説明

Fターム[5H410LL07]の内容

Fターム[5H410LL07]に分類される特許

1 - 20 / 43


【課題】スイッチのオン及び再オン時の突入電流を制限しつつ負荷との切り離しを確実・安全に行う。
【解決手段】直流電源1の一端に一端が接続されたスイッチ6と、負荷に並列に接続される平滑用の第1のコンデンサC2と、前記直流電源の他端と前記第1のコンデンサの他端間に接続された第1のスイッチ素子10と、前記スイッチと前記第1のコンデンサの一端との間に並列に挿入された第2のスイッチ素子12と第1の抵抗R7と、前記直流電源の一端と前記第1の抵抗との接続点の差分電圧を検出する差分電圧検出回路8と、前記スイッチのオンにより前記差分電圧が前記所定の電圧以下であると検出されると前記第1、第2のスイッチ素子をオンとし、一方、前記スイッチがオフとなり前記差分電圧が前記所定の電圧以上であると検出されると、前記第1、第2のスイッチ素子をオフにする第1、第2の駆動回路9、11を備える。 (もっと読む)


【課題】外部機器の最大定格電流を少し上回る電流を検出したとき、そのような定格電流を上回るが過渡的であり供給すべき電流に対しては、異常とみなさないような電流制限回路を提供する。
【解決手段】本発明に係る電流制限回路は、ドライバ回路に対してドライバ回路からの出力電流の制限を行う制限電流値として、第1の許容値と、第1の許容値より大きい第2の許容値とを設定する手段と、ドライバ回路からの出力電流が、上記第1の許容値を超えたことを検知する手段と、上記検知する手段による検知後の一定期間、第1の許容値を第2の許容値に上昇させる手段とを備えることを特徴とする。 (もっと読む)


【課題】電源投入時の入力電圧が検出閾値に達すると起動し、かつ検出閾値が可変である、突入電流防止回路及び突入電流の防止方法を提供すること。
【解決手段】本発明は、起動回路2及び電流制限回路3を有する。電流制限回路3は、直流電源の投入時に、突入電流の発生を防止する。起動回路2は、入力電圧を検出し、入力電圧が検出閾値に達すると、電流制限回路3を起動する。起動回路2は、検出閾値調整部21を有する。起動回路2は、検出閾値調整部21により、検出閾値を調整することができる。 (もっと読む)


【課題】突入電流をより確実に防止する。
【解決手段】スイッチ11が閉じたとき、平滑コンデンサC1に突入電流が流れようとする。しかし、平滑コンデンサC1を充電するコンデンサ電流Ic1が上限値に達したとき、抵抗R3の両端にトランジスタQ2の動作電圧に対応する電圧が発生し、トランジスタQ2がオンする。このため、トランジスタQ1がオフし、コンデンサ電流Ic1は低下する。コンデンサ電流Ic1が低下すると、トランジスタQ2がオフし、トランジスタQ1のゲート−ソース間電圧Vgsが閾値電圧Vgs[th]未満となって、トランジスタQ1がオフする。コンデンサ電流Ic1は上限値を超えないため、より確実に突入電流が防止される。 (もっと読む)


【課題】半導体スイッチ素子の動作状態の情報を外部装置へ伝送するにあたって、情報の数を減らすことなく絶縁素子の使用個数を低減し、装置の小型化と低コスト化、及び、故障率の低減を実現する。
【解決手段】異なる基準電位に基づいてスイッチング動作を行う半導体スイッチ素子(1a、1b)を2個以上直列接続して構成された半導体電力変換装置(100)であって、それぞれの半導体スイッチ素子の異常検出要因および所定の物理量を状態検知情報として検知し、外部装置へ伝送する情報伝送回路部(4b)を備え、情報伝送回路部(4b)は、検知した状態検知情報に応じて、異常検出要因および所定の物理量を識別可能な二値論理信号を生成し、生成した二値論理信号を単一の絶縁素子(7b)を介して外部装置へ伝送する。 (もっと読む)


【課題】地絡過電流継電器を設置する必要なく断線事故から平衡三相交流回路を保護することができる断線保護継電装置を提供する。
【解決手段】短絡事故や地絡事故が伴わない断線事故から平衡2回線送電線を保護するための第1の断線保護継電装置101は、平衡2回線送電線を構成する第1および第2の送電線1L,2LのR相、S相およびT相を流れる第1および第2のR相、S相およびT相電流IR1,IS1,IT1,IR2,IS2,IT2の電流変化量ΔIR1,ΔIS1,ΔIT1,ΔIR2,ΔIS2,ΔIT2に基づいて断線回線を判定するための電流変化量算出部14およびリレー演算処理部15を備える。 (もっと読む)


【課題】動作開始時の突入電流を防ぐソフトスタート機能を周辺部品の増加や回路規模の増大なしに実現できるスイッチングレギュレータを提供する。
【解決手段】電力供給源から出力側へ電力を供給するスイッチ回路と、出力側の電圧を平滑化する平滑回路と、出力電圧が所定の電圧となるように出力電圧の大きさによってデューティー比を変えてスイッチ回路のオンオフを制御するオンオフ制御回路と、出力電圧が所定の電圧より一定電圧以上低い電圧であるときにスイッチ回路のオン抵抗を大きくするように制御するオン抵抗制御回路と、を含む。 (もっと読む)


【課題】対象機器の特性によらず、当該対象機器を、機能を発揮できる状態に導く。
【解決手段】メモリーカードMに対して電源供給する電源供給部16を備える電源装置40において、PWM周期と、PWM期間との指定に基づき、メモリーカードMに対して電源供給するよう電源供給部16を制御する電源制御部24と、メモリーカードMに対する電源供給によって、リセットが発生したことを検知するリセット検知部32と、リセット検知部32がリセットの発生を検知すると、リセットの発生前よりも長いPWM周期、および、長いPWM期間の少なくとも一方を指定して、電源制御部24に電源供給部16の制御を再開させる再開制御部34と、を備える構成である。 (もっと読む)


【課題】トランジスタやツェナーダイオードへ流れる最大電流を制御することによって、定格の低い部品であっても突入電流に対して保護できる車両用計器の電源回路を提供する。
【解決手段】車両の電源ラインと負荷回路3と接続される第1のトランジスタ4と、第1のトランジスタ4に接続されるツェナーダイオード5と、第1のトランジスタ4と負荷回路3との間の配線に接続される電解コンデンサ6と、前記電源ラインと第1のトランジスタ4との間の配線に接続される第1の電流制限抵抗7と、第1の電流制限抵抗7と第1のトランジスタ4とに接続される第2のトランジスタ8と、第2のトランジスタ8のベースに接続される第2の電流制限抵抗9と、前記電源ラインと第2のトランジスタ8に接続される電圧制限ダイオード10と、を備えてなる。 (もっと読む)


【課題】直流電流を分岐して複数の負荷装置に対して直流電流を分配する電流分配装置に接続されるコンデンサ収容装置において、誤操作の発生を防止してコンデンサの損傷や他の装置への動作障害を防止する。
【解決手段】コンデンサCに直列接続されたスイッチS1と、スイッチS1に並列接続され、コンデンサCへ直流を供給する電路に接続された突入電流防止抵抗Rsと、コンデンサCの両端電圧を計測する電圧計測部11と、電圧計測部11での計測結果によってスイッチS1の開閉を制御する第1の制御部10と、を設ける。 (もっと読む)


【課題】負荷装置の接続状態に応じて出力電流制限値を変更することが可能な電源装置を提供する。
【解決手段】電源装置(100)は、変更部(101)と、監視部(102)と、を有して構成する。変更部(101)は、負荷装置(200)に供給する電流を制限するための出力電流値を変更する。監視部(102)は、電源装置(100)と負荷装置(200)との接続状態を監視する。本実施形態の変更部(101)は、監視部(102)が監視した電源装置(100)と負荷装置(200)との接続状態に応じて出力電流制限値を変更する。 (もっと読む)


【課題】後段の機器へ電源電圧をそのまま供給することができ、且つ、小型化低コスト化が可能な電源制御回路を提供する。
【解決手段】電源電圧を、フィルタ回路52を通過させて出力する電源制御回路50において、一定電流を出力する定電流制御状態と、前記電源電圧に応じた電流を出力する直結状態とを切り替え可能なSW回路51をフィルタ回路52の前段に設け、このSW回路51を、電源投入時に一定時間、定電流制御状態とした後、直結状態とする。これにより、SW回路51が定電流制御状態とされている一定時間は、ラッシュ電流が抑制されてフィルタ回路52には一定電流が流れる。そのため、コイル521に、ラッシュ電流に耐えうる定格値のものを用いる必要がなくなることから、安価且つ小型のコイルを用いることができる。 (もっと読む)


【課題】
従来は、大電流に対応したASO特性を有するFETを採用しなければならず、電源回路のコストが上昇するという問題があった。
【解決手段】
本発明に係る突入電流抑制回路は、電源から負荷に流れる電流を制御するFET(電界効果トランジスタ)と、前記負荷への過電流を検出するための基準電圧を可変する基準電圧発生回路と、前記負荷に流れる電流を電圧に変換して前記基準電圧発生回路が出力する基準電圧を超えたか否かを検出する過電流検出回路と、前記過電流検出回路の検出結果に応じて前記FETのオンオフを制御する過電流停止回路とを設けたことを特徴とする。 (もっと読む)


【課題】給電側が負荷側に流れる突入電流を抑えつつ、負荷側の充電時間を短くする。
【解決手段】供給電源VccからプリンタOUTに電力を供給するための主スイッチ素子SW0には、突入電流防止回路101が取り付けられている。突入電流防止回路101は、主スイッチ素子SW0に対し並列接続されている抵抗素子R1〜R3と、これら抵抗素子R1〜R3を通して負荷側に電流を通すためのスイッチ素子SW1〜SW3と、負荷側の電位に応じてスイッチ素子SW1〜SW3及び主スイッチ素子SW0を順次ONにする電圧監視回路102とにより構成される。スイッチ素子SW1がONされると、抵抗素子R1を通じて負荷側に電流が流れて負荷側の電位が上昇し、電圧監視回路102の動作によってスイッチ素子SW2がONされる。さらに負荷側の電位が上昇すると、電圧監視回路102は、スイッチ素子SW3、主スイッチ素子SW0をこの順にONにする。 (もっと読む)


【課題】コンデンサ等の回路部品を着脱することなく、ソフトスタート処理の実行/不実行を切り替えることが可能な直流安定化電源装置を提供する。
【解決手段】入力側の電圧を調整して出力側に出力する電圧調整装置を備え、該電圧調整装置によって入力電圧を安定化させた出力電圧を生成し、接続されている負荷に出力する直流安定化電源装置において、前記出力電圧の立ち上がり時に、該立ち上がりを緩やかにする処理(ソフトスタート処理)を行う、ソフトスタート起動回路と、所定情報に基づいて、該ソフトスタート処理の実行/不実行の切替を行う切替部と、を備えた直流安定化電源装置とする。 (もっと読む)


【課題】高価な能動素子を使用せず、かつ、電源の瞬断による突入電流も低減可能な突入電流低減回路を実現する。
【解決手段】本発明は、例えば、電源から負荷に対して電力を供給するための電源ラインに直列に接続されたスイッチング素子と、抵抗及びコンデンサを有した時定数回路とを備え、負荷への電力供給の際に発生する突入電流を低減する突入電流低減回路として実現できる。とりわけ、突入電流低減回路は、時定数回路とは別に設けられた基準電圧回路を備えている。この基準電圧回路は、負荷への電力供給の切断時に、時定数回路に備えられたコンデンサの電荷を放電する。また、基準電圧回路は、受動素子で構成されている。 (もっと読む)


【課題】突入電流防止回路の動作完了後に負荷を起動し負荷異常時の過電流を保護する。
【解決手段】入力コンデンサ15と、MOSFET8と、直流入力電源1の+端子と−端子間電圧を分圧し時定数を設けて出力する分圧抵抗2、3及び第1のコンデンサ4を有する時定数回路を備え、MOSFET8のゲートは時定数回路2、3、4の出力に接続され、MOSFET8のゲートに一端が接続された定電圧素子5と、定電圧素子5の他端とMOSFET8のソースとの間に接続された抵抗6と、コレクタが起動信号端子13に接続されエミッタがMOSFET8のソースに接続されベーが定電圧素子5と抵抗6の接続点に接続されたバイポーラトランジスタ7と、過電流検出回路16と、過電流検出回路16で過電流を検出すると、これをラッチし、スイッチ(トランジスタ)18をオンさせ、MOSFET8をカットオフし過電流保護を行うラッチ回路17と、を備える。 (もっと読む)


【課題】直流電源から負荷装置への大きな突入電流の流入ならびに負荷装置から直流電源への電力逆流を防止できる直流電源スイッチを提供する。
【解決手段】給電を終わらせるときは、まず、スイッチS2をオフする。すると、コンデンサC1に蓄積された電荷が抵抗R1で放電され、抵抗R1の両端で生成されるトランジスタQ1のバイアス電圧が低下し始める。トランジスタQ1が流せる電流の値も徐々に低下する。最終的には、トランジスタQ1がオフ状態になり、そのときにスイッチS1をオフする。こうして、供給電力が徐々に低下するので、負荷装置2で高い逆起電力が発生せず、直流電源1への電力逆流を防止することができる。 (もっと読む)


【課題】 リレーの故障診断時間を短縮した負荷駆動回路を提供する。
【解決手段】 制御手段は、起動時に第1スイッチング手段および第2スイッチング手段をON状態とする第1駆動手段と、この第1駆動手段の後に、第2スイッチング手段のみを駆動する第2駆動手段を実施し、第1駆動手段実施後、または第2駆動手段実施後における主電源ラインの電圧に基づき、回路中の異常を検出することとした。 (もっと読む)


【課題】過電流保護回路の誤動作を防ぎ、安定して電源電圧を供給する。
【解決手段】通電中にケーブルが接続されると、インラッシュ電流により過電流保護回路が動作し、定電圧電源部31の電流が制限されてLNB11への供給電圧が低下する。供給電圧が基準電圧以下となると、判別回路36で過電流保護回路の誤動作と判別され、判別結果が微分回路37を介してAND回路38に供給される。AND回路38で電源制御信号と判別結果とに基づく制御信号が生成され、切替制御部35の制御により、切替部33の入力端子が定電流電源部32側に切り替えられる。そして、定電流電源部32の電流によりコンデンサ12が充電され、LNB11の電圧が所定の電圧に達したことが出力電圧検出部34で検出されると、切替制御部35の制御により切替部33の定電圧電源部31側の入力端子が選択され、定電圧電源部31からLNB11に電圧が供給される。 (もっと読む)


1 - 20 / 43