説明

国際特許分類[B22F9/04]の内容

処理操作;運輸 (1,245,546) | 鋳造;粉末冶金 (29,309) | 金属質粉の加工;金属質粉からの物品の製造;金属質粉の製造 (12,322) | 金属質粉またはその懸濁液の製造 (2,773) | 物理的プロセスを用いるもの (960) | 固体物質からはじまるもの,例.破砕,研磨または粉砕によるもの (365)

国際特許分類[B22F9/04]に分類される特許

51 - 60 / 365


【課題】出発原料の製造条件の違いにかかわらず一定して高い保磁力を有する希土類磁石の製造方法を提供する。
【解決手段】分散したNdを含有するNd−Fe−B系希土類磁石材料のHD処理前のNd間隔を測定する工程、そのNd間隔に応じてHD処理を行う温度を設定する工程、およびこの設定した温度で前記磁石材料のHD処理を行う工程、を含むNdを分散させた希土類磁石の製造方法。 (もっと読む)


【課題】均一な組成のCu−Ga合金スパッタリングターゲットを得る。
【解決手段】Cu粉末とGaとが質量比で85:15〜55:45の割合で配合された混合粉末を、不活性雰囲気中で撹拌しながら30℃〜400℃の温度で加熱して合金化した後、合金化物を粉砕及び粉砕物を混合して、Cu−Ga合金粉末を作製し、このCu−Ga合金粉末を焼結してGaのばらつきが3.0質量%以内のCu−Ga合金スパッタリングターゲットを製造する。 (もっと読む)


【課題】無次元性能指数の大きい熱電材料を供給し、その製法を容易にすること。
【解決手段】
化学式Mg2-x-y-zAlxZnyMnzSi、ただし、x≠0、y≠0、z≠0、0.04≦y/x≦0.6及び0.013≦z/x≦0.075で表され、Al、Zn、Mnの総添加量が0.3at%以上、5at%以下であるMg2Si基化合物から成る熱電材料である。Mg2-x-y-zAlxZnyMnzは、Mg合金として付与される。Mg合金と、Si粉末を、Mg合金とSiの原子比が2 : 1になるように混合し、液相−固相反応法を用いて、不活性ガス雰囲気下でMg合金の融点以上の温度で、液相状態のMg合金と固相状態のSiの固液共存した状態で、Mg合金とSiとを合成反応させ、反応の完了の後に、冷却して、多孔質のMg2Si基化合物を作製し、Mg2Si基化合物を不活性ガス雰囲気下で粉砕して粉砕体を形成し、その後に、粉砕体を真空又は不活性雰囲気下で加圧焼結する。 (もっと読む)


【課題】R−T−B系磁性粉末を製造する装置のスケールアップに伴って反応炉内における水素化分解反応の発熱量及び脱水素再結合反応の吸熱量が増大しても、優れた磁気特性を有する磁性粉末を十分に効率的且つ安定的に製造できる方法を提供する。
【解決手段】水素化分解・脱水素再結合法によってR−T−B系磁性粉末を製造するためのものであり、被処理物と耐水素脆性を有するメディアとを混合する混合工程と、反応炉内において、メディアの存在下、被処理物に対する水素化分解・脱水素再結合法による処理を行う処理工程とを備える。 (もっと読む)


【課題】R−T−B系磁性粉末を製造する装置のスケールアップに伴って反応炉内における水素化分解反応の発熱量が増大しても、優れた磁気特性を有する磁性粉末を十分に効率的且つ安定的に製造できる方法を提供すること。
【解決手段】本発明に係るR−T−B系磁性粉末の製造方法は、被処理物を収容した反応炉の炉内を昇温し、被処理物を水素化分解させて分解生成物を得る水素化分解工程と、分解生成物から水素を放出させてR−T−B系磁性粉末を得る脱水素再結合工程とを備え、水素化分解工程において、被処理物の水素化分解反応開始時における反応炉の昇温速度を5℃/分以下とすることを特徴とする。 (もっと読む)


【課題】活物質の理論容量に対する利用率の向上とサイクル特性の向上とを両立させることが可能なリチウム二次電池用負極活物質を提供する。
【解決手段】Siを30〜65質量%含有する組成を有し、Sn量が50質量%以上占めるSn−Cu系合金マトリクス中にSi結晶子が分散しているとともに、Si結晶子を少なくとも部分的に被覆する状態にSi−X系合金(但しXはFe,Ni及びCoから選択される1種以上の元素)が晶出した2相マトリクス構造のリチウム二次電池用負極活物質とする。
ここでXは1質量%以上の量で添加しておく。
上述のリチウム二次電池用負極活物質は、リチウムイオン二次電池、リチウムポリマー二次電池などのリチウム二次電池の負極に好適に用いることができる。 (もっと読む)


【課題】優れた導電性を有する導電膜を形成することができるフレーク状銀粉及びフレーク状銀粉の製造方法、並びに導電性ペーストの提供。
【解決手段】フレーク状銀粉であって、次式(1)、A×A×B>50を満たすフレーク状銀粉である。ただし、前記式(1)中、Aは、フレーク状銀粉のレーザー回折散乱式粒度分布測定法による平均粒径(単位:μm)、Bは、フレーク状銀粉のBET比表面積(単位:m/g)を表す。平均粒径が1μm〜15μmの銀粉を、溶媒及び直径0.1mm〜3mmのボールにより伸展させて、銀粉の平均粒径が最大又は最大値を経過するまでフレーク化処理するフレーク状銀粉の製造方法である。 (もっと読む)


【課題】酸素含量の調節が容易な酸化物分散強化合金の製造方法を提供する。
【解決手段】本発明の一実施形態に係る酸化物分散強化合金の製造方法は、少なくとも一つの成分粉末を機械的合金化させ、MA合金粉末に前処理するステップと、前処理されたMA合金粉末を収容容器に装入させるステップと、装入されたMA合金粉末の酸素濃度を調節するステップと、酸素濃度が調節されたMA合金粉末を後処理するステップとを含み、酸素濃度調節ステップは、収容容器の内部へ水素ガス、水素混合ガスまたは還元ガスのうち少なくともいずれか一つを流入させ、装入されたMA合金粉末に含まれた酸素のうち少なくとも一部を還元させる還元ステップを含む。このような構成によれば、機械的合金化されたMA合金粉末の酸素濃度調節が容易になることによって、合金の析出物含量および大きさ等の調節が容易になるとともに、機械的特性に優れた酸化物分散強化合金の製造が可能となる。 (もっと読む)


【課題】従来よりも高品質の酸化物分散強化型白金合金を安定的に製造することのできる方法を提供する。
【解決手段】本発明は、容器、粉砕媒体、攪拌棒を備える粉砕装置により、溶媒中で白金合金からなる被粉砕物を粉砕処理する工程を含む酸化物分散強化型白金合金の製造方法において、前記容器、粉砕媒体、攪拌棒の少なくとも被粉砕物との接触面を白金又は白金合金で構成し、前記溶媒に過酸化水素溶液を投入して粉砕を行うものであることを特徴とする酸化物分散強化型白金合金の製造方法である。 (もっと読む)


【課題】高残留磁束密度、高保磁力の焼結磁石であるR−T−B−M系焼結磁石となるためのR−T−B−M系焼結磁石用合金を作製する。
【解決手段】焼結磁石全体に亘って結晶粒の主相外殻にDyの多いR14Bが存在するR−T−B−M系焼結磁石を作製できるように、R−T−B−M母合金1と重希土類元素RHの金属又は合金のRH拡散源2とを処理室3内にて連続的または断続的に移動させながら、雰囲気圧力10Pa以下600℃以上1000℃以下の熱処理を10分以上48時間以下行い、R−T−B−M系焼結磁石用合金の主相であるR214B化合物の結晶とそれ以外の相との界面部分に重希土類元素RHの濃度が高い領域を連続して生成する。 (もっと読む)


51 - 60 / 365