説明

Fターム[5F140BK05]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース・ドレイン領域、電極及びSD近傍領域の製造 (13,929) | ダミーゲートをマスクにしてSD領域の形成 (202)

Fターム[5F140BK05]に分類される特許

1 - 20 / 202




【課題】注入した導電性不純物により形成される結晶欠陥の密度を低減し、歩留まり率が向上するような半導体装置の製造方法を提供する。
【解決手段】本発明の実施形態にかかる半導体装置の製造方法は、半導体基板を加熱することにより、半導体基板の基板温度を200から500℃の間の所望の温度に維持すると同時に、半導体基板に導電性不純物をイオン注入法もしくはプラズマドーピング法を用いてドーピングし、ドーピングした導電性不純物を活性化させるための活性化処理を行う。 (もっと読む)


【課題】SOI基板に形成されるMOSトランジスタの特性を向上することができる半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上に埋込絶縁層2を介して形成される第1半導体層3と、前記第1半導体層3及び前記絶縁層2内に形成され、前記第1半導体層3に接する第2半導体層12と、前記第2半導体層12の上に形成されるゲート絶縁膜13と、前記ゲート絶縁膜13上に形成されるゲート電極14gと、前記ゲート電極14gの側壁に形成されるサイドウォール7とを有する。 (もっと読む)


【課題】ダミーゲート電極の除去により形成されたゲート溝へのゲート電極材料の埋め込み性を改善することにより、適切な閾値電圧を持つ電界効果型トランジスタを備えた半導体装置を容易に実現できるようにする。
【解決手段】ゲート電極111bは、それぞれ金属又は導電性金属化合物からなる第1導電膜108b、第2導電膜109b及び第3導電膜110bが下から順に形成された積層構造を有し、ゲート電極111aは、第2導電膜109a及び第3導電膜110aが下から順に形成された積層構造を有する。第1導電膜108bの仕事関数と第2導電膜109a、109bの仕事関数とは異なっている。第1導電膜108bは板状に形成されており、第2導電膜109a、109bは凹形状に形成されている。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】MISFETにおいて、信頼性寿命の低下を抑制する。
【解決手段】半導体装置100は、少なくとも1つのMISFETを備える。MISFETは、第1導電型の半導体基板101と、半導体基板101上にゲート絶縁膜104を介して形成されたゲート電極105と、半導体基板101におけるゲート電極105の側方に形成された第2導電型のソース領域106と、他方の側方に形成された第2導電型のドレイン領域107と、半導体基板101におけるゲート電極105の下方であり且つソース領域106及びドレイン領域107に挟まれたチャネル領域111とを備える。ゲート絶縁膜104は、ゲート電極105の底面下から側面上にまで亘って形成されている。チャネル領域111において、ドレイン領域107近傍の第1領域における不純物濃度は、チャネル領域111における第1領域以外の第2領域における不純物濃度に比べて低い。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】注入した不純物の拡散を抑制しつつ結晶欠陥を低減する半導体装置の製造方法を提供する。
【解決手段】実施の形態の半導体装置の製造方法は、リンまたはボロンを分子状イオンの形態で含有する第1の不純物80と、リンまたはボロンよりも注入量が少ない炭素、フッ素または窒素を分子状イオンの形態で含有する、もしくは、リンまたはボロンよりも注入量が少ない炭素を原子イオンの形態で含有する第2の不純物81と、を半導体層1に注入して不純物注入層9を形成する工程を含む。 (もっと読む)


【課題】トランジスタのチャネル部に印加される応力を増加させて、電流増加効果を高めることを可能とする。
【解決手段】半導体基板上にダミーゲートを形成した後、該ダミーゲートの側壁に側壁絶縁膜を形成し、該ダミーゲートの両側の前記半導体基板にソース・ドレイン領域を形成する工程と、前記ダミーゲートおよび前記ソース・ドレイン領域の上に応力印加膜を形成する工程と、前記ダミーゲートの上の領域に形成された前記応力印加膜と前記ダミーゲートを除去して溝を形成する工程と、前記溝内の前記半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、を備えた半導体装置の製造方法。 (もっと読む)


【課題】高い降伏電圧を有する高耐圧トランジスタ及びそれの製造方法を提供する。
【解決手段】高い降伏電圧を有する高耐圧トランジスタ及びそれの製造方法において、半導体基板の所定部位が酸化された第1絶縁膜パターン、及び第1絶縁膜パターンを少なくとも部分的に取り囲む第2絶縁膜パターンを形成する。基板上に導電性物質を蒸着して、第1端部は第1絶縁膜パターン上に位置し、第2端部は第2絶縁膜パターン上に位置するゲート電極を形成した後、基板表面の所定部位に不純物を注入してソース/ドレイン領域を形成する。ゲート電極のエッジ部分に集中される電界を緩和して高い降伏電圧を有するトランジスタを製造することができ、熱酸化膜パターンとCVD酸化膜パターンをゲート酸化膜として使用することで、MOSトランジスタにおいて電流特性及びON抵抗特性を改善することができる。 (もっと読む)


【課題】ゲート絶縁膜をHigh−k材料で構成し、ゲート電極をメタル材料で構成するHK/MGトランジスタを有する半導体装置において、安定した動作特性を得ることのできる技術を提供する。
【解決手段】素子分離部2で囲まれた活性領域14に位置し、後の工程でコア用nMISのゲートGが形成される領域Ga1のみに、Nch用ゲートスタック構造NGを構成する積層膜を形成し、上記領域Ga1以外の領域NGa1には、Pch用ゲートスタック構造PGを構成する積層膜を形成する。これにより、コア用nMISのゲートGが形成される領域Ga1へ素子分離部2から引き寄せられる酸素原子の供給量を減少させる。 (もっと読む)


【課題】 収率が低下することなくCMOS集積回路の特性を最適可能な半導体素子の製造方法を提供する。
【解決手段】 半導体基板1の上の第1領域A内及び第2領域B内に各々形成された第1グルーブ15a及び第2グルーブ15bを有する層間絶縁膜15を形成する。次に、半導体基板1上に積層金属膜22を形成し、積層金属膜22上に非感光性を有する平坦化膜23を第1グルーブ15a及び第2グルーブ15bを充填するように形成する。第1領域A内の平坦化膜23を乾式エッチングによって選択的に除去し、第1領域A内の積層金属膜22を露出させ、第2領域B内の積層金属膜22を覆う平坦化膜パターン23pを形成する。これにより、第1領域A内の最上部金属膜を容易に除去することができるので、収率が低下することなく異なる仕事関数を有する第1金属ゲート電極及び第2金属ゲート電極を形成できる。 (もっと読む)


【課題】ゲート電極断線の確率を下げる。
【解決手段】半導体装置1の製造方法は、シリコン基板2の主面に絶縁体ピラー6を形成する工程と、絶縁体ピラー6の側面に保護膜12を形成する工程と、シリコン基板2の主面にシリコンピラー4を形成する工程と、シリコンピラー4の側面にゲート絶縁膜10を形成する工程と、それぞれシリコンピラー4及び絶縁体ピラー6の側面を覆い、互いに接する第1及び第2のゲート電極11,13を形成する工程とを備える。本製造方法によれば、ダミーピラーとしての絶縁体ピラー6の側面に保護膜12を形成しているので、チャネル用のシリコンピラー4をトランジスタとして加工する際にダミーピラーが削られてしまうことが防止される。したがって、ゲート電極断線の確率を下げることが可能になる。 (もっと読む)


【課題】導電材料のゲートトレンチへの埋め込みが容易な半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、半導体基板上の絶縁膜と、絶縁膜に設けられた凹部と、凹部の底部であって半導体基板上に設けられたゲート絶縁膜とを形成する工程と、凹部の内壁面上と絶縁膜の上面上に、第1金属を含む導電材料で第1ゲート電極膜を形成する工程と、第1ゲート電極膜上に、凹部の側面部分の一部は覆わないように、導電材料の融点よりも高い融点を持つ材料でカバー膜を形成する工程と、カバー膜が形成された状態で、熱処理を行って、第1ゲート電極膜をリフローさせる工程とを有する。 (もっと読む)


【課題】MOSトランジスタのソース及びドレイン電極に生じる寄生容量を低減する。高速動作が可能な半導体装置を提供する。
【解決手段】半導体装置は、MOSトランジスタを備える。MOSトランジスタは、1対の第1、第2及び第3の不純物拡散領域を有する。第2の不純物拡散領域は、第1の不純物拡散領域を挟むように半導体基板内に設けられた第1導電型の不純物拡散領域であり、第1の不純物拡散領域よりも第1導電型の不純物濃度が高くなる。第3の不純物拡散領域は、1対の第1の不純物拡散領域に接すると共に第2の不純物拡散領域に接しないように、半導体基板内に設けられた第2導電型の不純物拡散領域である。 (もっと読む)


【課題】 信頼性が向上する半導体素子、及びその形成方法を提供する。
【解決手段】 半導体素子の形成方法は、半導体基板100の上にゲート電極120及びゲート電極120の両側にスペーサー110を形成する段階、ゲート電極120の上にキャッピングパターン170を形成する段階、ゲート電極120の間にメタルコンタクト195を形成する段階を含み、キャッピングパターン170の幅はゲート電極120の幅より大きく形成される。これにより、形成された半導体素子は、メタルコンタクト195とゲート電極120との間での電気的な短絡を效果的に防止することができる。 (もっと読む)


【課題】ゲート絶縁膜の端部にトラップされるホットキャリアの数を抑制し、且つ、面積拡大を抑制しつつ高耐圧のMOSトランジスタを作製する。
【解決手段】第1導電型の半導体基板1上に形成したマスクパターン9をマスクとして、第2導電型の一対の第1低濃度拡散領域4と、第1低濃度拡散領域4よりも深くかつ高濃度の第2導電型の一対の第2低濃度拡散領域3と、を形成する。そして、一対の第1低濃度拡散領域4のうちの一方の第1低濃度拡散領域4上から他方の第1低濃度拡散領域4上に亘ってゲート絶縁膜5を形成し、このゲート絶縁膜5上にゲート電極6を形成する。そして、ゲート電極6をマスクとして、第2低濃度拡散領域3よりも高濃度の第2導電型の一対の高濃度拡散領域8を形成する。 (もっと読む)


1 - 20 / 202