説明

国際特許分類[A61N5/10]の内容

生活必需品 (1,310,238) | 医学または獣医学;衛生学 (978,171) | 電気治療;磁気治療;放射線治療;超音波治療 (7,000) | 放射線治療 (2,421) | X線治療;ガンマ線治療;粒子照射治療 (1,125)

国際特許分類[A61N5/10]に分類される特許

311 - 320 / 1,125


この発明は、少なくとも部分的に照射されているか、または照射されることになっている物質に対する粒子ビーム(34a)の効果を決定するための方法であって、前記粒子ビーム(34a)を特徴付ける少なくとも1つのパラメータおよび物質の少なくとも1つの特性から、前記物質内の前記粒子ビームの前記効果が微視的ダメージ相関を基礎として少なくとも部分的に決定される方法に関する。さらにこの発明は、目標ボリュームについての照射プラン、及び粒子ビーム(34a)用いて目標ボリュームを照射する方法に関する。また本発明は、本発明による方法(200)を実行するために構成された特に能動的ビーム修正装置、および/または受動ビーム修正装置を備えた少なくとも1つのビーム修正装置(32,70)を有する照射装置(30,66)に関する。 (もっと読む)


【課題】マルチリーフコリメータ(MLC)のリーフ開口形状を容易に精度良く確認できるマルチリーフコリメータ観察装置および放射線治療装置を提供する。
【解決手段】本発明は、複数の可動リーフ31を有し、治療ビームBMの軸周りに回転自在に保持され、線源からの放射線の照射野を規定するMLC3を観察するための観察装置であって、MLC3の線源側に設けられ、MLC3のリーフ開口形状を撮像するための撮像部4と、MLC3の照射軸周りの回転角を検出するための回転角検出部5と、データの保存、演算および表示を行うためのデータ処理部DPとを備える。データ処理部DPは、回転角検出部5で検出された回転角に基づいて予め保存された治療計画データのリーフ開口形状を座標変換する座標変換手段6と、座標変換された参照リーフ開口形状および撮像部で撮像された実リーフ開口形状を目視照合のために表示する目視照合手段7と、参照リーフ開口形状および実リーフ開口形状を画像処理により照合する画像処理照合手段8とを含む。 (もっと読む)


【構成】様々な構成の光励起性保存蛍燐光体および読み出し装置を使用して、放射線被曝を検出/モニタリングするための方法および装置を開示する。本発明の適用分野は国土安全保障、緊急事態対応、および医療分野である。一つの形態による装置は受信用の携行式線量測定装置、および複数の蛍燐光体素子で構成するため、大量被曝が発生した場合に住民スクリーニングを実施することができる。医療用途の別な形態は、挿入可能なプローブおよび接着性蛍燐光体パッチで構成するため、医療分野またはイメージング分野における放射線被曝を検出するために使用できる。 (もっと読む)


【課題】荷電粒子ビームを進行方向に垂直な方向に走査して照射する粒子線治療装置において、ビーム走査中に周回ビーム電荷量が不足することがなく、横方向の線量分布がシンクロトロンの二つ以上の運転周期にわたって形成されることによる横方向線量一様度の悪化を防止することができる荷電粒子照射システムを提供することにある。
【解決手段】イオンビームを加速して出射するシンクロトロン2と、走査電磁石202を通過したイオンビームを照射対象に照射する照射野形成装置200と、走査電磁石202による荷電粒子ビームの照射位置の一回の走査が完了してから次の回の走査を開始するまでの期間におけるシンクロトロン2の周回ビーム電荷量に基づいて、シンクロトロン2の運転パターンを変更する制御装置を備えたことにより、上記課題を解決する。 (もっと読む)


【課題】オペレータが視認できる患者照射領域の模擬画像を作成することにより、安全性向上を図ることのできる粒子線治療装置の位置決めシステム及び粒子線治療システムを提供する。
【解決手段】 準備段階にて粒子線拡大起点位置21をX線線源位置22と想定して計画したDDR患者画像36を、ステップ110にて算出した患者位置誤差量の分、シフトし(画像シフト演算42)、ステップ105におけるコリメータX線撮像画像35から、コリメータ領域を抽出し、更にこのコリメータ領域が粒子線拡大起点位置21で撮影した画像となるように補正演算を行い(コリメータ領域抽出及び補正演算43)、補正されたコリメータ領域を画像シフト演算42の演算結果である画像に重ねて描画する(追加描画演算44)。これにより、模擬X線画像38が作成される。 (もっと読む)


【課題】シンクロトロンの出射ビーム電流の増強と安定化により、高い線量率が安定に得られる粒子線治療システム及びシンクロトロンの運転方法を提供する。
【解決手段】粒子線治療システム100は、シンクロトロン200と、ビーム輸送系300と、照射装置500から構成される。制御装置600は、シンクロトロン200で荷電粒子ビームを所定のエネルギーまで加速したのち、加速空胴25に印加した高周波電圧を少なくとも一度OFFしたのち再びONし、基本波成分とその整数倍の周波数を有する高調波成分を合成した高周波電圧を加速空胴25に印加した状態で、荷電粒子ビームを出射装置26と出射偏向装置27を用いてビーム輸送系300へと出射する。 (もっと読む)


【課題】放射線の照射時間を短縮することが可能な放射線照射システムを提供する。
【解決手段】照射位置制御部44は、線量を積算する線量積算部44aと、照射位置変更完了信号を取得する照射位置変更完了信号取得部44bと、一の照射位置において、積算された線量が照射すべき線量に達し、かつ、照射位置変更完了信号が取得されない場合に、制御渋滞であると判定し、その後に照射位置変更完了信号が取得された場合に、制御渋滞が解消されたと判定する制御渋滞判定部44cと、照射位置変更装置31へ照射位置変更開始信号を出力する照射位置変更開始信号出力部44dと、を備え、制御渋滞であると判定された場合には、線量積算部44aは、モニタリングされた線量を次の照射位置における線量として積算し、照射位置変更開始信号出力部44dは、制御渋滞が解消されたと判定された際に、次の照射位置に関する照射位置変更開始信号を出力する。 (もっと読む)


【課題】X線源から治療対象部位までの距離と治療対象部位から画像センサまでの距離を短くして、X線源のエネルギーを低く抑える。
【解決手段】本発明によるX線治療装置用治療台は、患者の治療対象部位近傍に埋め込まれた位置検出用マーカを検出する2組の低エネルギーX線発生装置10,20とそれらに対応するX線画像センサ11,21を備え、低エネルギーX線発生装置と治療対象部位の距離および治療対象部位からX線画像センサまでの距離を短くすることを特徴とする。さらに、カウチに治療用X線画像センサ50を備え、治療用高エネルギーX線発生装置から照射されたX線の強度、位置、方向などを検出する。治療用X線画像センサ50によって収集されたデータは、次の治療用X線発生装置の照射条件の設定にフィードバックされる。さらに、治療後の検証に使用される。また、治療用X線画像センサ50の裏面にX線遮蔽板51が設けられ、治療用高エネルギーX線の透過X線と散乱X線を吸収し、X線の散乱を低減する。 (もっと読む)


本発明は、標的ボリューム(23)に与えられる粒子線(22)の貫通深さを検出する、少なくとも1つの検出手段(25,52)を備える検出器デバイスに関する。検出デバイス(100,150)は、標的ボリューム内で生成された光子、特にガンマ量子、を検出するように構成及び設計されている。本発明はさらに、物体(24)、特に物体(24)の標的ボリューム(23)に与えられる粒子線(22)の貫通深さを判定する方法に関し、粒子線(22)の相互作用によって物体(24)内で生成された光子、特にガンマ量子、が検出器デバイス検出される。
(もっと読む)


【課題】意図しないビームの取り出しを抑制できる3次元スキャニング照射を実現する。
【解決手段】本発明に関わる粒子線照射装置は、加速器5内で加速され加速器5内の軌道を進む荷電粒子ビームに、該荷電粒子ビームを挟んで配置されるRF−KO電極12により、RF−KO電圧による電場を印加して荷電粒子ビームの幅を広げて荷電粒子ビームの一部をデフレクタ電極13を介して加速器5内から取り出す粒子線照射装置1であって、RF−KO電極12により、軌道振幅が大きくRF−KO電圧をオフした場合に加速器5内から取り出される可能性が高い荷電粒子ビームの振動数に共振する高周波電場を荷電粒子ビームに印加する制御を行うビーム選択取出し制御部S1を備える。 (もっと読む)


311 - 320 / 1,125