界の影響を除去しつつ、磁気アイソレータの小型化を図る。
【解決手段】 設置基板1上に設けられた第1の絶縁層2及び第2の絶縁層4と、第1の絶縁層2上に配置された第1の磁気抵抗効果素子3a、第2の磁気抵抗効果素子3b、第3の磁気抵抗効果素子3c及び第4の磁気抵抗効果素子3dと、第2の絶縁層2上に配置され、各磁気抵抗効果素子に対向して設けられた信号入力導体5aと、信号入力折返し導体5bとを信号入力接続線5cを介してミアンダライン状に接続されるよう構成された信号入力線5とを備え、信号入力線5に信号電流が通電されることにより第1の磁気抵抗効果素子3a及び第2の磁気抵抗効果素子3bに印加される磁界の方向と、第3の磁気抵抗効果素子3c及び第4の磁気抵抗効果素子3dに印加される磁界の方向とが、互いに逆方向となるように信号入力線5が構成されたことを特徴とする。 (もっと読む)


【課題】減少された大きさ、改善された精度、および/または改善されたダイナミックレンジを有する外部磁界センサ等を提供することを目的とする。
【解決手段】 集積回路(10)は、磁界感知素子(30)を支持する第1の基板(14)および他の磁界感知素子(20)を支持する第2の基板(26)を備えることができる。第1および第2の基板は、様々な構成で配列されてもよい。他の集積回路は、その表面に配置された第1の磁界感知素子および第2の異なる磁界感知素子を備えることができる。 (もっと読む)


【課題】 特に、複数のセンサ素子における検出誤差を効果的に小さくでき、また装置の小型化を図ることができる磁気検出装置を提供することを目的としている。
【解決手段】 磁気センサ10と磁石14とが高さ方向にて間隔を空けて対向配置された磁気検出装置において、前記磁気センサ10は、基板11に支持された第1センサ素子12と第2センサ素子13とを有し、前記第1センサ素子12と前記第2センサ素子13とは、夫々の内部に設けられた第1磁気検知部20の中心と第2磁気検知部21の中心とを前記高さ方向に一致させた状態で重ねられて前記基板11に支持されていることを特徴とする。 (もっと読む)


【課題】AMR効果膜を利用して外部磁界に対して等方的に磁界を検出することができる磁気検出装置を提供する。
【解決手段】磁気検出装置1は、基板11上に設けられ、感磁方向のベクトル和が相殺されるようなパターン形状を有する磁気抵抗素子100〜107と、磁気抵抗素子100〜107の最小抵抗値と同値の抵抗R0と、磁気抵抗素子100〜107からなる回路R1と抵抗R0とから構成されるブリッジ回路とを有する。 (もっと読む)


【課題】構成を複雑化することなく、MR素子を用いて一方向磁界の強度を高感度かつ高精度に評価できるようにし、たとえば、直流電流センサに用いて直流電流を高感度および高精度に測定できるようにする。
【解決手段】磁気抵抗薄膜22の抵抗値変化を検出することによって一方向磁界Mxの強度を評価する磁界強度センサ10であって、基板21に磁気抵抗薄膜による導電パターンが形成された磁気抵抗薄膜素子と、この磁気抵抗薄膜素子を保持する保持具30とを備え、上記基板は、保形性と可撓性を有する非磁性絶縁薄板からなり、上記保持具は、上記磁気抵抗薄膜面を磁界方向の鉛直面に対して所定角度θ傾斜させた状態で保持する。 (もっと読む)


【課題】 回転角度の検出精度を高めながら小型化することができる回転センサを実現する。
【解決手段】 磁気抵抗素子R1〜R8が各磁気抵抗素子の出力信号間に位相差が出るように配置された磁気抵抗素子領域E1と、ホール素子H1,H2が各ホール素子の出力信号間に位相差が出るように配置されたホール素子領域E2とを有し、かつ、磁気抵抗素子領域およびホール素子領域の少なくとも一部同士が重ねられたセンサチップ5と、各ホール素子の各出力レベルと閾値レベルとの比較結果を出す比較部53と、各磁気抵抗素子の各出力信号を用いて相対回転角度θに対応する演算角度φを演算する角度演算部60と、その演算された角度と閾値角度とを比較し、その比較結果と比較部53の比較結果とを用い、相対回転角度に対応する信号を出力する出力部70とを備える。 (もっと読む)


【課題】 磁気発生部の相対回転角度の演算時間を短縮することができる回転センサを実現する。
【解決手段】角度演算部60はAMRセンサM1,M2から出力される信号を用い永久磁石2に対する相対回転角度θと演算により求めた演算角度φとの偏差が所定値に収束するようにフィードバック制御を行って相対回転角度θを演算する。初期値決定部53はホール素子H1,H2から出力された各検出信号の各信号レベルと閾値との各比較結果を用い相対回転角度θの初期値θ0が含まれる角度範囲を判定し、その判定した角度範囲の中で発生し得る相対回転角度の初期値と前記演算角度の初期値との差の絶対値が90°未満となるように演算角度の初期値を決定する。初期値決定部は永久磁石2が相対回転を開始する前にのみ演算角度φの初期値φ0を決定し角度演算部60はその決定された演算角度φの初期値φ0を用いてフィードバック制御を開始し、相対回転角度θを演算する。 (もっと読む)


1 - 20 / 102