説明

Fターム[5H007FA20]の内容

インバータ装置 (60,604) | 保護 (4,632) | 手段 (947) | スナバ回路 (87)

Fターム[5H007FA20]に分類される特許

1 - 20 / 87


【課題】自動車が衝突ないし転倒した場合に、その衝撃力を使用して、回転機械への給電を遮断すると同時に平滑コンデンサに蓄えられた電荷を放電することが可能な電源装置を得る。
【解決手段】高圧直流電源部10と、回転機械50を駆動するインバータ40と、高圧直流電源部10とインバータ40とを接続する一対の直流母線11と12と、インバータ40と並列に接続される平滑コンデンサ60と、平滑コンデンサ60と並列に接続されリレー70と抵抗80とを直列に接続した直列回路と、直流母線11の線路上に設置される接合部20とを備え、接合部20は、所定の外力が加わった場合、直流母線11の導通を遮断し、かつ、リレー70を閉状態にすることで平滑コンデンサ60の電荷を放電させる機構を有する。 (もっと読む)


【課題】小型で低コストな電流形フルブリッジインバータを備えた電源装置を提供する。
【解決手段】電源装置10は、直流電源V1,V2間に接続され電力を授受する。電源装置10は、電流形フルブリッジインバータの第1の上アームスイッチング素子S1のターンオフタイミングを、他方のスイッチングレッグの第2の下アームスイッチング素子S4のターンオフタイミングより早めてオン状態の時間を短縮している。更に、電源装置10は、第2の上アームスイッチング素子S3のターンオフタイミングを、他方のスイッチングレッグの第1の下アームスイッチング素子S2のターンオフタイミングより早めてオン状態の時間を短縮している。これにより、電源装置10は、第1の上アームスイッチング素子S1と、第2の上アームスイッチング素子S3のオンオフ状態を、1つのパルストランスPT1を介して制御することができる。 (もっと読む)


【課題】入力電圧に接続不良や偶発的に導通が絶たれた場合、ロードダンプサージが発生し、電圧が急上昇する。その結果、DC/DCコンバータ内のスイッチング回路を構成するスイッチング素子の耐圧を超えた電圧がかかってしまい、スイッチング素子に不具合が生じる。また、ロードダンプサージを考慮して高耐圧型のスイッチング素子を用いると、高耐圧型スイッチング素子はオン抵抗が高いためスイッチング損失も高くなる問題も生じる。
【解決手段】スイッチング回路はスイッチング素子を用いて構成されたフルブリッジ型スイッチング回路から構成される電力変換装置において、フルブリッジ型スイッチング回路は少なくとも4つのスイッチング素子から構成され、スイッチング素子はそれぞれにブリーダ抵抗を並列に接続する。 (もっと読む)


【課題】MOSFETのターンオフ時のスイッチング損失を低減できるとともにサージ電圧を低減できる電子回路を提供する。
【解決手段】バスバー61aにおけるU相用モジュール3の第1電源端子31寄りの部分と、バスバー64aにおけるU相用モジュール3の第2電源端子32寄りの部分との間に、コンデンサ91が接続されている。バスバー62におけるV相用モジュール4の第1電源端子41寄りの部分と、バスバー65におけるV相用モジュール4の第2電源端子42寄りの部分との間に、コンデンサ92が接続されている。バスバー63におけるW相用モジュール5の第1電源端子51寄りの部分と、バスバー66におけるW相用モジュール5の第2電源端子52寄りの部分との間に、コンデンサ93が接続されている。 (もっと読む)


【課題】パワーMOSFET等のスイッチング素子を用いた直流電源の電力変換装置であって、半導体チップ上でスナバ回路を構成してもリンギング(回路共振)に伴うノイズを十分に低減可能な小型化の電力変換装置を提供する。
【解決手段】ハイサイドとローサイドの一方の主回路における主スイッチング素子が、ON−OFF状態を繰り返すように制御されると共に、もう一方の主回路におけるダイオードが、フリーホイールダイオードとして用いられ、直列接続された抵抗R1,R2、コンデンサC1,C2および第2スイッチング素子S1,S2からなるスナバ回路N1,N2が、複数、前記主回路に並列接続されてなり、第2スイッチング素子S1,S2が、前記ON−OFF状態を繰り返す主スイッチング素子のターンONまたはターンOFFに先行して、順にターンONする電力変換装置100とする。 (もっと読む)


【課題】従来の3レベル変換回路の双方向スイッチのスナバ回路では、電圧クランプ形スナバが適用できないため、スナバ損失が大きくなること、スナバを構成するために多くのスイッチ素子が必要となることなどにより、装置が大型で、変換効率が低下する問題がある。
【解決手段】双方向スイッチをダイオードを逆並列接続した第1及び第2の半導体スイッチを直列接続した第1の半導体スイッチ直列回路と、ダイオードを逆並列接続した第3及び第4の半導体スイッチを直列接続した第2の半導体スイッチ直列回路との並列回路で構成し、前記第1及び第2の半導体スイッチ又は前記第3及び第4の半導体スイッチと並列に半導体スイッチ素子の両端電圧を直流電源電圧にクランプする電圧クランプ形スナバを接続する。 (もっと読む)


【課題】産業用車両に好適に利用可能な電力変換装置を提供する。
【解決手段】ハイサイドトランジスタMHUは、対応する相の出力端子OUTUと上側電源ラインLPの間に設けられ、電気的に並列なN個(Nは2以上の整数)のハイサイドトランジスタユニット14U1〜Nを含む。ローサイドトランジスタMLUは、対応する相の出力端子OUTUと下側電源ラインLNの間に設けられ、電気的に並列なN個のローサイドトランジスタユニット16U1〜Nを含む。スナバ回路12は、それぞれが、ひとつのハイサイドトランジスタユニット14およびそれと対応するひとつのローサイドトランジスタユニット16のペアごとに設けられる。ハイサイドトランジスタMHU、ローサイドトランジスタMLUおよびN個のスナバ回路12U1〜Nは、金属ベース基板上に実装される。 (もっと読む)


【課題】機器小型化を図ることができるとともに高温下であってもコモンモードノイズを十分に抑制することができるノイズ低減回路を提供する。
【解決手段】バッテリ19からの電力を半導体素子からなる半導体スイッチング素子11,12を介して電力変換して電力駆動する負荷に出力する高圧電力系統と、ボディ17との間に、半導体スイッチング素子11,12の駆動による発熱温度上限値以上の耐熱温度を有するダイオード26,27を、それらの導通方向が逆向きになるように直列接続したことを特徴とする。 (もっと読む)


【課題】ノイズやサージを対策しつつ、温度上昇を抑制可能な電力変換装置を提供する。
【解決手段】パワーモジュール4は基板20の第1面S1に実装され、ゲートドライブ回路6、複数の電解コンデンサC1およびスナバ回路8の構成部品は基板20の第2面S2に実装される。複数の電解コンデンサC1は、基板20の中心にクリアランス21を有するように2つの領域23、25に隔てて配置される。スナバ回路の構成部品は、複数の電解コンデンサC1に囲まれる領域29に配置される。 (もっと読む)


【課題】ノイズやサージを対策しつつ、温度上昇を抑制可能な電力変換装置を提供する。
【解決手段】電解コンデンサC1は、上側電源ラインと下側電源ラインの間に電気的に接続される。パワーモジュール4は、少なくともひとつのパワートランジスタを内蔵する。ゲートドライブ回路6は、少なくともひとつのパワートランジスタを駆動する。スナバ回路8は、上側電源ラインおよび下側電源ラインと電気的に接続される。第1基板20は、その第1面S1にパワーモジュール4が実装され、その第2面S2にゲートドライブ回路6およびスナバ回路8の構成部品が実装される。第2基板22は、その第1面S3に電解コンデンサC1が実装される。 (もっと読む)


【課題】 エネルギー損失を抑制し得る電力変換装置を提供すること。
【解決手段】 電力変換装置は、負荷運転部して、直流架線1に接触器3を介して接続されたインバータ7とこのインバータ7の出力を受ける負荷8とを有する。接触器3とインバータ7との間にエネルギー蓄積部12が接続されている。 (もっと読む)


【課題】スイッチング損失を低減した、DC入力電圧をDC出力電圧またはAC出力電圧に変換するコンバータを提供する。
【解決手段】コンバータは、入力端子101と出力端子103に電圧を供給するスイッチング素子104を備え、スイッチング素子104をオフしたとき、寄生インダクタンスLparasiticによって誘導されるエネルギをキャパシタC110に一時的に蓄えるために、ダイオードD110およびキャパシタC110の第1の直列回路110が設けられている。ダイオードD110は一方の入力端子101に結合され、並列に結合されている能動回路120によって、第1の直列回路110のキャパシタC110に一時的に蓄えられているエネルギを解放制御する。 (もっと読む)


【課題】新たな部品を追加することなく、スイッチングサージを抑えることができる電力変換装置を提供する。
【解決手段】モータ制御装置1は、電源配線10と、平滑コンデンサ11と、インバータ回路12と、制御回路13とを備えている。平滑コンデンサ11は、コンデンサ110、111を並列接続用配線112、113によって並列接続して構成されている。並列接続用配線113のインダクタンスLs1及びコンデンサ110、111がループ状に接続され、LC共振回路が構成される。LC共振回路の共振周波数が、サージ電圧に含まれる周波数成分のうち、抑制しようとする所定周波数になるようにインダクタンスLs1、コンデンサ110、111の容量の少なくともいずれかが調整されている。これにより、新たな部品を追加することなく、スイッチングサージを抑えることができる電力変換装置を提供する。 (もっと読む)


【課題】コスト上昇を抑制しつつ、低損失化と高耐圧化とを両立可能なインバータ装置を得ること。
【解決手段】負荷あるいは直流母線に流れる電流を検出する電流検出手段7もしくは前記直流母線の直流電圧を検出する電圧検出手段6の少なくとも1つを具備し、直流電圧の印加方向に沿って上流側の第1のMOSFET21u,21v,21wと下流側の第2のMOSFET22u,22v,22wとが直列に接続されたアームを1つあるいは複数備えて構成されるスイッチング回路2と、電流あるいは直流電圧の少なくとも1つに基づいて、スイッチング回路2を駆動制御する駆動制御部と、を備え、第1のMOSFET21u,21v,21wおよび第2のMOSFET22u,22v,22wのうち、1つ以上のMOSFETがワイドバンドギャップ半導体により形成され、残りのMOSFETがSuper Junction構造を有する。 (もっと読む)


【課題】本発明は、構造を簡素にすることができる、発電機と電動機とを備えるハイブリッド車を提供する。
【解決手段】ハイブリッド電気自動車10は、エンジン70と、モータジェネレータ60と、後輪駆動用電動機25と、モータジェネレータ用インバータ80と、後輪駆動用電動機25を制御するとともにモータジェネレータ用インバータ80と電気的に接続される後輪電動機用インバータ50とを備える。モータジェネレータ用インバータ80は、平滑コンデンサ83と、第1の抵抗84とを備える。後輪電動機用インバータ50は、平滑コンデンサ53と、第2の抵抗54とを備える。後輪電動機用インバータ50は、さらに、平滑コンデンサ53,83に蓄電された電荷を強制的に放電させるべく第1,2の抵抗54,84の抵抗値よりも抵抗の小さい第3の抵抗55aを備える。 (もっと読む)


【課題】電流サージと電圧サージを抑制できると共に、デッドタイム中における損失を低減することのできる電力変換装置を提供する。
【解決手段】第1スイッチング素子SW1,SW2と逆並列に接続されたダイオードD1,D2とからなる主回路1H,1Lを備え、直列接続された第2スイッチング素子SW3,SW4とコンデンサCからなる副回路2L,2Hが、フリーホイールダイオードとして用いられるダイオードD1,D2に並列接続されてなり、副回路2L,2Hと反対のもう一方の主回路1H,1Lにおける第1スイッチング素子SW1,SW2がターンONするタイミングを基準時RTとし、デッドタイムΔtdにおいて、副回路2L,2Hにおける第2スイッチング素子SW3,SW4が、基準時RTよりコンデンサCの放電時間Δt2だけ先行してターンONするように設定された電力変換装置100〜107とする。 (もっと読む)


【課題】障害電流からの電力変換器を保護すること。
【解決手段】電力変換器100は、第1のdi/dtリアクトル120と第1の制御部とを含む第1の位相レグ102を含み、第1のdi/dtリアクトルおよび第1の制御部は、活性線と中性線の間に結合される。電力変換器はまた、活性線と中性線の間に結合された第1の電流クローバー124と、第1のdi/dtリアクトル、制御部、および第1の電流クローバーに結合され、第1のdi/dtリアクトルの両端の電圧に基づいて電流クローバーを活動化するように構成されたコントローラとを含む。 (もっと読む)


【課題】スナバ抵抗体18#(#=p,n)の発熱量が無視できないこと。
【解決手段】スイッチング素子Sw#およびフリーホイールダイオードFD#を備える半導体チップ22#は、ビア導体32#、配線層34#、ビア導体38#を介して導体40#に接続されている。導体40#は、半導体チップ22#を垂直投影した投影領域からはみ出すようにして形成されており、はみ出した部分には絶縁膜42#およびスナバ抵抗体18#が積み重ねられている。スナバ抵抗体18#は、ビア導体44#、配線層46#およびビア導体48#を介してスナバ回路を構成するコンデンサ16に接続されている。 (もっと読む)


【課題】高電位側のスイッチング素子Swpおよび低電位側のスイッチング素子Swnの直列接続体を備えるものにあって、放射ノイズを十分に抑制することが困難なこと。
【解決手段】多層基板20には、スイッチング素子Swpを備える半導体チップ22pと、スイッチング素子Swnを備える半導体チップ22nとが埋め込まれている。半導体チップ22pは、ビア導体24p、配線層26pおよびビア導体32pを介してスナバ回路SCに接続され、半導体チップ22nは、ビア導体24n、配線層26nおよびビア導体32nを介してスナバ回路SCに接続される。また、半導体チップ22p,22nは、ビア導体34p,34nを介して配線層36に接続される。これにより、スイッチング素子Swp,Swnの直列接続体とスナバ回路SCとによって構成されるループ回路を小さくすることができる。 (もっと読む)


【課題】蓄電池のような電源から任意の大きさの交流電圧を作り出す電源装置において、起動時や蓄電池の充電時までも含めて電力変換部を駆動することが可能な電源装置を提供する。
【解決手段】この電源装置100は、入力側に蓄電池5が接続され、出力側に負荷7または商用電源6が選択して接続され、双方向に電力変換が可能な電力変換部8と、ダイオード91a〜91f、ダイオード92a〜92dおよびコンデンサ93を含み、ダイオード91a〜91f、ダイオード92a〜92dにより出力交流電圧を整流してコンデンサ93を充電し、電力変換部8の動作時に生じるサージ電圧を吸収するスナバ回路9と、主制御電源31と、蓄電池5に基づく直流電圧と、コンデンサ93に充電された直流充電電圧との高い方の電圧を選択して主制御電源31に供給するダイオード33とを備えている。 (もっと読む)


1 - 20 / 87